A Comparison of Quantitative Pupillometry and VOMS in Division 1 Female Soccer Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. Participants
2.1.2. Procedures
Vestibular Ocular Motor Screening (VOMS)
2.1.3. Quantitative Pupillometry
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VOMS | Vestibular Ocular Motor Screening Test; |
NPI | Neurological Pupillary Index. |
References
- Mooney, J.; Self, M.; ReFaey, K.; Elsayed, G.; Chagoya, G.; Bernstock, J.D.; Johnston, J.M. Concussion in soccer: A comprehensive review of the literature. Concussion 2020, 5, CNC76. [Google Scholar] [CrossRef]
- Kirkendall, D.T.; Garrett, W.E., Jr. Heading in Soccer: Integral Skill or Grounds for Cognitive Dysfunction? J. Athl. Train. 2001, 36, 328–333. [Google Scholar]
- Tarnutzer, A.; Straumann, D.; Brugger, P.; Feddermann-Demont, N. Persistent effects of playing football and associated (subconcussive) head trauma on brain structure and function: A systematic review of the literature. Br. J. Sports Med. 2016, 51, 1592–1604. [Google Scholar] [CrossRef]
- Clay, M.B.; Glover, K.L.; Lowe, D.T. Epidemiology of concussion in sport: A literature review. J. Chiropr. Med. 2013, 12, 230–251. [Google Scholar] [CrossRef]
- Gessel, L.M.; Fields, S.K.; Collins, C.L.; Dick, R.W.; Comstock, R.D. Concussions Among United States High School and Collegiate Athletes. J. Athl. Train. 2007, 42, 495–503. [Google Scholar]
- Chandran, A.; Barron, M.J.; Westerman, B.J.; DiPietro, L. Multifactorial examination of sex-differences in head injuries and concussions among collegiate soccer players: NCAA ISS, 2004–2009. Inj. Epidemiol. 2017, 4, 28. [Google Scholar] [CrossRef]
- Weber, A.E.; Trasolini, N.A.; Bolia, I.K.; Rosario, S.; Prodromo, J.P.; Hill, C.; Romano, R.; Liu, C.Y.; Tibone, J.E.; Gamradt, S.C. Epidemiologic Assessment of Concussions in an NCAA Division I Women’s Soccer Team. Orthop. J. Sports Med. 2020, 8, 2325967120921746. [Google Scholar] [CrossRef]
- Tierney, R.T.; Higgins, M.; Caswell, S.V.; Brady, J.; McHardy, K.; Driban, J.B.; Darvish, K. Sex Differences in Head Acceleration During Heading While Wearing Soccer Headgear. J. Athl. Train. 2008, 43, 578–584. [Google Scholar] [CrossRef]
- Bretzin, A.C.; Mansell, J.L.; Tierney, R.T.; McDevitt, J.K. Sex Differences in Anthropometrics and Heading Kinematics Among Division I Soccer Athletes. Sports Health 2016, 9, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Caccese, J.B.; Buckley, T.A.; Tierney, R.T.; Rose, W.C.; Glutting, J.J.; Kaminski, T.W. Sex and age differences in head acceleration during purposeful soccer heading. Res. Sports Med. 2017, 26, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Covassin, T.; Elbin, R.; Bleecker, A.; Lipchik, A.; Kontos, A.P. Are there differences in neurocognitive function and symptoms between male and female soccer players after concussions? Am. J. Sports Med. 2013, 41, 2890–2895. [Google Scholar] [CrossRef]
- Ellemberg, D.; Leclerc, S.; Couture, S.B.; Daigle, C.M. Prolonged neuropsychological impairments following a first concussion in female university soccer athletes. Am. J. Ther. 2007, 17, 369–374. [Google Scholar] [CrossRef]
- Sufrinko, A.M.; Mucha, A.; Covassin, T.P.; Marchetti, G.; Elbin, R.J.; Collins, M.W.; Kontos, A.P. Sex Differences in Vestibular/Ocular and Neurocognitive Outcomes After Sport-Related Concussion. Am. J. Ther. 2017, 27, 133–138. [Google Scholar] [CrossRef]
- Kontos, A.P.; Sufrinko, A.; Elbin, R.; Puskar, A.; Collins, M.W. Reliability and Associated Risk Factors for Performance on the Vestibular/Ocular Motor Screening (VOMS) Tool in Healthy Collegiate Athletes. Am. J. Sports Med. 2016, 44, 1400–1406. [Google Scholar] [CrossRef]
- Mucha, A.; Collins, M.W.; Elbin, R.; Furman, J.M.; Troutman-Enseki, C.; DeWolf, R.M.; Marchetti, G.; Kontos, A.P. A Brief Vestibular/Ocular Motor Screening (VOMS) Assessment to Evaluate Concussions: Preliminary Findings. Am. J. Sports Med. 2014, 42, 2479–2486. [Google Scholar] [CrossRef]
- Adler, P.M.; Cregg, M.; Viollier, A.; Woodhouse, J.M. Influence of target type and RAF rule on the measurement of near point of convergence. Ophthalmic Physiol. Opt. 2007, 27, 22–30. [Google Scholar] [CrossRef]
- Heick, J.D.; Bay, C. Determining Near Point of Convergence: Exploring a Component of the Vestibular/Ocular Motor Screen Comparing Varied Target Sizes. Int. J. Sports Phys. Ther. 2021, 16, 21–30. [Google Scholar] [CrossRef]
- Scheiman, M.; Gallaway, M.; Frantz, K.A.; Peters, R.J.; Hatch, S.; Cuff, M.; Mitchell, G.L. Nearpoint of convergence: Test procedure, target selection, and normative data. Optom. Vis. Sci. 2003, 80, 214–225. [Google Scholar] [CrossRef]
- Santo, A.L.; Race, M.L.; Teel, E.F. Near Point of Convergence Deficits and Treatment Following Concussion: A Systematic Review. J. Sport Rehabil. 2020, 29, 1179–1193. [Google Scholar] [CrossRef] [PubMed]
- Capó-Aponte, J.; Beltran, T.; Walsh, D.V.; Cole, W.R.; Dumayas, J.Y. Validation of Visual Objective Biomarkers for Acute Concussion. Mil. Med. 2018, 183, 9–17. [Google Scholar] [CrossRef]
- Joseph, J.R.; Swallow, J.S.; Willsey, K.; Almeida, A.A.; Lorincz, M.T.; Fraumann, R.K.; Oppenlander, M.E.; Szerlip, N.J.; Broglio, S.P. Pupillary changes after clinically asymptomatic high-acceleration head impacts in high school football athletes. J. Neurosurg. 2020, 133, 1886–1891. [Google Scholar] [CrossRef]
- Chen, J.; Gombart, Z.; Rogers, S.; Gardiner, S.; Cecil, S.; Bullock, R. Pupillary reactivity as an early indicator of increased intracranial pressure: The introduction of the Neurological Pupil index. Surg. Neurol. Int. 2011, 2, 82. [Google Scholar] [CrossRef]
- Shoyombo, I.; Aiyagari, V.; Stutzman, S.E.; Atem, F.; Hill, M.; Figueroa, S.A.; Miller, C.; Howard, A.; Olson, D.M. Understanding the Relationship Between the Neurologic Pupil Index and Constriction Velocity Values. Sci. Rep. 2018, 8, 6992. [Google Scholar] [CrossRef]
- Freeman, A.D.; McCracken, C.E.; Stockwell, J.A.M. Automated Pupillary Measurements Inversely Correlate with Increased Intracranial Pressure in Pediatric Patients With Acute Brain Injury or Encephalopathy. Pediatr. Crit. Care Med. 2020, 21, 753–759. [Google Scholar] [CrossRef]
- Master, C.L.; Podolak, O.E.; Ciuffreda, K.J.; Metzger, K.B.; Joshi, N.R.; McDonald, C.C.; Margulies, S.S.; Grady, M.F.; Arbogast, K.B. Utility of Pupillary Light Reflex Metrics as a Physiologic Biomarker for Adolescent Sport-Related Concussion. JAMA Ophthalmol. 2020, 138, 1135–1141. [Google Scholar] [CrossRef]
- Oddo, M.; Taccone, F.S.; Petrosino, M.; Badenes, R.; Blandino-Ortiz, A.; Bouzat, P.; Caricato, A.; Chesnut, R.M.; Feyling, A.C.; Ben-Hamouda, N.; et al. The Neurological Pupil index for outcome prognostication in people with acute brain injury (ORANGE): A prospective, observational, multicentre cohort study. Lancet Neurol. 2023, 22, 925–933. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Chen, T.; Alvarez, T.L. Quantitative assessment of divergence eye movements. J. Vis. 2008, 8, 5. [Google Scholar] [CrossRef]
- Bower, M.M.; Sweidan, A.J.; Xu, J.C.; Stern-Nezer, S.; Yu, W.; Groysman, L.I. Quantitative Pupillometry in the Intensive Care Unit. J. Intensiv. Care Med. 2019, 36, 383–391. [Google Scholar] [CrossRef]
- Traylor, J.I.; El Ahmadieh, T.Y.; Bedros, N.M.; Al Adli, N.; Stutzman, S.E.; Venkatachalam, A.M.; Pernik, M.N.; Collum, C.M.; Douglas, P.M.; Aiyagari, V.; et al. Quantitative pupillometry in patients with traumatic brain injury and loss of consciousness: A prospective pilot study. J. Clin. Neurosci. 2021, 91, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Dengler, B.A.; Meister, M.; Aderman, M.; Malvasi, S.R.; Ross, J.D.; Fu, A.; Haight, T.; Bartanusz, V.; Kambe, C.; Boulter, J.H.; et al. Quantitative Pupillometry Predicts Return to Play and Tracks the Clinical Evolution of Mild Traumatic Brain Injury in US Military Academy Cadets: A Military Traumatic Brain Injury Initiative Study. Neurosurgery 2024, 96, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Grijalva, C.; Hale, D.; Wu, L.; Toosizadeh, N.; Laksari, K. Hyper-acute effects of sub-concussive soccer headers on brain function and hemodynamics. Front. Hum. Neurosci. 2023, 17, 1191284. [Google Scholar] [CrossRef]
- Kawata, K.; Rubin, L.H.; Lee, J.H.; Sim, T.; Takahagi, M.; Szwanki, V.; Bellamy, A.; Darvish, K.; Assari, S.; Henderer, J.D.; et al. Association of Football Subconcussive Head Impacts with Ocular Near Point of Convergence. JAMA Ophthalmol. 2016, 134, 763–769. [Google Scholar] [CrossRef]
- Hwang, S.; Ma, L.; Kawata, K.; Tierney, R.; Jeka, J.J. Vestibular Dysfunction after Subconcussive Head Impact. J. Neurotrauma 2017, 34, 8–15. [Google Scholar] [CrossRef]
- Kawata, K.; Tierney, R.; Phillips, J.; Jeka, J.J. Effect of Repetitive Sub-concussive Head Impacts on Ocular Near Point of Convergence. Int. J. Sports Med. 2016, 37, 405–410. [Google Scholar] [CrossRef]
Mean and Standard Deviation | Right Eye | Left Eye | |
---|---|---|---|
NPi | 3.85 ± 0.39 | 3.97 ± 0.42 | |
Pupil Size (mm) | 5.41 ± 0.79 | 5.26 ± 0.79 | |
Minimum Pupil Size (mm) | 3.65 ± 0.59 | 3.47 ± 0.53 | |
Constriction Percentage (%) | 32.63 ± 4.33 | 33.70 ± 5.24 | |
Constriction Velocity (mm/s) | 2.65 ± 0.50 | 2.90 ± 0.54 | |
Maximum Constriction Velocity (mm/s) | 4.21 ± 0.68 | 4.50 ± 0.87 | |
Latency (s) | 0.22 ± 0.02 | 0.21 ± 0.02 | |
Dilation Velocity (mm/s) | 1.12 ± 0.24 | 1.18 ± 0.24 | |
NPC Trial 1 | 1.89 ± 1.00 | ||
NPC Trial 2 | 1.84 ± 1.02 | ||
NPC Trial 3 | 1.84 ± 1.25 | ||
NPC Trial Average | 1.86 ± 1.06 | ||
VOMS Total Score | 1.04 ± 3.48 |
Right Eye | Number | Left Eye | Number | |
---|---|---|---|---|
Low NPi | <3.8 | n = 10 | <3.87 | n = 9 |
Medium NPi | 3.8–4.1 | n = 9 | 3.87–4.1 | n = 8 |
High NPi | >4.1 | n = 8 | >4.1 | n = 9 |
Low NPi | Medium NPi | High NPi | Significance | |
---|---|---|---|---|
Constriction %, Right | 28.50 | 34.00 | 36.50 | p < 0.001 * |
Max Constriction Velocity, Right | 3.70 | 4.67 | 4.54 | p = 0.05 |
Min Pupil Size, Right | 3.86 | 3.75 | 3.14 | p = 0.02 * |
Dilation Velocity, Right | 1.09 | 1.16 | 1.13 | p = 0.88 |
Constriction %, Left | 30.00 | 37.00 | 37.50 | p = 0.006 * |
Max Constriction Velocity | 4.27 | 5.06 | 4.41 | p = 0.29 |
Min Pupil Size, Left | 3.87 | 3.77 | 2.91 | p = 0.001 * |
Dilation Velocity, Left | 1.12 | 1.39 | 1.13 | p = 0.311 |
Pupillometry Components | Mean and Standard Deviation |
---|---|
Right NPI | 3.84 (0.38) |
Right Pupil Size | 5.42 (0.79) |
Right NPI | 3.84 (0.38) |
Right Minimum Pupil Size at Constriction | 3.66 (0.59) |
Right NPI | 3.84 (0.38) |
Right Constriction Percentage Change | 0.325 (0.04) |
Right NPI | 3.84 (0.38) |
Right Constriction Velocity | 2.63 (0.49) |
Right NPI | 3.84 (0.38) |
Right Maximum Constriction Velocity | 4.18 (0.67) |
Right NPI | 3.84 (0.38) |
Right Constriction Latency | 0.220 (0.02) |
Right NPI | 3.84 (0.38) |
Right Dilation Velocity | 1.10 (0.25) |
Left NPI | 3.95 (0.43) |
Left Pupil Size | 5.27 (0.81) |
Left NPI | 3.95 (0.43) |
Left Minimum Pupil Size at Constriction | 3.49 (0.53) |
Left NPI | 3.95 (0.43) |
Left Constriction Percentage Change | 0.35 (0.05) |
Left NPI | 3.95 (0.43) |
Left Constriction Velocity | 2.90 (0.55) |
Left NPI | 3.95 (0.43) |
Left Maximum Constriction Velocity | 4.50 (0.89) |
Left NPI | 3.95 (0.43) |
Left Constriction Latency | 0.21 (0.02) |
Left NPI | 3.95 (0.43) |
Left Dilation Velocity | 1.17 (0.24) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heick, J.D. A Comparison of Quantitative Pupillometry and VOMS in Division 1 Female Soccer Players. Medicina 2025, 61, 1109. https://doi.org/10.3390/medicina61061109
Heick JD. A Comparison of Quantitative Pupillometry and VOMS in Division 1 Female Soccer Players. Medicina. 2025; 61(6):1109. https://doi.org/10.3390/medicina61061109
Chicago/Turabian StyleHeick, John Duane. 2025. "A Comparison of Quantitative Pupillometry and VOMS in Division 1 Female Soccer Players" Medicina 61, no. 6: 1109. https://doi.org/10.3390/medicina61061109
APA StyleHeick, J. D. (2025). A Comparison of Quantitative Pupillometry and VOMS in Division 1 Female Soccer Players. Medicina, 61(6), 1109. https://doi.org/10.3390/medicina61061109