Evaluating Oxidative Stress in Fibromyalgia: Diagnostic Utility and Its Relationship with Clinical and Psychological Parameters
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Desgin
2.2. Clinical Variables and Blood Biomarker Analysis
2.3. Scales Used in the Study
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FMS | Fibromyalgia Syndrome |
TAS | Total Antioxidant Status |
TOS | Total Oxidant Status |
MDA | Malondialdehyde |
References
- Kleykamp, B.A.; Ferguson, M.C.; McNicol, E.; Bixho, I.; Arnold, L.M.; Edwards, R.R.; Fillingim, R.; Grol-Prokopczyk, H.; Turk, D.C.; Dworkin, R.H. The Prevalence of Psychiatric and Chronic Pain Comorbidities in Fibromyalgia: An ACTTION systematic review. Semin. Arthritis Rheum. 2022, 51, 166–174. [Google Scholar] [CrossRef] [PubMed]
- de Tommaso, M.; Vecchio, E.; Nolano, M. The puzzle of fibromyalgia between central sensitization syndrome and small fiber neuropathy: A narrative review on neurophysiological and morphological evidence. Neurol. Sci. 2022, 43, 1667–1684. [Google Scholar] [CrossRef] [PubMed]
- Ruschak, I.; Montesó-Curto, P.; Rosselló, L.; Aguilar Martín, C.; Sánchez-Montesó, L.; Toussaint, L. Fibromyalgia Syndrome Pain in Men and Women: A Scoping Review. Healthcare 2023, 11, 223. [Google Scholar] [CrossRef] [PubMed]
- Uslu, M.F.; Uslu, E.Y.; Yıldız, S.; Tabara, M.F. Low Serum Asprosin Levels in Fibromyalgia Syndrome: Insights from a Cross-Sectional Study. Medicina 2025, 61, 410. [Google Scholar] [CrossRef]
- Castro-Marrero, J.; Cordero, M.D.; Sáez-Francas, N.; Jimenez-Gutierrez, C.; Aguilar-Montilla, F.J.; Aliste, L.; Alegre-Martin, J. Could mitochondrial dysfunction be a differentiating marker between chronic fatigue syndrome and fibromyalgia? Antioxid. Redox Signal 2013, 19, 1855–1860. [Google Scholar] [CrossRef]
- Cordero, M.D.; de Miguel, M.; Carmona-López, I.; Bonal, P.; Campa, F.; Moreno-Fernández, A.M. Oxidative stress and mitochondrial dysfunction in fibromyalgia. Neuro Endocrinol. Lett. 2010, 31, 169–173. [Google Scholar]
- Eisinger, J.; Gandolfo, C.; Zakarian, H.; Ayavou, T. Reactive Oxygen Species, Antioxidant Status and Fibromyalgia. J. Musculoskelet. Pain 1997, 5, 5. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Esterbauer, H.; Cheeseman, K.H. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990, 186, 407–421. [Google Scholar] [CrossRef]
- Neyal, M.; Yimenicioglu, F.; Aydeniz, A.; Taskin, A.; Saglam, S.; Cekmen, M.; Neyal, A.; Gursoy, S.; Erel, O.; Balat, A. Plasma nitrite levels, total antioxidant status, total oxidant status, and oxidative stress index in patients with tension-type headache and fibromyalgia. Clin. Neurol. Neurosurg. 2013, 115, 736–740. [Google Scholar] [CrossRef]
- Bagis, S.; Tamer, L.; Sahin, G.; Bilgin, R.; Guler, H.; Ercan, B.; Erdogan, C. Free radicals and antioxidants in primary fibromyalgia: An oxidative stress disorder? Rheumatol. Int. 2005, 25, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Ozgocmen, S.; Ozyurt, H.; Sogut, S.; Akyol, O.; Ardicoglu, O.; Yildizhan, H. Antioxidant status, lipid peroxidation and nitric oxide in fibromyalgia: Etiologic and therapeutic concerns. Rheumatol. Int. 2006, 26, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Atamer, Y.; Sarac, S.; Asık, H.K.; Sahbaz, T. Serum paraoxonase activities, nitric oxide, and malondialdehyde levels are altered in patients with primary fibromyalgia syndrome. Ir. J. Med. Sci. 2023, 192, 2541–2547. [Google Scholar] [CrossRef]
- Bangasser, D.A.; Valentino, R.J. Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Front. Neuroendocrinol. 2014, 35, 303–319. [Google Scholar] [CrossRef]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Häuser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Beck, A.T.; Epstein, N.; Brown, G.; Steer, R.A. An inventory for measuring clinical anxiety: Psychometric properties. J. Consult. Clin. Psychol. 1988, 56, 893–897. [Google Scholar] [CrossRef]
- Ulusoy, M.; Şahin, N.; Erkmen, H. Turkish version of the Beck Anxiety Inventory: Psychometric properties. J. Cogn. Psychother. 1998, 12, 28–35. [Google Scholar]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef]
- Hisli, N. Beck depresyon envanterinin üniversite öğrencileri için geçerliği ve güvenirliği. Türk Psikoloji Dergisi 1989, 7, 3–13. [Google Scholar]
- Sarmer, S.; Ergin, S.; Yavuzer, G. The validity and reliability of the Turkish version of the Fibromyalgia Impact Questionnaire. Rheumatol. Int. 2000, 20, 9–12. [Google Scholar] [CrossRef]
- Kumbhare, D.; Hassan, S.; Diep, D.; Duarte, F.C.K.; Hung, J.; Damodara, S.; West, D.W.D.; Selvaganapathy, P.R. Potential role of blood biomarkers in patients with fibromyalgia: A systematic review with meta-analysis. Pain 2022, 163, 1232–1253. [Google Scholar] [CrossRef]
- Russo, M.; Santarelli, D.; Georgius, P.; Austin, P.J. A Review of Etiological Biomarkers for Fibromyalgia and Their Therapeutic Implications. Pain Phys. 2024, 27, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Porreca, F.; Cuzzocrea, S.; Galen, K.; Lightfoot, R.; Masini, E.; Muscoli, C.; Mollace, V.; Ndengele, M.; Ischiropoulos, H.; et al. A newly identified role for superoxide in inflammatory pain. J. Pharmacol. Exp. Ther. 2004, 309, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, M.; Caglayan, M.; Oktayoglu, P.; Em, S.; Batmaz, I.; Sariyildiz, M.A.; Nas, K.; Ucar, D.; Yüksel, H.; Sarac, A.J. Serum prolidase enzyme activity and oxidative status in patients with fibromyalgia. Redox Rep. 2014, 19, 148–153. [Google Scholar] [CrossRef]
- Çetinkaya, F.N.; Koçak, F.A.; Kurt, E.E.; Güçlü, K.; Tuncay, F.; Şaş, S.; Erdem, H.R. The Effects of Balneotherapy on Oxidant/Antioxidant Status in Patients With Fibromyalgia: An Observational Study. Arch. Rheumatol. 2020, 35, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Tel Adıgüzel, K.; Köroğlu, Ö.; Yaşar, E.; Tan, A.K.; Samur, G. The relationship between dietary total antioxidant capacity, clinical parameters, and oxidative stress in fibromyalgia syndrome: A novel point of view. Turk. J. Phys. Med. Rehabil. 2022, 68, 262–270. [Google Scholar] [CrossRef]
- Shukla, V.; Kumar, D.S.; Ali, M.A.; Agarwal, S.; Khandpur, S. Nitric oxide, lipid peroxidation products, and antioxidants in primary fibromyalgia and correlation with disease severity. J. Med. Biochem. 2020, 39, 165–170. [Google Scholar] [CrossRef]
- Bennett, R.M.; Friend, R.; Jones, K.D.; Ward, R.; Han, B.K.; Ross, R.L. The Revised Fibromyalgia Impact Questionnaire (FIQR): Validation and psychometric properties. Arthritis Res. Ther. 2009, 11, R120. [Google Scholar] [CrossRef]
- Altindag, O.; Celik, H. Total antioxidant capacity and the severity of the pain in patients with fibromyalgia. Redox Rep. 2006, 11, 131–135. [Google Scholar] [CrossRef]
- Borchers, A.T.; Gershwin, M.E. Fibromyalgia: A Critical and Comprehensive Review. Clin. Rev. Allergy Immunol. 2015, 49, 100–151. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.S.; Cardoso, A.; Vale, N. Oxidative Stress in Depression: The Link with the Stress Response, Neuroinflammation, Serotonin, Neurogenesis and Synaptic Plasticity. Antioxidants 2023, 12, 470. [Google Scholar] [CrossRef]
- Silva, L.C.; Dittgen, M.; Meroni, R.; Sanchez-Romero, E.A.; Rossettini, G.; Villafañe, J.H.; Corbellini, C. Exercise Training for Women with Fibromyalgia Syndrome: A Scoping Review. Top. Geriatr. Rehabil. 2024, 40, 147–157. [Google Scholar] [CrossRef]
- Cabezas-Yagüe, E.; Martínez-Pozas, O.; Gozalo-Pascual, R.; Muñoz Blanco, E.; Lopez Paños, R.; Jiménez-Ortega, L.; Cuenca-Zaldívar, J.N.; Sánchez Romero, E.A. Comparative effectiveness of Maitland Spinal Mobilization versus myofascial techniques on pain and symptom severity in women with Fibromyalgia syndrome: A quasi-randomized clinical trial with 3-month follow up. Musculoskelet Sci. Pract. 2024, 73, 103160. [Google Scholar] [CrossRef] [PubMed]
- Staud, R. Autonomic dysfunction in fibromyalgia syndrome: Postural orthostatic tachycardia. Curr. Rheumatol. Rep. 2008, 10, 463–466. [Google Scholar] [CrossRef]
- Katz, D.L.; Greene, L.; Ali, A.; Faridi, Z. The pain of fibromyalgia syndrome is due to muscle hypoperfusion induced by regional vasomotor dysregulation. Med. Hypotheses 2007, 69, 517–525. [Google Scholar] [CrossRef]
- Reyes Del Paso, G.A.; Contreras-Merino, A.M.; de la Coba, P.; Duschek, S. The cardiac, vasomotor, and myocardial branches of the baroreflex in fibromyalgia: Associations with pain, affective impairments, sleep problems, and fatigue. Psychophysiology 2021, 58, e13800. [Google Scholar] [CrossRef]
- González-Álvarez, M.E.; Riquelme-Aguado, V.; González-Pérez, Á.; Murillo-Llergo, R.; Manjón-Olmedillas, M.; Turroni, S.; Rossettini, G.; Villafañe, J.H. Association Between Systemic Neuroinflammation, Pain Perception and Clinical Status in Fibromyalgia Patients: Cross-Sectional Study. Cells 2024, 13, 1719. [Google Scholar] [CrossRef]
- Xiao, Y.; Haynes, W.L.; Michalek, J.E.; Russell, I.J. Elevated serum high-sensitivity C-reactive protein levels in fibromyalgia syndrome patients correlate with body mass index, interleukin-6, interleukin-8, erythrocyte sedimentation rate. Rheumatol. Int. 2013, 33, 1259–1264. [Google Scholar] [CrossRef]
- Yanmaz, M.N.; Mert, M.; Korkmaz, M. The prevalence of fibromyalgia syndrome in a group of patients with diabetes mellitus. Rheumatol. Int. 2012, 32, 871–874. [Google Scholar] [CrossRef]
- Loevinger, B.L.; Muller, D.; Alonso, C.; Coe, C.L. Metabolic syndrome in women with chronic pain. Metabolism 2007, 56, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Cure, O.; Kizilkaya, B.; Ciftel, S.; Klisic, A.; Ciftel, E.; Mercantepe, F. Effect of fibromyalgia on demographic, biochemical, metabolic and inflammatory profiles: A single-centre retrospective study. Clin. Exp. Rheumatol. 2024, 42, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Kucuk, A.; Baykara, R.A.; Tuzcu, A.; Omma, A.; Cure, M.C.; Cure, E.; Acet, G.K.; Dogan, E. Could ferritin, vitamin B12, and vitamin D play a role in the etiopathogenesis of fibromyalgia syndrome? Rom. J. Intern. Med. 2021, 59, 384–393. [Google Scholar] [CrossRef]
- Elma, Ö.; Yilmaz, S.T.; Deliens, T.; Coppieters, I.; Clarys, P.; Nijs, J.; Malfliet, A. Do Nutritional Factors Interact with Chronic Musculoskeletal Pain? A Systematic Review. J. Clin. Med. 2020, 9, 702. [Google Scholar] [CrossRef]
Case Group (n = 42) n (%) | Control Group (n = 42) n (%) | p Value | ||
---|---|---|---|---|
Age (Median ± IQR) | 40.50 (30.75–46.75) | 30 (27–45.5) | 0.082 a | |
Sex | Woman | 42 (%100) | 42 (%100) | |
BDI (Median ± IQR) | 20.50 (12.75–27.50) | - | - | |
BAI (Median ± IQR) | 31 (16–38.5) | - | - | |
FIQ (Median ± IQR) | 57.66 (44.99–62.66) | - | - | |
Marital status | 0.007 b | |||
Single | 36 (%85.7) | 25 (%59.5) | ||
Married | 6 (%14.3) | 17 (%40.5) | ||
Education status | 0.890 b | |||
Primary education | 17 (%40.5) | 16 (%38.1) | ||
High School | 11 (%26.2) | 13 (%31) | ||
University | 14 (%33.3) | 13 (%31) | ||
Alcohol use | 1.000 b | |||
No | 37 (%88.1) | 37 (%88.1) | ||
Yes | 5 (%11.9) | 5 (%11.9) | ||
Cigarette smoking | 1.000 b | |||
No | 31 (%73.8) | 31 (%73.8) | ||
Yes | 11 (%26.2) | 11 (%26.2) |
Case Group (n = 42) (Median ± IQR)/(Mean ± Sd) | Control Group (n = 42) (Median ± IQR)/(Mean ± Sd) | p Value | |
---|---|---|---|
OSI | 0.073 (0.053–0.128) | 0.035 (0.027–0.036) | <0.001 a |
TOS (µmol/L) | 13.5 (8.85–27.64) | 2.37 (2.10–2.82) | <0.001 a |
TAS (mmol/L) | 1.92 ± 0.37 | 0.75 ± 0.09 | <0.001 b |
MDA (nmol/mL) | 20.70 ± 6.14 | 9.64 ± 1.46 | <0.001 b |
BMI (kg/m2) | 26.05 ± 3.47 | 24.88 ± 2.80 | 0.095 b |
Systolic BP (mmHg) | 114.73 ± 20.79 | 124.4 ± 11.65 | 0.011 b |
Diastolic BP (mmHg) | 75.71 ± 13.59 | 80.43 ± 6.68 | 0.048 b |
WBC (109/L) | 6.36 ± 1.45 | 6.47 ± 1.41 | 0.727 b |
Hemoglobin (g/dL) | 13.18 ± 1.34 | 13.12 ± 1.13 | 0.814 b |
Platelets (109/L) | 292 (243.25–344.25) | 271 (237.25–331) | 0.591 a |
Neutrophil (109/L) | 3.28 (2.77–4.48) | 3.73 (2.9–4.92) | 0.488 a |
Lymphocyte (109/L) | 1.92 (1.47–2.50) | 1.89 (1.57–2.39) | 0.954 a |
Monocyte (109/L) | 0.51 (0.41–0.58) | 0.45 (0.35–0.55) | 0.153 a |
Sedimentation (mm/h) | 9 (5–16.5) | 7 (5–11) | 0.268 a |
CRP (mg/L) | 3.36 (1.29–5.37) | 1.81 (0.92–3.19) | 0.013 a |
Ferritin (µg/L) | 17 (7.5–34.25) | 8 (4.75–17) | 0.011 a |
Glucose (mg/dL) | 88.4 ± 10.84 | 87.74 ± 5.49 | 0.723 b |
Insulin | 8.93 (6.06–12.94) | 7.67 (5.05–10.94) | 0.279 a |
HOMA-IR | 1.86 (1.3–2.7) | 1.62 (1.03–2.28) | 0.316 a |
HbA1c | 5.55 ± 0.27 | 5.33 ± 0.33 | 0.002 b |
AST (U/L) | 18 (16–23.25) | 17 (15–19) | 0.018 a |
ALT (U/L) | 14 (11.75–20.25) | 13 (11–21) | 0.628 a |
Urea (mg/dL) | 23.5 (20–30) | 22 (18.75–28.5) | 0.563 a |
Creatine (mg/dL) | 0.59 ± 0.08 | 0.63 ± 0.09 | 0.067 b |
Vitamin D (µg/L) | 15.5 (10.75–24) | 14 (11.6–17.5) | 0.418 a |
VitaminB12 (ng/L) | 179 (147.75–281.25) | 166 (132–222) | 0.232 a |
Folic acid (µg/L) | 8.16 (6.16–10.75) | 6.51 (5.08–7.6) | <0.001 a |
TSH (mIU/L) | 1.54 (1.23–2.46) | 1.74 (1.16–2.57) | 0.865 a |
Free T4 (ng/dL) | 0.84 ± 0.12 | 0.82 ± 0.10 | 0.295 b |
TAS | TOS | MDA | OSI | ||
---|---|---|---|---|---|
Age | r p | 0.190 0.083 | 0.227 0.038 | 0.251 0.021 | 0.233 0.033 |
BMI | r p | 0.197 0.073 | 0.196 0.074 | 0.163 0.138 | 0.372 0.042 |
Systolic BP | r p | −0.425 <0.001 | −0.315 0.004 | −0.293 0.007 | −0.277 0.011 |
Diastolic BP | r p | −0.340 0.002 | −0.271 0.013 | −0.251 0.022 | −0.252 0.021 |
CRP | r p | 0.187 0.088 | 0.206 0.060 | 0.240 0.028 | 0.211 0.054 |
AST | r p | 0.273 0.012 | 0.216 0.049 | 0.289 0.008 | 0.180 0.101 |
Free T4 | r p | 0.124 0.263 | 0.213 0.052 | 0.089 0.420 | 0.244 0.025 |
HbA1c | r p | 0.297 0.006 | 0.333 0.002 | 0.361 0.001 | 0.346 0.001 |
Ferritin | r p | 0.278 0.010 | 0.326 0.002 | 0.232 0.033 | 0.296 0.006 |
Folic acid | r p | 0.367 0.001 | 0.358 0.001 | 0.294 0.007 | 0.352 0.001 |
Spearman correlation test Comparisons with statistically significant differences are indicated in bold. |
TAS | TOS | MDA | OSI | ||
---|---|---|---|---|---|
BDI | r p | 0.193 0.221 | 0.157 0.321 | −0.025 0.873 | 0.131 0.407 |
BAI | r p | −0.035 0.826 | −0.173 0.273 | −0.178 0.260 | −0.253 0.107 |
FIQ | r p | −0.174 0.271 | −0.174 0.271 | 0.075 0.636 | −0.181 0.251 |
Variable | Coefficient (β) | Standard Error | t-Statistic | p-Value | 95% Confidence Interval | Adjusted p * |
---|---|---|---|---|---|---|
Intercept | 142.6033 | 57.748 | 2.469 | 0.020 | 24.496–260.711 | |
Age | 0.5223 | 0.277 | 1.887 | 0.069 | −0.044–1.088 | 0.276 |
BMI | −0.0843 | 0.807 | −0.104 | 0.918 | −1.734–1.566 | 0.993 |
TAS | −2.4807 | 23.177 | 0.107 | 0.916 | −49.883–44.922 | 0.993 |
TOS | 1.1087 | 1.684 | 0.658 | 0.516 | −2.336–4.553 | 0.810 |
MDA | 0.0028 | 0.367 | 0.008 | 0.994 | −0.747–0.753 | 0.993 |
OSI | −407.7107 | 349.317 | −1.167 | 0.253 | −1122.145–306.723 | 0.606 |
HbA1c | −18.0923 | 9.462 | 1.912 | 0.066 | −37.443–1.259 | 0.276 |
HOMA-IR | −0.2069 | 0.866 | −0.239 | 0.813 | −1.977–1.563 | 0.993 |
Vitamin D | −0.2633 | 0.325 | −0.810 | 0.424 | −0.928–0.401 | 0.810 |
Vitamin B12 | 0.0076 | 0.012 | 0.620 | 0.540 | −0.017–0.032 | 0.810 |
Folic acid | −0.9866 | 0.477 | −2.068 | 0.048 | −1.962–−0.011 | 0.276 |
Free T4 | 31.3476 | 22.047 | 1.422 | 0.166 | −13.743–76.439 | 0.497 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uslu, E.Y.; Uslu, M.F.; Yıldız, S.; Tabara, M.F. Evaluating Oxidative Stress in Fibromyalgia: Diagnostic Utility and Its Relationship with Clinical and Psychological Parameters. Medicina 2025, 61, 1248. https://doi.org/10.3390/medicina61071248
Uslu EY, Uslu MF, Yıldız S, Tabara MF. Evaluating Oxidative Stress in Fibromyalgia: Diagnostic Utility and Its Relationship with Clinical and Psychological Parameters. Medicina. 2025; 61(7):1248. https://doi.org/10.3390/medicina61071248
Chicago/Turabian StyleUslu, Emine Yıldırım, Muhammed Fuad Uslu, Sevler Yıldız, and Muhammed Fatih Tabara. 2025. "Evaluating Oxidative Stress in Fibromyalgia: Diagnostic Utility and Its Relationship with Clinical and Psychological Parameters" Medicina 61, no. 7: 1248. https://doi.org/10.3390/medicina61071248
APA StyleUslu, E. Y., Uslu, M. F., Yıldız, S., & Tabara, M. F. (2025). Evaluating Oxidative Stress in Fibromyalgia: Diagnostic Utility and Its Relationship with Clinical and Psychological Parameters. Medicina, 61(7), 1248. https://doi.org/10.3390/medicina61071248