Age-Related Trends in Dual-Energy X-Ray Absorptiometry–Measured Adiposity and Their Clinical Relevance: A Multicenter Cross-Sectional Study of Korean Peri- and Postmenopausal Women
Abstract
1. Introduction
1.1. Biological and Hormonal Mechanisms of Aging in Women
1.2. Limitations of BMI and the Clinical Value of DXA in Midlife Women
2. Methods
3. Results
3.1. Adiposity Characteristics According to BMI Categories in Women over Age 40
3.1.1. General Trends in Body Fat Accumulation (TB%F, FMI)
3.1.2. Visceral Fat Accumulation (VAT Stratification)
3.1.3. Central Fat Distribution Pattern (A/G Ratio and Body Shape)
4. Discussion
4.1. Clinical Implications and Integration with Updated Obesity Guidelines
4.2. Study Limitations: Methodological, Demographic, and Measurement Considerations
4.3. Study Strengths: Comprehensive DXA-Based Assessment and Clinical Relevance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2021 Risk Factor Collaborators. Global burden of 88 risk factors in 204 countries and territories, 1990–2021: A systematic analysis for the Global Burden of Disease study 2021. Lancet 2024, 403, 2162–2203. [Google Scholar] [CrossRef]
- Okunogbe, O.; Nugent, R.; Spencer, G.; Powis, J.; Ralston, J.; Wilding, J.E. Economic Impacts of Overweight and Obesity: 2nd Edition with Estimates for 161 Countries; World Obesity Federation: London, UK, 2022. [Google Scholar]
- Marlatt, K.L.; Pitynski-Miller, D.R.; Gavin, K.M.; Moreau, K.L.; Melanson, E.L.; Santoro, N.; Kohrt, W.M. Body composition and cardiometabolic health across the menopause transition. Obes. Silver Spring 2022, 30, 14–27. [Google Scholar] [CrossRef]
- Moccia, P.; Belda-Montesinos, R.; Monllor-Tormos, A.; Chedraui, P.; Cano, A. Body weight and fat mass across the menopausal transition: Hormonal modulators. Gynecol. Endocrinol. 2022, 38, 99–104. [Google Scholar] [CrossRef]
- Sehl, M.E.; Yates, F.E. Kinetics of human aging: I. Rates of senescence between ages 30 and 70 years in healthy people. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, B198–B208. [Google Scholar] [CrossRef] [PubMed]
- Balagopal, P.; Rooyackers, O.E.; Adey, D.B.; Nair, K.S. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. Am. J. Physiol. 1997, 273, E790–E800. [Google Scholar] [CrossRef] [PubMed]
- Volpi, E.; Sheffield-Moore, M.; Rasmussen, B.B.; Wolfe, R.R. Basal muscle amino acid kinetics and protein synthesis in healthy young and older men. J. Am. Med. Assoc. 2001, 286, 1206–1212. [Google Scholar] [CrossRef]
- Young, V.R. Amino acids and proteins in relation to the nutrition of elderly people. Age Ageing 1990, 19 (Suppl. 1), S10–S24. [Google Scholar] [CrossRef]
- Baumgartner, R.N.; Stauber, P.M.; McHugh, D.; Koehler, K.M.; Garry, P.J. Cross-sectional age differences in body composition in persons 60+ years of age. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, M307–M316. [Google Scholar] [CrossRef]
- Forbes, G.B. Longitudinal changes in adult fat-free mass: Influence of body weight. Am. J. Clin. Nutr. 1999, 70, 1025–1031. [Google Scholar] [CrossRef]
- Lizcano, F.; Guzmán, G. Estrogen deficiency and the origin of obesity during menopause. Biomed. Res. Int. 2014, 2014, 757461. [Google Scholar] [CrossRef]
- Karvonen-Gutierrez, C.; Kim, C. Association of mid-life changes in body size, body composition and obesity status with the menopausal transition. Healthcare 2016, 4, 42. [Google Scholar] [CrossRef]
- Flegal, K.M.; Kruszon-Moran, D.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Trends in obesity among adults in the United States, 2005 to 2014. J. Am. Med. Assoc. 2016, 315, 2284–2291. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Greendale, G.; Crawford, S.L.; Avis, N.E.; Brooks, M.M.; Thurston, R.C.; Karvonen-Gutierrez, C.; Waetjen, L.E.; Matthews, K. The menopause transition and women’s health at midlife: A progress report from the Study of Women’s Health Across the Nation (SWAN). Menopause 2019, 26, 1213–1227. [Google Scholar] [CrossRef]
- Marsh, M.L.; Oliveira, M.N.; Vieira-Potter, V.J. Adipocyte metabolism and health after the menopause: The role of exercise. Nutrients 2023, 15, 444. [Google Scholar] [CrossRef] [PubMed]
- Steiner, B.M.; Berry, D.C. The regulation of adipose tissue health by estrogens. Front. Endocrinol. 2022, 13, 889923. [Google Scholar] [CrossRef] [PubMed]
- Abildgaard, J.; Ploug, T.; Al-Saoudi, E.; Wagner, T.; Thomsen, C.; Ewertsen, C.; Bzorek, M.; Pedersen, B.K.; Pedersen, A.T.; Lindegaard, B. Changes in abdominal subcutaneous adipose tissue phenotype following menopause is associated with increased visceral fat mass. Sci. Rep. 2021, 11, 14750. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ren, Y.; Chang, K.; Wu, W.; Griffiths, H.R.; Lu, S.; Gao, D. Adipose tissue macrophages as potential targets for obesity and metabolic diseases. Front. Immunol. 2023, 14, 1153915. [Google Scholar] [CrossRef]
- Wu, J.; Lin, X.; Yin, X.; Xu, Z.; Wu, N.; Zhang, Z.; Zhou, J.; Li, H. Comparison of incidence of metabolic syndrome and five obesity- and lipid-linked indicators for predicting metabolic syndrome among normal-weight and overweight adults. Diabetes Metab. Syndr. Obes. 2024, 17, 3509–3520. [Google Scholar] [CrossRef]
- Cesaro, A.; De Michele, G.; Fimiani, F.; Acerbo, V.; Scherillo, G.; Signore, G.; Rotolo, F.P.; Scialla, F.; Raucci, G.; Panico, D.; et al. Visceral adipose tissue and residual cardiovascular risk: A pathological link and new therapeutic options. Front. Cardiovasc. Med. 2023, 10, 1187735. [Google Scholar] [CrossRef]
- World Health Organization. Physical Status: The Use and Interpretation of Anthropometry; WHO: Geneva, Switzerland, 1995. [Google Scholar]
- Sweatt, K.; Garvey, W.T.; Martins, C. Strengths and limitations of BMI in the diagnosis of obesity: What is the path forward? Curr. Obes. Rep. 2024, 13, 584–595. [Google Scholar] [CrossRef]
- Weber, D.R.; Leonard, M.B.; Shults, J.; Zemel, B.S. A comparison of fat and lean body mass index to BMI for the identification of metabolic syndrome in children and adolescents. J. Clin. Endocrinol. Metab. 2014, 99, 3208–3216. [Google Scholar] [CrossRef] [PubMed]
- Messina, C.; Albano, D.; Gitto, S.; Tofanelli, L.; Bazzocchi, A.; Ulivieri, F.M.; Guglielmi, G.; Sconfienza, L.M. Body composition with dual energy X-ray absorptiometry: From basics to new tools. Quant. Imaging Med. Surg. 2020, 10, 1687–1698. [Google Scholar] [CrossRef] [PubMed]
- Hinton, B.J.; Fan, B.; Ng, B.K.; Shepherd, J.A.; Thomas, D.M. Dual energy X-ray absorptiometry body composition reference values of limbs and trunk from NHANES 1999–2004 with additional visualization methods. PLoS ONE 2017, 12, e0174180. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.M.; Lee, D.H.; Rezende, L.F.M.; Giovannucc, E.L. Different correlation of body mass index with body fatness and obesity-related biomarker according to age, sex and race-ethnicity. Sci. Rep. 2023, 13, 3472. [Google Scholar] [CrossRef]
- Lim, U.; Ernst, T.; Buchthal, S.D.; Latch, M.; Albright, C.L.; Wilkens, L.R.; Kolonel, L.N.; Murphy, S.P.; Chang, L.; Novotny, R.; et al. Asian women have greater abdominal and visceral adiposity than Caucasian women with similar body mass index. Nutr. Diabetes 2011, 1, e6. [Google Scholar] [CrossRef]
- Hyman, M.H.; Peled, T.J.; Hyman, N.M.; Tan, J.; Guo, X.; Rotter, J.I. Differences in BMI obesity measures in a workers compensation population: A cross-sectional study. Ann. Med. Surg. Lond 2023, 85, 1607–1613. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- Ma, W.; Zhu, H.; Yu, X.; Zhai, X.; Li, S.; Huang, N.; Liu, K.; Shirai, K.; Sheerah, H.A.; Cao, J. Association between android fat mass, gynoid fat mass and cardiovascular and all-cause mortality in adults: NHANES 2003–2007. Front. Cardiovasc. Med. 2023, 10, 1055223. [Google Scholar] [CrossRef]
- Korean Society for the Study of Obesity (KSSO). Obesity Fact Sheet 2023. Available online: https://www.kosso.or.kr/ (accessed on 8 June 2025).
- Dufour, A.B.; Hannan, M.T.; Murabito, J.M.; Kiel, D.P.; McLean, R.R. Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: The Framingham Study. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 168–174. [Google Scholar] [CrossRef]
- Davison, K.K.; Ford, E.S.; Cogswell, M.E.; Dietz, W.H. Percentage of body fat and body mass index are associated with mobility limitations in people aged 70 and older from NHANES III. J. Am. Geriatr. Soc. 2002, 50, 1802–1809. [Google Scholar] [CrossRef]
- Macek, P.; Biskup, M.; Terek-Derszniak, M.; Krol, H.; Smok-Kalwat, J.; Gozdz, S.; Zak, M. Optimal cut-off values for anthropometric measures of obesity in screening for cardiometabolic disorders in adults. Sci. Rep. 2020, 10, 11253. [Google Scholar] [CrossRef] [PubMed]
- Nistor, I.M.; Fica, S.; Martin, S.C.; Mustata, T.; Oprea, T.E.; Sirbu, A.E.; Barbu, C.G. DXA android-to-gynoid ratio and cardiovascular risk assessment in age and BMI propensity-matched early postmenopausal women. Medicina 2024, 60, 1096. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Huang, H.; Liu, Z.; Ruan, J.; Xu, C. Association of the android to gynoid fat ratio with nonalcoholic fatty liver disease: A cross-sectional study. Front. Nutr. 2023, 10, 1162079. [Google Scholar] [CrossRef] [PubMed]
- Tchernof, A.; Després, J.P. Pathophysiology of human visceral obesity: An update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef]
- Moreira, V.C.; Silva, C.M.S.; Welker, A.F.; da Silva, I.C.R.; Balistreri, C.R. Visceral adipose tissue influence on health problem development and its relationship with serum biochemical parameters in middle-aged and older adults: A literature review. J. Aging Res. 2022, 2022, 8350527. [Google Scholar] [CrossRef]
- van der Leeuw, J.; Wassink, A.M.; van der Graaf, Y.; Westerveld, H.E.; Visseren, F.L.J. Age-related differences in abdominal fat distribution in premenopausal and postmenopausal women with cardiovascular disease. Menopause 2013, 20, 409–417. [Google Scholar] [CrossRef]
- Riaz, M.; Lodhi, S. Beyond BMI: Exploring obesity trends in the South Asian region. Obes. Pillars 2024, 13, 100156. [Google Scholar] [CrossRef]
- Franco, L.P.; Morais, C.C.; Cominetti, C. Normal-weight obesity syndrome: Diagnosis, prevalence, and clinical implications. Nutr. Rev. 2016, 74, 558–570. [Google Scholar] [CrossRef]
- Kim, J.; Kang, S.; Kang, H. Normal-weight obesity and metabolic syndrome in Korean adults: A population-based cross-sectional study. Healthcare 2023, 11, 2303. [Google Scholar] [CrossRef]
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.H.; A Brown, W.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J.; et al. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 2025, 13, 221–262. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, H.; Fujitani, K.; Tsujinaka, T.; Imanishi, K.; Shirakata, H.; Kantani, A.; Hirao, M.; Kurokawa, Y.; Utsumi, S. InBody 720 as a new method of evaluating visceral obesity. Hepato Gastroenterol. 2011, 58, 42–44. [Google Scholar]
- Brunani, A.; Perna, S.; Soranna, D.; Rondanelli, M.; Zambon, A.; Bertoli, S.; Vinci, C.; Capodaglio, P.; Lukaski, H.; Cancello, R. Body composition assessment using bioelectrical impedance analysis (BIA) in a wide cohort of patients affected with mild to severe obesity. Clin. Nutr. 2021, 40, 3973–3981. [Google Scholar] [CrossRef] [PubMed]
- Browning, L.M.; Hsieh, S.D.; Ashwell, M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 0.5 could be a suitable global boundary value. Nutr. Res. Rev. 2010, 23, 247–269. [Google Scholar] [CrossRef]
- Bosomworth, N.J. Normal-weight central obesity: Unique hazard of the toxic waist. Can. Fam. Physician 2019, 65, 399–408. [Google Scholar]
- Nahorna, A.; Baur, H. Evaluating abdominal obesity by waist circumference, anthropometric indices and bioelectrical impedance analysis: A comparative pilot study. Obes. Sci. Pract. 2025, 11, e70078. [Google Scholar] [CrossRef]
Age Group (Years) | n | Mean Age (Years) | Mean Weight (kg) | Mean Height (cm) | Mean BMI (kg/m2) |
---|---|---|---|---|---|
40–49 | 128 | 46.9 | 55.5 | 159.8 | 21.7 |
50–59 | 545 | 54.7 | 56.5 | 158.4 | 22.8 |
60–69 | 209 | 63.1 | 56.2 | 156.3 | 23.6 |
≥70 | 35 | 72.7 | 54.2 | 154.2 | 22.8 |
Total | 917 | 56.2 | 56.2 | 157.7 | 22.8 |
Age Group (Years) | BMI (kg/m2) | TB%F (%) | FMI (kg/m2) | A/G Ratio | VAT (cm2) |
---|---|---|---|---|---|
40–49 | 21.7 | 38.2 | 8.34 | 0.93 | 87.7 |
50–59 | 22.8 | 39.0 | 8.85 | 1.09 | 99.6 |
60–69 | 23.6 | 38.6 | 8.72 | 1.01 | 102.2 |
≥70 | 22.8 | 38.4 | 8.64 | 1.06 | 107.6 |
Total (Mean ± SD) | 22.8 ± 7.2 | 38.8 ± 4.8 | 8.74 ± 2.38 | 1.05 ± 1.82 | 98.8 ± 40.4 |
Age Group (Years) | BMI ≥ 23 (%) | TB%F ≥ 40% (%) | FMI ≥ 9 kg/m2 (%) | A/G Ratio > 1.0 (%) |
---|---|---|---|---|
40–49 | 28.9 | 33.6 | 28.9 | 31.3 |
50–59 | 38.7 | 44.6 | 37.4 | 50.1 |
60–69 | 44.5 | 39.7 | 43.5 | 55.9 |
≥70 | 42.8 | 42.9 | 37.4 | 60.0 |
Total | 38.8 | 41.9 | 37.6 | 49.2 |
BMI Category | TB%F (Mean ± SD) | FMI (Mean ± SD) | VAT | Apple Shape (%) | Pear Shape (%) | ||
---|---|---|---|---|---|---|---|
Normal >100 (%) | Borderline 100–160 (%) | High Risk ≤160 (%) | |||||
Underweight | 32.2 ± 3.7 | 5.6 ± 0.8 | 100 | 0 | 0 | 8.3 | 91.7 |
Normal | 37.3 ± 3.9 | 7.9 ± 2.2 | 78.0 | 21.6 | 0.4 | 35.7 | 64.3 |
Overweight | 40.5 ± 3.7 | 9.5 ± 1.0 | 31.2 | 62.8 | 6.0 | 67.3 | 32.7 |
Obese ≥ 25 | 43.0 ± 3.5 | 11.3 ± 1.3 | 7.6 | 55.4 | 36.9 | 82.8 | 17.2 |
Severe Obese ≥ 30 | 47.9 ± 10.1 | 13.6 ± 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.Y.; Park, H.M.; Chung, Y.-J.; Kim, M.-R.; Hwang, K.J.; Song, J.-Y. Age-Related Trends in Dual-Energy X-Ray Absorptiometry–Measured Adiposity and Their Clinical Relevance: A Multicenter Cross-Sectional Study of Korean Peri- and Postmenopausal Women. Medicina 2025, 61, 1301. https://doi.org/10.3390/medicina61071301
Park JY, Park HM, Chung Y-J, Kim M-R, Hwang KJ, Song J-Y. Age-Related Trends in Dual-Energy X-Ray Absorptiometry–Measured Adiposity and Their Clinical Relevance: A Multicenter Cross-Sectional Study of Korean Peri- and Postmenopausal Women. Medicina. 2025; 61(7):1301. https://doi.org/10.3390/medicina61071301
Chicago/Turabian StylePark, Jung Yoon, Hyoung Moo Park, Youn-Jee Chung, Mee-Ran Kim, Kyung Jin Hwang, and Jae-Yen Song. 2025. "Age-Related Trends in Dual-Energy X-Ray Absorptiometry–Measured Adiposity and Their Clinical Relevance: A Multicenter Cross-Sectional Study of Korean Peri- and Postmenopausal Women" Medicina 61, no. 7: 1301. https://doi.org/10.3390/medicina61071301
APA StylePark, J. Y., Park, H. M., Chung, Y.-J., Kim, M.-R., Hwang, K. J., & Song, J.-Y. (2025). Age-Related Trends in Dual-Energy X-Ray Absorptiometry–Measured Adiposity and Their Clinical Relevance: A Multicenter Cross-Sectional Study of Korean Peri- and Postmenopausal Women. Medicina, 61(7), 1301. https://doi.org/10.3390/medicina61071301