The Effects of Multicomponent Training on Clinical, Functional, and Psychological Outcomes in Cardiovascular Disease: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
Study Selection
3. Results
3.1. Identification of Studies
3.2. Study Characteristics
4. Discussion
4.1. Effects of Multicomponent Training on Hemodynamic Parameters
4.2. Effects of Multicomponent Training on Physical Fitness Parameters
4.3. Effects of Multicomponent Training on Psychological Parameters
5. Limitations and Further Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Vollset, S.E.; Ababneh, H.S.; Abate, Y.H.; Abbafati, C.; Abbasgholizadeh, R.; Abbasian, M.; Abbastabar, H.; Abd Al Magied, A.H.A.; Abd ElHafeez, S.; Abdelkader, A.; et al. Burden of Disease Scenarios for 204 Countries and Territories, 2022–2050: A Forecasting Analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2204–2256. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.L.; Grandpre, J.; Katz, D.L.; Shenson, D. Cognitive Impairment and Cardiovascular Disease: A Comparison of Risk Factors, Disability, Quality of Life, and Access to Health Care. Public Health Rep. 2020, 135, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Frąk, W.; Wojtasińska, A.; Lisińska, W.; Młynarska, E.; Franczyk, B.; Rysz, J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines 2022, 10, 1938. [Google Scholar] [CrossRef] [PubMed]
- Adhikary, D.; Barman, S.; Ranjan, R.; Stone, H. A Systematic Review of Major Cardiovascular Risk Factors: A Growing Global Health Concern. Cureus 2022, 14, e30119. [Google Scholar] [CrossRef]
- Alves, A.J.; Viana, J.L.; Cavalcante, S.L.; Oliveira, N.L.; Duarte, J.A.; Mota, J.; Oliveira, J.; Ribeiro, F. Physical Activity in Primary and Secondary Prevention of Cardiovascular Disease: Overview Updated. World J. Cardiol. 2016, 8, 575. [Google Scholar] [CrossRef]
- Pinckard, K.; Baskin, K.K.; Stanford, K.I. Effects of Exercise to Improve Cardiovascular Health. Front. Cardiovasc. Med. 2019, 6, 69. [Google Scholar] [CrossRef]
- Rijal, A.; Adhikari, T.B.; Dhakal, S.; Maagaard, M.; Piri, R.; Nielsen, E.E.; Neupane, D.; Jakobsen, J.C.; Olsen, M.H. Effect of Exercise on Functional Capacity and Body Weight for People with Hypertension, Type 2 Diabetes, or Cardiovascular Disease: A Systematic Review with Meta-Analysis and Trial Sequential Analysis. BMC Sports Sci. Med. Rehabil. 2024, 16, 38. [Google Scholar] [CrossRef]
- Stewart, J.; Manmathan, G.; Wilkinson, P. Primary Prevention of Cardiovascular Disease: A Review of Contemporary Guidance and Literature. JRSM Cardiovasc. Dis. 2017, 6, 204800401668721. [Google Scholar] [CrossRef]
- Rippe, J.M. Lifestyle Strategies for Risk Factor Reduction, Prevention, and Treatment of Cardiovascular Disease. Am. J. Lifestyle Med. 2019, 13, 204–212. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Zaree, A.; Dev, S.; Yaseen Khan, I.; Arain, M.; Rasool, S.; Khalid Rana, M.A.; Kanwal, K.; Bhagat, R.; Prachi, F.; Puri, P.; et al. Cardiac Rehabilitation in the Modern Era: Optimizing Recovery and Reducing Recurrence. Cureus 2023, 15, e46006. [Google Scholar] [CrossRef] [PubMed]
- Boschetti, D.; Muller, C.R.; Américo, A.L.V.; Vecchiatto, B.; Martucci, L.F.; Pereira, R.O.; Oliveira, C.P.; Fiorino, P.; Evangelista, F.S.; Azevedo-Martins, A.K. Aerobic Physical Exercise Improves Exercise Tolerance and Fasting Glycemia Independent of Body Weight Change in Obese Females. Front. Endocrinol. 2021, 12, 772914. [Google Scholar] [CrossRef]
- Hellsten, Y.; Nyberg, M. Cardiovascular Adaptations to Exercise Training. In Comprehensive Physiology; Prakash, Y.S., Ed.; Wiley: Hoboken, NJ, USA, 2015; pp. 1–32. ISBN 978-0-470-65071-4. [Google Scholar]
- Myers, J.; Kokkinos, P.; Nyelin, E. Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients 2019, 11, 1652. [Google Scholar] [CrossRef] [PubMed]
- Syeda, U.S.A.; Battillo, D.; Visaria, A.; Malin, S.K. The Importance of Exercise for Glycemic Control in Type 2 Diabetes. Am. J. Med. Open 2023, 9, 100031. [Google Scholar] [CrossRef] [PubMed]
- Mcleod, J.C.; Currier, B.S.; Lowisz, C.V.; Phillips, S.M. The Influence of Resistance Exercise Training Prescription Variables on Skeletal Muscle Mass, Strength, and Physical Function in Healthy Adults: An Umbrella Review. J. Sport Health Sci. 2024, 13, 47–60. [Google Scholar] [CrossRef]
- Silva, J.K.T.N.F.; Menêses, A.L.; Parmenter, B.J.; Ritti-Dias, R.M.; Farah, B.Q. Effects of Resistance Training on Endothelial Function: A Systematic Review and Meta-Analysis. Atherosclerosis 2021, 333, 91–99. [Google Scholar] [CrossRef]
- Tai, Y.L.; Marshall, E.M.; Parks, J.C.; Mayo, X.; Glasgow, A.; Kingsley, J.D. Changes in Endothelial Function after Acute Resistance Exercise Using Free Weights. J. Funct. Morphol. Kinesiol. 2018, 3, 32. [Google Scholar] [CrossRef]
- Ten Hoor, G.A.; Kok, G.; Peters, G.-J.Y.; Frissen, T.; Schols, A.M.W.J.; Plasqui, G. The Psychological Effects of Strength Exercises in People Who Are Overweight or Obese: A Systematic Review. Sports Med. 2017, 47, 2069–2081. [Google Scholar] [CrossRef]
- Tai, Y.; Woods, E.L.; Dally, J.; Kong, D.; Steadman, R.; Moseley, R.; Midgley, A.C. Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules 2021, 11, 1095. [Google Scholar] [CrossRef]
- Farinatti, P.T.; Brandão, C.; Soares, P.P.; Duarte, A.F. Acute Effects of Stretching Exercise on the Heart Rate Variability in Subjects With Low Flexibility Levels. J. Strength Cond. Res. 2011, 25, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Fischetti, F.; Poli, L.; De Tommaso, M.; Paolicelli, D.; Greco, G.; Cataldi, S. The Role of Exercise Parameters on Small Extracellular Vesicles and microRNAs Cargo in Preventing Neurodegenerative Diseases. Front. Physiol. 2023, 14, 1241010. [Google Scholar] [CrossRef] [PubMed]
- Labata-Lezaun, N.; González-Rueda, V.; Llurda-Almuzara, L.; López-de-Celis, C.; Rodríguez-Sanz, J.; Bosch, J.; Vicente-Rodríguez, G.; Gorczakowska, D.; Araluze-Arizti, P.; Pérez-Bellmunt, A. Effectiveness of Multicomponent Training on Physical Performance in Older Adults: A Systematic Review and Meta-Analysis. Arch. Gerontol. Geriatr. 2023, 104, 104838. [Google Scholar] [CrossRef] [PubMed]
- Forte, P.; Encarnação, S.G.; Branquinho, L.; Barbosa, T.M.; Monteiro, A.M.; Pecos-Martín, D. The Effects of an 8-Month Multicomponent Training Program in Body Composition, Functional Fitness, and Sleep Quality in Aged People: A Randomized Controlled Trial. J. Clin. Med. 2024, 13, 6603. [Google Scholar] [CrossRef]
- Jofré-Saldía, E.; Villalobos-Gorigoitía, Á.; Cofré-Bolados, C.; Ferrari, G.; Gea-García, G.M. Multicomponent Training in Progressive Phases Improves Functional Capacity, Physical Capacity, Quality of Life, and Exercise Motivation in Community-Dwelling Older Adults: A Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2023, 20, 2755. [Google Scholar] [CrossRef]
- Tilgner, N.; Nehls, D.; Lichtmess, C.; Kober, A.; Küsel, C.; Radloff, L.; Gabrys, L. Adherence to Exercise and Fitness Following Exercise-Based Outpatient Cardiac Rehabilitation: A Cross-Sectional Survey for Germany. BMC Sports Sci. Med. Rehabil. 2022, 14, 191. [Google Scholar] [CrossRef]
- Warehime, S.; Dinkel, D.; Alonso, W.; Pozehl, B. Long-Term Exercise Adherence in Patients with Heart Failure: A Qualitative Study. Heart Lung 2020, 49, 696–701. [Google Scholar] [CrossRef]
- Cadore, E.L.; Rodríguez-Mañas, L.; Sinclair, A.; Izquierdo, M. Effects of Different Exercise Interventions on Risk of Falls, Gait Ability, and Balance in Physically Frail Older Adults: A Systematic Review. Rejuvenation Res. 2013, 16, 105–114. [Google Scholar] [CrossRef]
- Cataldi, S.; Amato, A.; Messina, G.; Iavone, A.; Greco, G.; Guarini, A.; Proia, P.; Fischetti, F. Effects of combined exercise on psychological and physiological variables in cancer patients: A pilot study. Acta Medica Mediterr. 2020, 36, 1105–1113. [Google Scholar] [CrossRef]
- Fischetti, F.; Greco, G.; Cataldi, S.; Minoia, C.; Loseto, G.; Guarini, A. Effects of Physical Exercise Intervention on Psychological and Physical Fitness in Lymphoma Patients. Medicina 2019, 55, 379. [Google Scholar] [CrossRef]
- Martínez-Carbonell, E.; López-Vivancos, A.; Romero-Arenas, S.; Borges-Silva, F.; Marcos-Pardo, P.J.; González-Gálvez, N.; Orquín-Castrillón, F.J. Impact of Multicomponent Training Frequency on Health and Fitness Parameters in Postmenopausal Women: A Comparative Study. Healthcare 2024, 12, 1980. [Google Scholar] [CrossRef] [PubMed]
- Poli, L.; Greco, G.; Cataldi, S.; Ciccone, M.M.; De Giosa, A.; Fischetti, F. Multicomponent versus Aerobic Exercise Intervention: Effects on Hemodynamic, Physical Fitness and Quality of Life in Adult and Elderly Cardiovascular Disease Patients: A Randomized Controlled Study. Heliyon 2024, 10, e36200. [Google Scholar] [CrossRef] [PubMed]
- Poli, L.; Mazić, S.; Ciccone, M.M.; Cataldi, S.; Fischetti, F.; Greco, G. A 10-Week Multicomponent Outdoor Exercise Program Improves Hemodynamic Parameters and Physical Fitness in Cardiovascular Disease Adult and Elderly Patients. Sport Sci. Health 2024, 21, 239–249. [Google Scholar] [CrossRef]
- Subías-Perié, J.; Navarrete-Villanueva, D.; Fernández-García, Á.I.; Moradell, A.; Lozano-Berges, G.; Gesteiro, E.; Pérez-Gómez, J.; Ara, I.; Gómez-Cabello, A.; Vicente-Rodríguez, G.; et al. Effects of a Multicomponent Training Followed by a Detraining Period on Metabolic Syndrome Profile of Older Adults. Exp. Gerontol. 2024, 186, 112363. [Google Scholar] [CrossRef]
- Narrative Review Checklist. Available online: https://legacyfileshare.elsevier.com/promis_misc/ANDJ%20Narrative%20Review%20Checklist.pdf (accessed on 3 February 2025).
- Baptista, L.C.; Amorim, A.P.; Valente-dos-Santos, J.; Machado-Rodrigues, A.M.; Veríssimo, M.T.; Martins, R.A. Functional Status Improves in Hypertensive Older Adults: The Long-Term Effects of Antihypertensive Therapy Combined with Multicomponent Exercise Intervention. Aging Clin. Exp. Res. 2018, 30, 1483–1495. [Google Scholar] [CrossRef]
- Cavalcante, S.; Teixeira, M.; Gouveia, M.; Duarte, A.; Ferreira, M.; Simões, M.I.; Conceição, M.; Costa, M.; Ribeiro, I.P.; Gonçalves, A.C.; et al. Endothelial Progenitor Cell Response to a Multicomponent Exercise Training Program in Adults with Cardiovascular Risk Factors. Ger. J. Exerc. Sport Res. 2023, 53, 225–231. [Google Scholar] [CrossRef]
- Coelho Junior, H.J.; Rodrigues, B.; Feriani, D.J.; Gonçalves, I.D.O.; Asano, R.Y.; Aguiar, S.D.S.; Uchida, M.C. Effects of Multicomponent Exercise on Functional and Cognitive Parameters of Hypertensive Patients: A Quasi-Experimental Study. J. Aging Res. 2017, 2017, 1978670. [Google Scholar] [CrossRef]
- Coelho-Júnior, H.J.; Asano, R.Y.; Gonçalvez, I.D.O.; Brietzke, C.; Pires, F.O.; Aguiar, S.D.S.; Feriani, D.J.; Caperuto, E.C.; Uchida, M.C.; Rodrigues, B. Multicomponent Exercise Decreases Blood Pressure, Heart Rate and Double Product in Normotensive and Hypertensive Older Patients with High Blood Pressure. Arch. Cardiol. México 2018, 88, 413–422. [Google Scholar] [CrossRef]
- Coelho-Júnior, H.J.; Gonçalvez, I.D.O.; Callado Sanches, I.; Gonçalves, L.; Caperuto, E.C.; Uchida, M.C.; Rodrigues, B. Multicomponent Exercise Improves Physical Functioning but Not Cognition and Hemodynamic Parameters in Elderly Osteoarthritis Patients Regardless of Hypertension. BioMed Res. Int. 2018, 2018, 3714739. [Google Scholar] [CrossRef]
- Luo, Y.; Hao, J.; Zhu, L.; Huang, Y.; Liu, Z.; Chen, Y.; Qiu, Y.; Su, Z.; Sun, R. Effects of Multicomponent Exercise Nursing Intervention in Elderly Stroke Patients with Frailty: A Randomized Controlled Trial. Front. Med. 2024, 11, 1450494. [Google Scholar] [CrossRef]
- Moraes, W.M.D.; Souza, P.R.M.; Pinheiro, M.H.N.P.; Irigoyen, M.C.; Medeiros, A.; Koike, M.K. Exercise Training Program Based on Minimum Weekly Frequencies: Effects on Blood Pressure and Physical Fitness in Elderly Hypertensive Patients. Braz. J. Phys. Ther. 2012, 16, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Pepera, G.; Mpea, C.; Krinta, K.; Peristeropoulos, A.; Antoniou, V. Effects of Multicomponent Exercise Training Intervention on Hemodynamic and Physical Function in Older Residents of Long-Term Care Facilities: A Multicenter Randomized Clinical Controlled Trial. J. Bodyw. Mov. Ther. 2021, 28, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Trapé, Á.A.; Rodrigues, J.A.L.; Ferezin, L.P.; Ferrari, G.D.; Lizzi, E.A.D.S.; Moraes, V.N.D.; Silva, R.F.D.; Zago, A.S.; Brazo-Sayavera, J.; Bueno Júnior, C.R. NOS3 Polymorphisms Can Influence the Effect of Multicomponent Training on Blood Pressure, Nitrite Concentration and Physical Fitness in Prehypertensive and Hypertensive Older Adult Women. Front. Physiol. 2021, 12, 566023. [Google Scholar] [CrossRef]
- Ashcroft, S.P.; Stocks, B.; Egan, B.; Zierath, J.R. Exercise Induces Tissue-Specific Adaptations to Enhance Cardiometabolic Health. Cell Metab. 2024, 36, 278–300. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Boppre, G.; Schmidt, C.; Bohn, L. Chronic Hemodynamic Adaptations Induced by Resistance Training with and without Blood Flow Restriction in Adults: A Systematic Review and Meta-Analysis. Sports Med. Health Sci. 2023, 5, 259–268. [Google Scholar] [CrossRef]
- Skouras, A.Z.; Antonakis-Karamintzas, D.; Tsantes, A.G.; Triantafyllou, A.; Papagiannis, G.; Tsolakis, C.; Koulouvaris, P. The Acute and Chronic Effects of Resistance and Aerobic Exercise in Hemostatic Balance: A Brief Review. Sports 2023, 11, 74. [Google Scholar] [CrossRef]
- Coffey, V.G.; Hawley, J.A. Concurrent Exercise Training: Do Opposites Distract? J. Physiol. 2017, 595, 2883–2896. [Google Scholar] [CrossRef] [PubMed]
- Huiberts, R.O.; Wüst, R.C.I.; Van Der Zwaard, S. Concurrent Strength and Endurance Training: A Systematic Review and Meta-Analysis on the Impact of Sex and Training Status. Sports Med. 2024, 54, 485–503. [Google Scholar] [CrossRef]
- Wilson, J.M.; Marin, P.J.; Rhea, M.R.; Wilson, S.M.C.; Loenneke, J.P.; Anderson, J.C. Concurrent Training: A Meta-Analysis Examining Interference of Aerobic and Resistance Exercises. J. Strength Cond. Res. 2012, 26, 2293–2307. [Google Scholar] [CrossRef]
- De Moraes Sirydakis, M.E.; Danielevicz, A.; De Melo, P.U.G.; Bregalda, J.; Constantini, M.I.; Pelliciari, G.; Sampaio, S.K.; Rech, C.R.; Maurici, R.; Gerage, A.M.; et al. Improving Quality of Life, Sleep and Mental Health through Multicomponent Training versus Brazilian Recommendations of Physical Activity in Post-COVID-19 Patients: CORE-Study–A Randomized Controlled Trial. Ment. Health Phys. Act. 2024, 27, 100615. [Google Scholar] [CrossRef]
- Moradell, A.; Navarrete-Villanueva, D.; Fernández-García, Á.I.; Gusi, N.; Pérez-Gómez, J.; González-Gross, M.; Ara, I.; Casajús, J.A.; Gómez-Cabello, A.; Vicente-Rodríguez, G. Multicomponent Training Improves the Quality of Life of Older Adults at Risk of Frailty. Healthcare 2023, 11, 2844. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.A.; Fos, L.B.; Ross, L.M.; Slentz, C.A.; Davis, P.G.; Willis, L.H.; Piner, L.W.; Bateman, L.A.; Houmard, J.A.; Kraus, W.E. Aerobic, Resistance, and Combination Training on Health-Related Quality of Life: The STRRIDE-AT/RT Randomized Trial. Front. Sports Act. Living 2021, 2, 620300. [Google Scholar] [CrossRef] [PubMed]
Authors | Country | Study Design | Sample | Subjects Age (Years) | Health Condition | Workload | Treatment | Duration Intervention | Main Outcomes |
Moraes et al., 2012 [43] | Brazil | Quasi-experimental non- controlled study | n = 36 | 69.3 | AH | 60’ × 2/wk Subjective Effort Perception Scale, maintaining an intensity ranging between 3 and 5 | Participants were using daily routine medications (ACEIs, beta blockers, diuretics, calcium-channel blockers, statins, aspirin, and oral hypoglycemic drugs) | 12 weeks | EG = ↓BMI EG = ↓BG EG = ↓BP EG = ↑CST EG = ↑EFT EG = ↑SGT EG = ↑UST EG = ↓PST EG = ↓SSMT EG = No significant effects SRT |
Coelho Junior et al., 2017 [39] | Brazil | Quasi-Experimental | n = 218 NTS = 101 HTS = 117 | 65.2 (±6.84) | HTN | 48’ × 2 s/wk Subjective Effort Perception Scale, maintaining an intensity ranging between 3 and 5 | Not specified | 26 weeks | NTS = ↑OLST; ↑UMWS HTS = ↑OLST; ↑UMWS NTS and HTS = No significant effects STS; TUG; TUG cognitive test |
Baptista et al., 2018 [37] | Portugal | Quasi-Experimental | n = 96 TDs n = 33 CCBs n = 23 βBs n = 40 | 67.4 (±8.7) | HTN | 60’ × 3 s/wk Intensity perceived exertion scale | Individualized daily monotherapy (Indapamide 2.5 mg for TDs, Amlodipine 5 mg for CCBs, or β-blockers like Bisoprolol 5 mg, Nebivolol 5 mg, or Carvedilol 25 mg for βBs), with doses adjusted by their primary care physician to manage blood pressure and comorbidities | 24 month | TDs = ↑UBS; ↑LBS; AE aerobic endurance; ↓SBP CCBs = ↑ UBS; ↑LBS; AE aerobic endurance; ↓SBP βBs = ↑ UBS; ↑LBS; AE; ↓SBP CCBs = ↓TC TDs and βBs = ↑ BM; ↑WC CCBs = ↑SF-36 |
Coelho-Júnior, Asano et al., 2018 [40] | Brazil | Quasi-Experimental | n = 183 Normotensives = 97 CNS = 53 UNS = 44 HTN = 86 CHS = 43 UHS = 43 | 65.8 (±5.2) | HTN | 48’ × 2 s/wk Subjective Effort Perception Scale, maintaining an intensity ranging between 3 and 5 | Not specified | 26 weeks | CNS = ↓ SBP; ↓DBP UNS = ↓ SBP; ↓DBP;↓MAP UHS = ↓ SBP;↓DBP; ↓MAP UHS = ↓BMI; ↓WC UNS = ↓BMI; ↓WC CHS = no significant effects on anthropometric parameters |
Coelho-Júnior, Gonçalvez et al., 2018 [41] | Brazil | Quasi-Experimental | n = 99 NTS-OA = 44 HTS-OA = 55 | 66.2 (±5.4) | HTN + lower limb OA | 48’ × 2 s/wk Subjective Effort Perception Scale, maintaining an intensity ranging between 3 and 5 | Participants used only antihypertensive medications (HTS-OA group). Some used analgesics, anti-inflammatory drugs, and/or muscle relaxants occasionally (every 15–30 days). | 26 weeks | NTS-OA = no significant effects on anthropometric parameters HTS-OA = no significant effects on anthropometric parameters NTS-OA = ↑ OLST HTS-OA = ↑OLST NTS-OA = ↑UMWS HTS-OA = ↑UMWS HTS-OA = no significant effects STS; TUG; TUG cognitive test NTS-OA = no significant effects STS; TUG; TUG cognitive test HTS-OA = ↑ HR |
Pepera et al., 2021 [44] | Greece | Multicenter randomized controlled clinical trial | n = 40 EG = 20 CG = 20 | 79.45 (±6.52) | HTN | 50’2 s/wk Intensity not specified | Not specified | 8 weeks | EG = ↑SBP EG = no significant effects DBP; HR EG = ↑TUG EG = ↑BBS CG = no significant effects on SBP; DBP; HR CG = ↓TUG CG = ↓BBS |
Trapé et al., 2021 [45] | Brazil | Quasi-Experimental | n = 52 HS = 26 PRE-HS = 26 | 61.95 (±2.86) | HTN | 90’ 2 s/wk Subjective Effort Perception Scale, maintaining an intensity ranging between 13 (moderate) and 15 (intense). | Not specified | 12 weeks | HS= ↑BM HS = ↑BMI HS = ↓BP HS = ↑6MWT HS = ↑STS HS = ↑EFT PREHS = ↑BM PREHS = ↑BMI PREHS = ↓BP PREHS = ↑6MWT PREHS = ↑STS PREHS = ↑EFT |
Cavalcante et al., 2023 [38] | Portugal | Quasi-Experimental | n = 11 EG = 11 | 65.8 (±8.6) | CRFs | 60’ 2 s/wk Subjective Effort Perception Scale, maintaining an intensity ranging between 11 (moderate) and 14 (intense) | Not specified | 18 weeks | EG = ↑EPCs EG = No significant effects on CECs |
Luo et al., 2024 [42] | China | Single-blind, randomized controlled trial | n = 125 EG = 63 CG = 62 | 73.26 (±6.89) | Post-stroke with frailty | 75’ 1–6 s/wk Subjective Effort Perception Scale, maintaining an intensity ranging between 13 (moderate) and 15 (intense) | Not specified | 12 weeks | EG = ↓FRAIL scale EG = ↑MBI EG = ↑SF-36 |
Poli et al., 2024 [33] | Italy | Randomized controlled study | n = 33 MTG = 12 ATG = 12 CG = 9 | 69.5 (±4. 9) | Different stabilized CVDs | 60’ 2 s/wk Subjective Effort Perception Scale, maintaining an intensity ranging between 13 (moderate) and 15 (intense) | Not specified | 10 weeks | MTG/ATG = ↓RHR; ↓P-SBP; ↓P-DBP; ↑30CST; ↑TUG; ↑HGS; ↑2MST; ↑PACES MTG vs. ATG = ↑30CST; (D)HGS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poli, L.; Petrelli, A.; Fischetti, F.; Morsanuto, S.; Talaba, L.; Cataldi, S.; Greco, G. The Effects of Multicomponent Training on Clinical, Functional, and Psychological Outcomes in Cardiovascular Disease: A Narrative Review. Medicina 2025, 61, 822. https://doi.org/10.3390/medicina61050822
Poli L, Petrelli A, Fischetti F, Morsanuto S, Talaba L, Cataldi S, Greco G. The Effects of Multicomponent Training on Clinical, Functional, and Psychological Outcomes in Cardiovascular Disease: A Narrative Review. Medicina. 2025; 61(5):822. https://doi.org/10.3390/medicina61050822
Chicago/Turabian StylePoli, Luca, Alessandro Petrelli, Francesco Fischetti, Stefania Morsanuto, Livica Talaba, Stefania Cataldi, and Gianpiero Greco. 2025. "The Effects of Multicomponent Training on Clinical, Functional, and Psychological Outcomes in Cardiovascular Disease: A Narrative Review" Medicina 61, no. 5: 822. https://doi.org/10.3390/medicina61050822
APA StylePoli, L., Petrelli, A., Fischetti, F., Morsanuto, S., Talaba, L., Cataldi, S., & Greco, G. (2025). The Effects of Multicomponent Training on Clinical, Functional, and Psychological Outcomes in Cardiovascular Disease: A Narrative Review. Medicina, 61(5), 822. https://doi.org/10.3390/medicina61050822