Neutrophil Extracellular Traps in the Prognosis of Sepsis: A Current Update
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Study Design
2.2. Methods
3. Results from Literature
First Author | Year of Publication | Type of Study | Major Findings |
---|---|---|---|
Su Y [1] | 2023 | Retrospective, single-center study, China, 120 patients | NET levels were related to APACHE II and SOFA scores and to biochemical indexes PT, FIB, D-dimer and INR. The NET and coagulation indexes have high predictive value for the prognosis of sepsis |
Mao JY [2] | 2021 | Prospective, single-center study, China, 82 patients | Increased NET formation was significantly associated with sepsis-induced DIC incidence and mortality in sepsis patients |
Margraf [4] | 2008 | Prospective pilot study with trauma patients in a German ICU, 37 patients | Circulating free DNA/NET kinetics followed kinetics of MODS and SOFA scores and leukocyte counts. Circulating free DNA/NETs seems to be a valuable additional marker for the prediction of inflammatory second hit in an ICU in trauma patients |
Jackson [5] | 2019 | Retrospective study with ICU sepsis patients, Canada, 77 patients | citH3 and MPO reflect cfDNA increase in sepsis patients, but cfDNA is not correlated with MODS |
Qiao [6] | 2022 | RCT with sepsis patients with ARDS, USA, 167 patients | cfDNA and syndecan-1 predicted 28-day mortality in patients with sepsis-induced ARDS |
Yang [8] | 2024 | Observational study in critically ill ICU sepsis patients, USA, 45 septic patients, 7 healthy controls | NETosis is related to increased ICU LOS and need for mechanical ventilation |
Yokoyama [9] | 2019 | Observational study in sepsis patients, Japan, 85 patients | citH3 is related to organ failure and can predict 28-day mortality |
Filippini [10] | 2025 | Observational cohort study, Netherlands, UK, 1713 patients | H3.1 predicts sepsis and sepsis-related organ failure (ARDS, DIC, AKI) and is positively related to SOFA and inflammation markers |
Morimont [11] | 2022 | Observational study, Belgium, 46 septic patients, 22 COVID-19 patients, 48 healthy controls | citH3, NE and MPO are important for the discrimination between viral and non-viral sepsis |
Zhang [13] | 2024 | Observational study, China, 106 septic patients, 25 non-septic, 51 healthy controls | MPO and cfDNA levels could diagnose sepsis and sepsis-related organ dysfunction and displayed an additional diagnostic value to CRP for sepsis diagnosis |
4. Discussion
5. Conclusions
6. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, Y.; Li, D.; Deng, S.; Zhu, X.; Liu, D. Prognostic value of coagulation and fibrinolysis function indexes and NETs for sepsis patients. Am. J. Transl. Res. 2023, 15, 4164–4171. [Google Scholar] [PubMed]
- Mao, J.Y.; Zhang, J.H.; Cheng, W.; Chen, J.W.; Cui, N. Effects of neutrophil extracellular traps in patients with septic coagulopathy and their interaction with autophagy. Front. Immunol. 2021, 12, 757041. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.; Huang, X.; Ning, F.; Qian, T.; Cui, J.; Wang, X.; Huang, X. NETs induce ferroptosis of endothelial cells in LPS-ALI through SDC-1/HS and downstream pathways. Biomed. Pharmacother. 2024, 175, 116621. [Google Scholar] [CrossRef] [PubMed]
- Margraf, S.; Lögters, T.; Reipen, J.; Altrichter, J.; Scholz, M.; Windolf, J. Neutrophil-derived circulating free DNA (cf-DNA/NETs): A potential prognostic marker for posttraumatic development of inflammatory second hit and sepsis. Shock 2008, 30, 352–358. [Google Scholar] [CrossRef]
- Jackson Chornenki, N.L.; Coke, R.; Kwong, A.C.; Dwivedi, D.J.; Xu, M.K.; McDonald, E.; Marshall, J.C.; Fox-Robichaud, A.E.; Charbonney, E.; Liaw, P.C. Comparison of the source and prognostic utility of cfDNA in trauma and sepsis. Intensive Care Med. Exp. 2019, 7, 29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qiao, X.; Kashiouris, M.G.; L’Heureux, M.; Fisher, B.J.; Leichtle, S.W.; Truwit, J.D.; Nanchal, R.; Hite, R.D.; Morris, P.E.; Martin, G.S.; et al. Biological Effects of Intravenous Vitamin C on Neutrophil Extracellular Traps and the Endothelial Glycocalyx in Patients with Sepsis-Induced ARDS. Nutrients 2022, 14, 4415. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, C.; Zhang, L.; Xu, S.; Wang, Z.; Han, Q.; Lv, Y.; Wang, X.; Zhang, X.; Zhang, Q.; Zhang, Y.; et al. Neutrophil ALDH2 is a new therapeutic target for the effective treatment of sepsis-induced ARDS. Cell Mol. Immunol. 2024, 21, 510–526. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, Q.; Langston, J.C.; Prosniak, R.; Pettigrew, S.; Zhao, H.; Perez, E.; Edelmann, H.; Mansoor, N.; Merali, S.; Marchetti, N.; et al. Distinct functional neutrophil phenotypes in sepsis patients correlate with disease severity. Front. Immunol. 2024, 15, 1341752. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yokoyama, Y.; Ito, T.; Yasuda, T.; Furubeppu, H.; Kamikokuryo, C.; Yamada, S.; Maruyama, I.; Kakihana, Y. Circulating histone H3 levels in septic patients are associated with coagulopathy, multiple organ failure, and death: A single-center observational study. Thromb. J. 2019, 17, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Filippini, D.F.L.; Jiang, M.; Kramer, L.; van der Poll, T.; Cremer, O.; Hla, T.T.W.; Retter, A.; Bos, L.D.J.; MARS consortium. Plasma H3.1 nucleosomes as biomarkers of infection, inflammation and organ failure. Crit. Care 2025, 29, 198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morimont, L.; Dechamps, M.; David, C.; Bouvy, C.; Gillot, C.; Haguet, H.; Favresse, J.; Ronvaux, L.; Candiracci, J.; Herzog, M.; et al. NETosis and Nucleosome Biomarkers in Septic Shock and Critical COVID-19 Patients: An Observational Study. Biomolecules 2022, 12, 1038. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haem Rahimi, M.; Bidar, F.; Lukaszewicz, A.C.; Garnier, L.; Payen-Gay, L.; Venet, F.; Monneret, G. Association of pronounced elevation of NET formation and nucleosome biomarkers with mortality in patients with septic shock. Ann. Intensive Care 2023, 13, 102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, D.; Guo, J.; Shi, C.; Wang, Y.; Zhang, Y.; Zhang, X.; Gong, Z. MPO-DNA Complexes and cf-DNA in Patients with Sepsis and Their Clinical Value. Biomedicines 2024, 12, 2190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis 3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, G.J.; Lopus, M. Cell death mechanisms in eukaryotes. Cell Biol. Toxicol. 2020, 36, 145–164. [Google Scholar] [CrossRef]
- Volker, B.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar]
- Fuchs, T.A.; Brill, A.; Duerschmied, D.; Schatzberg, D.; Monestier, M.; Myers, D.D., Jr.; Wrobleski, S.K.; Wakefield, T.W.; Hartwig, J.H.; Wagner, D.D. Extracellular DNA traps promote thrombosis. Proc. Natl. Acad. Sci. USA 2010, 107, 15880–15885. [Google Scholar] [CrossRef]
- Pan, B.; Alam, H.B.; Chong, W.; Mobley, J.; Liu, B.; Deng, Q.; Liang, Y.; Wang, Y.; Chen, E.; Wang, T.; et al. CitH3: A reliable blood biomarker for diagnosis and treatment of endotoxic shock. Sci. Rep. 2017, 7, 8972. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, H.; Wu, D.; Wang, Y.; Shi, Y.; Shao, Y.; Zeng, F.; Spencer, C.B.; Ortoga, L.; Wu, D.; Miao, C. Ferritin-mediated neutrophil extracellular traps formation and cytokine storm via macrophage scavenger receptor in sepsis-associated lung injury. Cell Commun. Signal. 2024, 22, 97. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mizuno, T.; Nagano, F.; Takahashi, K.; Yamada, S.; Fruhashi, K.; Maruyama, S.; Tsuboi, N. Macrophage-1 antigen exacerbates histone-induced acute lung injury and promotes neutrophil extracellular trap formation. FEBS Open Bio. 2024, 14, 574–583. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kiwit, A.; Lu, Y.; Lenz, M.; Knopf, J.; Mohr, C.; Ledermann, Y.; Klinke-Petrowsky, M.; Pagerols Raluy, L.; Reinshagen, K.; Herrmann, M.; et al. The Dual Role of Neutrophil Extracellular Traps (NETs) in Sepsis and Ischemia-Reperfusion Injury: Comparative Analysis across Murine Models. Int. J. Mol. Sci. 2024, 25, 3787. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gould, T.J.; Vu, T.T.; Swystun, L.L.; Dwivedi, D.J.; Mai, S.H.; Weitz, J.I.; Liaw, P.C. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1977–1984. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Yu, Y.; Qu, M.; Qiu, Z.; Zhang, H.; Miao, C.; Guo, K. Neutrophil extracellular traps contribute to immunothrombosis formation via the STING pathway in sepsis-associated lung injury. Cell Death Discov. 2023, 9, 315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, Y.; Wu, D.; Wang, Y.; Shao, Y.; Zeng, F.; Zhou, D.; Zhang, H.; Miao, C. Treg and neutrophil extracellular trap interaction contributes to the development of immunosuppression in sepsis. JCI Insight 2024, 9, e180132. [Google Scholar] [CrossRef] [PubMed]
- Liaw, P.C.; Ito, T.; Iba, T.; Thachil, J.; Zeerleder, S. DAMP and DIC: The role of extracellular DNA and DNA-binding proteins in the pathogenesis of DIC. Blood Rev. 2016, 30, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Kambas, K.; Mitroulis, I.; Apostolidou, E.; Girod, A.; Chrysanthopoulou, A.; Pneumatikos, I.; Skendros, P.; Kourtzelis, I.; Koffa, M.; Kotsianidis, I.; et al. Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PLoS ONE 2012, 7, e45427. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, S.; Qi, H.; Kan, K.; Chen, J.; Xie, H.; Guo, X.; Zhang, L. Neutrophil Extracellular Traps Promote Hypercoagulability in Patients with Sepsis. Shock 2017, 47, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Delabranche, X.; Stiel, L.; Severac, F.; Galoisy, A.C.; Mauvieux, L.; Zobairi, F.; Lavigne, T.; Toti, F.; Anglès-Cano, E.; Meziani, F.; et al. Evidence of Netosis in Septic Shock-Induced Disseminated Intravascular Coagulation. Shock 2017, 47, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, H.; Wang, Y.; Guo, J.; Zhang, D. Potential Biomarkers for Early Diagnosis, Evaluation, and Prognosis of Sepsis-Induced Coagulopathy. Clin. Appl. Thromb. Hemost. 2023, 29, 10760296231195089. [Google Scholar] [CrossRef]
- Masuda, S.; Nakazawa, D.; Shida, H.; Miyoshi, A.; Kusunoki, Y.; Tomaru, U.; Ishizu, A. NETosis markers: Quest for specific, objective, and quantitative markers. Clin. Chim. Acta 2016, 459, 89–93. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zheng, F.; Qiu, L.; Wang, Y.; Zhang, J.; Ye, H.; Zhang, Q. Plasma neutrophil extracellular traps in patients with sepsis-induced acute kidney injury serve as a new biomarker to predict 28-day survival outcomes of disease. Front. Med. 2024, 11, 1496966. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeng, M.; Niu, Y.; Huang, J.; Deng, L. Advances in neutrophil extracellular traps and ferroptosis in sepsis-induced cardiomyopathy. Front. Immunol. 2025, 16, 1590313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, S.; Yu, X.; Wang, W.; Luo, Y.; Lei, S.; Qiu, Z.; Yang, Y.; Sun, Q.; Xia, Z. Neutrophil extracellular traps-related genes contribute to sepsis-associated acute kidney injury. BMC Nephrol. 2025, 26, 235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, S.; Dai, Z.; Wu, L.; Xiang, Z.; Yang, X.; Jiang, L.; Du, Z. Lactate-induced macrophage HMGB1 lactylation promotes neutrophil extracellular trap formation in sepsis-associated acute kidney injury. Cell Biol. Toxicol. 2025, 41, 78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yue, J.; Mo, L.; Zeng, G.; Ma, P.; Zhang, X.; Peng, Y.; Zhang, X.; Zhou, Y.; Jiang, Y.; Huang, N.; et al. Inhibition of neutrophil extracellular traps alleviates blood-brain barrier disruption and cognitive dysfunction via Wnt3/β-catenin/TCF4 signaling in sepsis-associated encephalopathy. J. Neuroinflamm. 2025, 22, 87. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, S.; Zhou, M.; Zhou, H.; Han, L.; Liu, H. Astragaloside IV- loaded biomimetic nanoparticles target IκBα to regulate neutrophil extracellular trap formation for sepsis therapy. J. Nanobiotechnol. 2025, 23, 155. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fang, J.; Ding, H.; Huang, J.; Liu, W.; Hong, T.; Yang, J.; Wu, Z.; Li, Z.; Zhang, S.; Liu, P.; et al. Mac-1 blockade impedes adhesion-dependent neutrophil extracellular trap formation and ameliorates lung injury in LPS-induced sepsis. Front. Immunol. 2025, 16, 1548913. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dong, T.; Ouyang, W.; Yu, X.; Zhao, T.; Shao, L.; Quan, C.; Wang, S.; Ma, J.; Li, Y. Synergistic inhibition of CitH3 and S100A8/A9: A novel therapeutic strategy for mitigating sepsis-induced inflammation and lung injury. Int. J. Immunopathol. Pharmacol. 2025, 39, 3946320251338661. [Google Scholar] [CrossRef] [PubMed]
- Koozi, H.; Lengquist, M.; Frigyesi, A. C-reactive protein as a prognostic factor in intensive care admissions for sepsis: A Swedish multicenter study. J. Crit. Care 2020, 56, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Anush, M.M.; Ashok, V.K.; Sarma, R.I.; Pillai, S.K. Role of C-reactive Protein as an Indicator for Determining the Outcome of Sepsis. Indian J. Crit. Care Med. 2019, 23, 11–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papp, M.; Kiss, N.; Baka, M.; Trásy, D.; Zubek, L.; Fehérvári, P.; Harnos, A.; Turan, C.; Hegyi, P.; Molnár, Z. Procalcitonin-guided antibiotic therapy may shorten length of treatment and may improve survival-a systematic review and meta-analysis. Crit. Care 2023, 27, 394. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P. How to best use procalcitonin to diagnose infections and manage antibiotic treatment. Clin. Chem. Lab. Med. 2023, 61, 822–828. [Google Scholar] [CrossRef]
- Paraskevas, T.; Chourpiliadi, C.; Demiri, S.; Micahilides, C.; Karanikolas, E.; Lagadinou, M.; Velissaris, D. Presepsin in the diagnosis of sepsis. Clin. Chim. Acta 2023, 550, 117588. [Google Scholar] [CrossRef] [PubMed]
- Michailides, C.; Lagadinou, M.; Paraskevas, T.; Papantoniou, K.; Kavvousanos, M.; Vasileiou, A.; Thomopoulos, K.; Velissaris, D.; Marangos, M. The Role of the Pancreatic Stone Protein in Predicting Intra-Abdominal Infection-Related Complications: A Prospective Observational Single-Center Cohort Study. Microorganisms 2023, 11, 2579. [Google Scholar] [CrossRef]
- Prazak, J.; Irincheeva, I.; Llewelyn, M.J.; Stolz, D.; de Guadiana Romualdo, L.G.; Graf, R.; Reding, T.; Klein, H.J.; Eggimann, P.; Que, Y.-A. Accuracy of pancreatic stone protein for the diagnosis of infection in hospitalized adults: A systematic review and individual patient level meta-analysis. Crit. Care 2021, 25, 182. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velissaris, D.; Karamouzos, V.; Paraskevas, T.; Velissari, E.K.; Pierrakos, C.; Michailides, C. Neutrophil Extracellular Traps in the Prognosis of Sepsis: A Current Update. Medicina 2025, 61, 1145. https://doi.org/10.3390/medicina61071145
Velissaris D, Karamouzos V, Paraskevas T, Velissari EK, Pierrakos C, Michailides C. Neutrophil Extracellular Traps in the Prognosis of Sepsis: A Current Update. Medicina. 2025; 61(7):1145. https://doi.org/10.3390/medicina61071145
Chicago/Turabian StyleVelissaris, Dimitrios, Vasileios Karamouzos, Themistoklis Paraskevas, Eleni Konstantina Velissari, Charalampos Pierrakos, and Christos Michailides. 2025. "Neutrophil Extracellular Traps in the Prognosis of Sepsis: A Current Update" Medicina 61, no. 7: 1145. https://doi.org/10.3390/medicina61071145
APA StyleVelissaris, D., Karamouzos, V., Paraskevas, T., Velissari, E. K., Pierrakos, C., & Michailides, C. (2025). Neutrophil Extracellular Traps in the Prognosis of Sepsis: A Current Update. Medicina, 61(7), 1145. https://doi.org/10.3390/medicina61071145