Sarcopenia and Frailty in Cirrhotic Patients: Evaluation of Prevalence and Risk Factors in a Single-Centre Cohort Study
Abstract
1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Data Collection
- SARC-F Questionnaire
Strength: How much difficulty do you have lifting and carrying 5 kg? | None = 0; Some = 1; A lot or unable = 2 |
Walking Assistance: How much difficulty do you have walking across a room? | None = 0; Some = 1; A lot, use aids, or unable = 2 |
Chair Stand: How much difficulty do you have rising from a chair or bed? | None = 0; Some = 1; A lot or unable without help = 2 |
Stair Climbing: How much difficulty do you have climbing a flight of 10 stairs? | None = 0; Some = 1; A lot or unable = 2 |
Falls: How many times have you fallen in the past year? | None = 0; 1–3 falls = 1; 4 or more falls = 2 |
- FRAIL Scale
Fatigue: Do you experience fatigue or tiredness? |
Resistance: Can you walk one block without resting? |
Ambulation: Can you climb stairs? |
Illness: Do you have more than five medical conditions under follow-up or treatment? |
Weight Loss: Have you unintentionally lost 5% or more of your body weight in the past six months? |
2.3. Evaluation of Hand Grip Strength
2.4. Statistical Analysis
3. Results
3.1. SARC-F Score Distribution
3.2. Frailty Prevalence
3.3. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, B.; John, S. Hepatic Cirrhosis. In Treasure Island (FL); StatPearls: Petersburg, FL, USA, 2025. [Google Scholar]
- Ly, K.N.; Speers, S.; Klevens, R.M.; Barry, V.; Vogt, T.M. Measuring chronic liver disease mortality using an expanded cause of death definition and medical records in Connecticut, 2004. Hepatol. Res. 2015, 45, 960–968. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Health Estimates; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Yang, X.; Li, Q.; Liu, W.; Zong, C.; Wei, L.; Shi, Y.; Han, Z. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: From pathogenesis to treatment. Cell Mol. Immunol. 2023, 20, 583–599. [Google Scholar] [CrossRef] [PubMed]
- Gines, P.; Krag, A.; Abraldes, J.G.; Sola, E.; Fabrellas, N.; Kamath, P.S. Liver cirrhosis. Lancet 2021, 398, 1359–1376. [Google Scholar] [CrossRef] [PubMed]
- Tsoris, A.; Marlar, C.A. Use of the Child Pugh Score in Liver Disease. In Treasure Island (FL); StatPearls: Petersburg, FL, USA, 2025. [Google Scholar]
- Acharya, G.; Kaushik, R.M.; Gupta, R.; Kaushik, R. Child-Turcotte-Pugh Score, MELD Score and MELD-Na Score as Predictors of Short-Term Mortality among Patients with End-Stage Liver Disease in Northern India. Inflamm. Intest. Dis. 2020, 5, 1–10. [Google Scholar] [CrossRef]
- Keller, K. Sarcopenia. Wien. Med. Wochenschr. 2019, 169, 157–172. [Google Scholar] [CrossRef]
- Petermann-Rocha, F.; Balntzi, V.; Gray, S.R.; Lara, J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Global prevalence of sarcopenia and severe sarcopenia: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 86–99. [Google Scholar] [CrossRef]
- Robinson, S.M.; Reginster, J.Y.; Rizzoli, R.; Shaw, S.C.; Kanis, J.A.; Bautmans, I.; Bischoff-Ferrari, H.; Bruyere, O.; Cesari, M.; Dawson-Hughes, B.; et al. Does nutrition play a role in the prevention and management of sarcopenia? Clin. Nutr. 2018, 37, 1121–1132. [Google Scholar] [CrossRef]
- Calvani, R.; Miccheli, A.; Landi, F.; Bossola, M.; Cesari, M.; Leeuwenburgh, C.; Sieber, C.C.; Bernabei, R.; Marzetti, E. Current nutritional recommendations and novel dietary strategies to manage sarcopenia. J. Frailty Aging 2013, 2, 38–53. [Google Scholar] [CrossRef]
- van Dronkelaar, C.; van Velzen, A.; Abdelrazek, M.; van der Steen, A.; Weijs, P.J.M.; Tieland, M. Minerals and Sarcopenia; The Role of Calcium, Iron, Magnesium, Phosphorus, Potassium, Selenium, Sodium, and Zinc on Muscle Mass, Muscle Strength, and Physical Performance in Older Adults: A Systematic Review. J. Am. Med. Dir. Assoc. 2018, 19, 6–11.e3. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Bunchorntavakul, C.; Reddy, K.R. Review article: Malnutrition/sarcopenia and frailty in patients with cirrhosis. Aliment. Pharmacol. Ther. 2020, 51, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Erkan, M.; Ahmetoglu, A.; Cansu, A.; Erkut, M. Evaluation of Sarcopenia and Investigation of Prognostic Value of Sarcopenia Using Psoas Muscle Area on Computed Tomography in Patients with Liver Cirrhosis. Eur. J. Med. Educ. Technol. 2021, 14, em2111. [Google Scholar] [CrossRef] [PubMed]
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, M. Clinical definition of sarcopenia. Clin. Cases Min. Bone Metab. 2014, 11, 177–180. [Google Scholar] [CrossRef]
- Dasarathy, S.; Merli, M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J. Hepatol. 2016, 65, 1232–1244. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J. Hepatol. 2019, 70, 172–193. [Google Scholar] [CrossRef]
- Lai, J.C.; Tandon, P.; Bernal, W.; Tapper, E.B.; Ekong, U.; Dasarathy, S.; Carey, E.J. Malnutrition, Frailty, and Sarcopenia in Patients with Cirrhosis: 2021 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2021, 74, 1611–1644. [Google Scholar] [CrossRef]
- Bandeen-Roche, K.; Xue, Q.L.; Ferrucci, L.; Walston, J.; Guralnik, J.M.; Chaves, P.; Zeger, S.L.; Fried, L.P. Phenotype of frailty: Characterization in the women’s health and aging studies. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 262–266. [Google Scholar] [CrossRef]
- Topan, M.M.; Sporea, I.; Danila, M.; Popescu, A.; Ghiuchici, A.M.; Lupusoru, R.; Sirli, R. Comparison of Different Nutritional Assessment Tools in Detecting Malnutrition and Sarcopenia among Cirrhotic Patients. Diagnostics 2022, 12, 893. [Google Scholar] [CrossRef]
- Malmstrom, T.K.; Morley, J.E. SARC-F: A simple questionnaire to rapidly diagnose sarcopenia. J. Am. Med. Dir. Assoc. 2013, 14, 531–532. [Google Scholar] [CrossRef]
- Woo, J.; Yu, R.; Wong, M.; Yeung, F.; Wong, M.; Lum, C. Frailty Screening in the Community Using the FRAIL Scale. J. Am. Med. Dir. Assoc. 2015, 16, 412–419. [Google Scholar] [CrossRef]
- Aby, E.S.; Lee, E.; Saggi, S.S.; Viramontes, M.R.; Grotts, J.F.; Agopian, V.G.; Busuttil, R.W.; Saab, S. Pretransplant Sarcopenia in Patients with NASH Cirrhosis Does Not Impact Rehospitalization or Mortality. J. Clin. Gastroenterol. 2019, 53, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, C.; Zhang, L.; Liu, N.; Wang, L.; Wu, J.; Wang, Y.; Hao, H.; Cao, L.; Yuan, S.; et al. Prevalence and associated factors of possible sarcopenia and sarcopenia: Findings from a Chinese community-dwelling old adults cross-sectional study. BMC Geriatr. 2022, 22, 592. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, X.; Xu, M.; Zhang, Z.; He, L.; Li, Y. Sarcopenia prevalence and associated factors among older Chinese population: Findings from the China Health and Retirement Longitudinal Study. PLoS ONE 2021, 16, e0247617. [Google Scholar] [CrossRef] [PubMed]
- Tantai, X.; Liu, Y.; Yeo, Y.H.; Praktiknjo, M.; Mauro, E.; Hamaguchi, Y.; Engelmann, C.; Zhang, P.; Jeong, J.Y.; van Vugt, J.L.A.; et al. Effect of sarcopenia on survival in patients with cirrhosis: A meta-analysis. J. Hepatol. 2022, 76, 588–599. [Google Scholar] [CrossRef]
- Hanai, T.; Hiraoka, A.; Shiraki, M.; Sugimoto, R.; Taniki, N.; Hiramatsu, A.; Nakamoto, N.; Iwasa, M.; Chayama, K.; Shimizu, M. Utility of the SARC-F Questionnaire for Sarcopenia Screening in Patients with Chronic Liver Disease: A Multicenter Cross-Sectional Study in Japan. J. Clin. Med. 2021, 10, 3448. [Google Scholar] [CrossRef]
- Campillo, B.; Richardet, J.P.; Bories, P.N. Validation of body mass index for the diagnosis of malnutrition in patients with liver cirrhosis. Gastroenterol. Clin. Biol. 2006, 30, 1137–1143. [Google Scholar] [CrossRef]
- Tuo, S.; Yeo, Y.H.; Chang, R.; Wen, Z.; Ran, Q.; Yang, L.; Fan, Q.; Kang, J.; Si, J.; Liu, Y.; et al. Prevalence of and associated factors for sarcopenia in patients with liver cirrhosis: A systematic review and meta-analysis. Clin. Nutr. 2024, 43, 84–94. [Google Scholar] [CrossRef]
- Zeng, X.; Shi, Z.W.; Yu, J.J.; Wang, L.F.; Luo, Y.Y.; Jin, S.M.; Zhang, L.Y.; Tan, W.; Shi, P.M.; Yu, H.; et al. Sarcopenia as a prognostic predictor of liver cirrhosis: A multicentre study in China. J. Cachexia Sarcopenia Muscle 2021, 12, 1948–1958. [Google Scholar] [CrossRef]
- Beaudart, C.; McCloskey, E.; Bruyere, O.; Cesari, M.; Rolland, Y.; Rizzoli, R.; Araujo de Carvalho, I.; Amuthavalli Thiyagarajan, J.; Bautmans, I.; Bertiere, M.C.; et al. Sarcopenia in daily practice: Assessment and management. BMC Geriatr. 2016, 16, 170. [Google Scholar] [CrossRef]
- Molwitz, I.; Kemper, M.; Krause, L.; Adam, G.; Izbicki, J.R.; Burdelski, C.; de Heer, G.; Gerdes, L.; Yamamura, J.; Li, J. Importance of computed tomography muscle quality and continuous versus cut-off-based sarcopenia detection in major hepatic surgery. Ann. Transl. Med. 2022, 10, 955. [Google Scholar] [CrossRef]
- De, A.; Kumari, S.; Kaur, A.; Singh, A.; Kalra, N.; Singh, V. Hand-grip strength as a screening tool for sarcopenia in males with decompensated cirrhosis. Indian. J. Gastroenterol. 2022, 41, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, M.; Maggioli, C.; Zaccherini, G. Human albumin in the management of complications of liver cirrhosis. Crit. Care 2012, 16, 211. [Google Scholar] [CrossRef] [PubMed]
- Hasse, J.; Strong, S.; Gorman, M.A.; Liepa, G. Subjective global assessment: Alternative nutrition-assessment technique for liver-transplant candidates. Nutrition 1993, 9, 339–343. [Google Scholar] [PubMed]
- Snyder, C.K.; Lapidus, J.A.; Cawthon, P.M.; Dam, T.T.; Sakai, L.Y.; Marshall, L.M.; Osteoporotic Fractures in Men (MrOS) Research Group. Serum albumin in relation to change in muscle mass, muscle strength, and muscle power in older men. J. Am. Geriatr. Soc. 2012, 60, 1663–1672. [Google Scholar] [CrossRef]
- Cohen, L.A.; Gutierrez, L.; Weiss, A.; Leichtmann-Bardoogo, Y.; Zhang, D.L.; Crooks, D.R.; Sougrat, R.; Morgenstern, A.; Galy, B.; Hentze, M.W.; et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood 2010, 116, 1574–1584. [Google Scholar] [CrossRef]
- Elin, R.J.; Wolff, S.M.; Finch, C.A. Effect of induced fever on serum iron and ferritin concentrations in man. Blood 1977, 49, 147–153. [Google Scholar] [CrossRef]
- Kim, T.H.; Hwang, H.J.; Kim, S.H. Relationship between serum ferritin levels and sarcopenia in Korean females aged 60 years and older using the fourth Korea National Health and Nutrition Examination Survey (KNHANES IV-2, 3), 2008–2009. PLoS ONE 2014, 9, e90105. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, J.; Song, C.; Sun, J.; Liu, W. Association Between Serum Iron Status and Muscle Mass in Adults: Results from NHANES 2015–2018. Front. Nutr. 2022, 9, 941093. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D: Production, Metabolism and Mechanisms of Action; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et al., Eds.; Endotext: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Saeki, C.; Kanai, T.; Nakano, M.; Oikawa, T.; Torisu, Y.; Saruta, M.; Tsubota, A. Low Serum 25-Hydroxyvitamin D Levels Are Related to Frailty and Sarcopenia in Patients with Chronic Liver Disease. Nutrients 2020, 12, 3810. [Google Scholar] [CrossRef]
- Vaes, A.M.M.; Brouwer-Brolsma, E.M.; Toussaint, N.; de Regt, M.; Tieland, M.; van Loon, L.J.C.; de Groot, L. The association between 25-hydroxyvitamin D concentration, physical performance and frailty status in older adults. Eur. J. Nutr. 2019, 58, 1173–1181. [Google Scholar] [CrossRef]
- Girgis, C.M.; Mokbel, N.; Cha, K.M.; Houweling, P.J.; Abboud, M.; Fraser, D.R.; Mason, R.S.; Clifton-Bligh, R.J.; Gunton, J.E. The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. Endocrinology 2014, 155, 3227–3237. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Yim, H.J.; Lee, J.; Lee, B.J.; Kim, D.I.; Jung, S.W.; Han, W.S.; Lee, J.S.; Koo, J.S.; Seo, Y.S.; et al. Comparison of CTP, MELD, and MELD-Na scores for predicting short term mortality in patients with liver cirrhosis. Korean J. Gastroenterol. 2007, 50, 92–100. [Google Scholar] [PubMed]
- Nakamura, A.; Yoshimura, T.; Ichikawa, T. Mildly Low Serum Sodium Levels in Chronic Liver Disease: At Risk for Sarcopenia and Portal Hypertension. Cureus 2023, 15, e44419. [Google Scholar] [CrossRef]
Variable | Median (IQR) | Biochemical Data | Median (IQR) |
---|---|---|---|
Age, years | 66.5 (59–71) | AST (U/L) | 52 (28–70) |
Gender/Male, n (%) | 59 (58.7) | ALT (U/L) | 30 (19–47) |
BMI (kg/m2) (Mean (SD)) | 26.04 ± 5.43 | GGT (U/L) | 46(20–75) |
Weight loss in the last one year (-kg) | 4 (0–5) | ALP | 93 (69–150) |
CTP, Class-A n (%) | 47 (46.7) | Bilirubin (g/dL) | 1.5 (1.0–2.2) |
Class-B n (%) | 28 (28.0) | Creatinine (mg/dL) | 0.95 (0.7–1.1) |
Class-C n (%) | 25(25.3) | Total protein (g/L) | 72 (69–77) |
CTP score | 8 (5–10) | Vitamin D | 25.5 (14.0–37.2) |
MELD | 12 (9–15) | Na (mmol/L) | 133 (125–137) |
MELD-Na | 13 (9–17) | Hemoglobin (g/L)/ Ferritin | 12.7 (12.5–13.7)/33 (24–60) |
Ascites/Varices n (%) | 41.3%/64% | INR for phrothrombrin time | 1.3 (1.1–1.5) |
Encephalopathy n (%) | 32% | Albumin (g/L) | 32 (28–42) |
Parameters | Non-Sarcopenia (SARC-F < 4) n = 68; 68% | Sarcopenia (SARC-F ≥ 4) n = 32; 32% | p-Value |
---|---|---|---|
Age, years | 66.5 (57–70) | 67.5 (60.5–73.8) | 0.323 |
Gender/Male, n (%) | 42 (62.7) | 16 (50) | 0.427 |
BMI (kg/m2) | 27.3 ± 4.6 | 23.2 ± 4.3 | <0.001 |
Weight loss in the last one year (-kg) | 2 (0–4) | 5.5 (1.5–7.8) | 0.004 |
Etiology of cirrhosis n (%) | |||
Cryptogenic cirrhosis | 14 (21) | 7 (20.8) | 0.166 |
NASH | 14 (21) | 7 (20.8) | |
Hepatitis B | 13 (18.6) | 3 (8.3) | |
Alcohol | 13 (18.6) | 1 (4.2) | |
Other factors | 14 (21) | 14 (45.8) | |
Activity level | |||
Bed bounded | 1 (2) | 5 (20.8) | <0.001 |
Physical inability to leave the house | 2 (3.9) | 11 (45.8) | |
Physically able to leave the house | 48 (94.1) | 8 (33.3) | |
CTP score | 6 (5–10) | 8 (6.0–9.8) | 0.029 |
CTP class | |||
A | 37 (54.9) | 9 (29.2) | 0.042 |
B | 13 (19.6) | 15 (45.8) | |
C | 18 (25.5) | 8 (25.0) | |
MELD | 10 (8–14) | 13.5 (11.0–15.8) | 0.069 |
MELD-Na | 10 (9–15) | 18 (11.0–21.8) | 0.002 |
Ascites | |||
No | 37 (54.9) | 21 (66.7) | 0.475 |
Yes | 31 (45.1) | 11 (33.3) | |
Encephalopathy | |||
No | 49 (72.5) | 19 (58.3) | 0.413 |
Under control | 15 (21.6) | 9 (29.2) | |
Uncontrolled | 4 (5.9) | 4 (12.5) | |
Varices | |||
No | 22 (32) | 13 (41.6) | 0.193 |
Yes, without bleeding | 33 (48) | 17 (54.2) | |
Yes, with bleeding | 13 (20) | 2 (4.2) |
Parameters | Non-Sarcopenia (SARC-F < 4) n = 68; 68% | Sarcopenia (SARC-F ≥ 4) n = 32; 32% | p-Value |
---|---|---|---|
Handgrip strength (kg) | |||
Right hand | 34 (30–44) | 25.5 (23.5–29.8) | <0.001 |
Left hand | 35 (17–73) | 25 (24–30) | 0.001 |
SARC-F | 1 (0–2) | 6 (4–7) | <0.001 |
Strength (How much is the difficulty in lifting 5 kg?) | |||
No difficulty | 51 (74.5) | 2 (8.0) | <0.001 |
Some difficulty | 16 (23.5) | 15 (46.0) | |
A lot of difficulty | 1 (2) | 15 (46.0) | |
Assistance (How much difficulty do you have walking across a room?) | |||
No difficulty | 55 (80.4) | 7 (21.0) | <0.001 |
Some difficulty | 13 (19.6) | 18 (58.0) | |
A lot of difficulty, use aids, or unable to do without personal help | 0 (0) | 7 (21.0) | |
Rise (How much is the difficulty in transferring from a chair or bed, and is the use of aid or help needed?) | |||
No difficulty | 61 (90.2) | 9 (29.2) | <0.001 |
Some difficulty | 7 (9.8) | 20 (62.5) | |
A lot of difficulty, use aids, or unable to do without personal help | 0 (0) | 3 (8.3) | |
Climb (How much is the difficulty of climbing a flight of 10 steps?) | |||
No difficulty | 55 (80.4) | 1 (4.2) | <0.001 |
Some difficulty | 12 (17.6) | 23 (70.8) | |
A lot of difficulty | 1 (2.0) | 8 (25.0) | |
Falls (How many falls have been experienced in the past year?) | |||
No falls | 53 (78.4) | 3(8.3) | <0.001 |
1–3 times falls | 15 (21.6) | 13 (41.7) | |
>3 times | 0 (0) | 16 (50.0) | |
FRAIL Scale | |||
Non-frail | 8 (11.8) | 1 (4.0) | 0.272 |
Pre-frailty | 43 (62.7) | 17 (54.0) | |
Frailty | 17 (25.5) | 14 (42.0) |
Biochemical Data | Non-Sarcopenia (SARC-F < 4) n = 68; 68% | Sarcopenia (SARC-F ≥ 4) n = 32; 32% | p-Value |
---|---|---|---|
Albumin (g/L) | 38 (29–44) | 30 (27–38) | 0.004 |
Bilirubin (g/dL) | 1.1 (1.0–1.8) | 1.9 (1.4–2.4) | 0.01 |
Creatinine (mg/dL) | 0.8 (0.7–1.1) | 0.9 (0.5–1.2) | 0.168 |
Total protein (g/L) | 74 (69–77) | 70.5 (67–74.8) | 0.277 |
AST (U/L) | 46 (27–58) | 67 (48.5–80.8) | 0.029 |
ALT (U/L) | 27 (17–41) | 47.5 (24.5–70.0) | 0.025 |
GGT (U/L) | 43 (22–80) | 37 (15–60) | 0.540 |
ALP (U/L) | 91 (73–127) | 89 (64.8–203.8) | 0.995 |
INR | 1.3 (1.1–1.4) | 1.5 (1.1–1.7) | 0.383 |
Vitamin D | 32 (19–44) | 16 (8–27) | 0.008 |
Na (mmol/L) | 136 (131–137) | 132 (125–137) | <0.001 |
Hemoglobin (g/L) | 12.1 (105–135) | 10 (90.8–129.5) | 0.075 |
Ferritin | 35 (23–56) | 49 (33.3–66.5) | 0.032 |
Parameters | Correlation Coefficient (rs) | p-Value |
---|---|---|
Age (years) | 0.25 | 0.032 |
BMI (kg/m2) | −0.43 | <0.002 |
CTP Score | 0.271 | 0.019 |
Meld Score | 0.190 | 0.098 |
Meld-Na Score | 0.384 | 0.001 |
FRAIL Score | 0.206 | 0.072 |
Handgrip strength (right) | −0.492 | <0.001 |
Handgrip strength (left) | −0.403 | <0.001 |
Albumin (g/L) | −0.344 | 0.003 |
Bilirubin (g/dL) | 0.336 | 0.002 |
Creatinine (mg/dL) | −0.178 | 0.140 |
Total protein (g/L) | −0.114 | 0.331 |
AST (U/L) | 0.249 | 0.024 |
ALT (U/L) | 0.263 | 0.024 |
GGT (U/L) | 0.018 | 0.885 |
ALP (U/L) | 0.021 | 0.867 |
INR for phrothrombrin time | 0.071 | 0.551 |
Vitamin D | −0.400 | 0.002 |
Na (mmol/L) | −0.437 | <0.001 |
Hemoglobin (g/L) | −0.212 | 0.079 |
Ferritin | 0.287 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atay, K.; Aydin, S.; Canbakan, B. Sarcopenia and Frailty in Cirrhotic Patients: Evaluation of Prevalence and Risk Factors in a Single-Centre Cohort Study. Medicina 2025, 61, 821. https://doi.org/10.3390/medicina61050821
Atay K, Aydin S, Canbakan B. Sarcopenia and Frailty in Cirrhotic Patients: Evaluation of Prevalence and Risk Factors in a Single-Centre Cohort Study. Medicina. 2025; 61(5):821. https://doi.org/10.3390/medicina61050821
Chicago/Turabian StyleAtay, Kadri, Seval Aydin, and Billur Canbakan. 2025. "Sarcopenia and Frailty in Cirrhotic Patients: Evaluation of Prevalence and Risk Factors in a Single-Centre Cohort Study" Medicina 61, no. 5: 821. https://doi.org/10.3390/medicina61050821
APA StyleAtay, K., Aydin, S., & Canbakan, B. (2025). Sarcopenia and Frailty in Cirrhotic Patients: Evaluation of Prevalence and Risk Factors in a Single-Centre Cohort Study. Medicina, 61(5), 821. https://doi.org/10.3390/medicina61050821