Motor Imagery Training Improves Interoception and Satisfaction with Performance
Abstract
1. Introduction
1.1. Motor Imagery
1.2. Interoception
1.3. Aim of the Study
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Physical Activity
3. Results
3.1. Group Differences at T0
3.2. Group E Differences Between T1 and T0 21.96+
4. Discussion
4.1. Differences Between T1 and T0 in Group E
4.2. Limitations and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mirkowski, K.; Vellone, E.; Żółkowska, B.; Jędrzejczyk, M.; Czapla, M.; Uchmanowicz, I.; Uchmanowicz, B. Frailty and Heart Failure: Clinical Insights, Patient Outcomes and Future Directions. Card. Fail. Rev. 2025, 11, e05. [Google Scholar] [CrossRef]
- Zhou, X.; Li, S.; Wang, L.; Wang, J.; Zhang, P.; Chen, X. The emerging role of exercise preconditioning in preventing skeletal muscle atrophy. Front. Physiol. 2025, 16, 1559594. [Google Scholar] [CrossRef]
- Lim, J.H.; Kim, B.G.; Choi, A.Y. Characteristics of exercise and rehabilitation intervention clinical trials registered with Clinical Research Information Service: A review. J. Exerc. Rehabil. 2025, 21, 3–9. [Google Scholar] [CrossRef]
- Palm, D.; Swarowsky, A.; Kelly, M.; Grugel, S.; Stiers, C.; Wolden, M. Effect of group exercise on quality of life for Parkinson disease: Systematic review and meta-analysis. Disabil. Rehabil. 2025, 1–13. [Google Scholar] [CrossRef]
- VanNostrand, M.; Henning, D.A.; Quinn, L.; Cabalang, A.; Fritz, N.E. Exploring Perceptions of Physical Activity in Individuals Newly Diagnosed with Multiple Sclerosis. J. Clin. Med. 2025, 14, 1199. [Google Scholar] [CrossRef]
- Jiang, Y.; Jin, Z.; Wang, H.; He, X.; Fu, R.; Yu, X.; Fu, Q.; Tian, J.; Li, W.; Zhu, X.; et al. A dose-response meta-analysis of physical activity and the risk of Alzheimer’s disease in prospective studies. J. Neurol. 2025, 272, 256. [Google Scholar] [CrossRef]
- Govindasamy, K.; Elayaraja, M.; Ben Abderrahman, A.; Parpa, K.; Katanic, B.; Granacher, U. The Effect of Leisure-Time Exercise on Mental Health Among Adults: A Bibliometric Analysis of Randomized Controlled Trials. Healthcare 2025, 13, 575. [Google Scholar] [CrossRef]
- Rivera, R.A.; Robertson, M.C.; McCleery, J.P. Exercise Interventions for Autistic People: An Integrative Review of Evidence from Clinical Trials. Curr. Psychiatry Rep. 2025. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, G.; Zhang, S.; Zhou, Y.; Lv, Y.; Feng, L.; Yu, L. Effects of Exercise on Depression and Anxiety in Breast Cancer Survivors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cancer Med. 2025, 14, e70671. [Google Scholar] [CrossRef]
- López de Subijana, C.; Pons, J.; Mallett, C.J. How is coaches’ social identity leadership related to mental health in elite athletes? The mediating role of satisfaction with performance. J. Sports Sci. 2024, 42, 2183–2190. [Google Scholar] [CrossRef]
- Willson, E.; Buono, S.; Kerr, G.; Stirling, A. The relationship between psychological abuse, athlete satisfaction, eating disorder and self-harm indicators in elite athletes. Front. Sports Act. Living 2025, 6, 1406775. [Google Scholar] [CrossRef]
- Tamminen, K.A.; Bonk, D.; Milne, M.J.; Watson, J.C. Emotion dysregulation, performance concerns, and mental health among Canadian athletes. Sci. Rep. 2025, 15, 2962. [Google Scholar] [CrossRef]
- Deng, N.; Soh, K.G.; Abdullah, B.B.; Huang, D. Does Motor Imagery Training Improve Service Performance in Tennis Players? A Systematic Review and Meta-Analysis. Behav. Sci. 2024, 14, 207. [Google Scholar] [CrossRef] [PubMed]
- McNeil, D.G.; Lindsay, R.S.; Worn, R.; Spittle, M.; Gabbett, T.J. Could Motor Imagery Training Provide a Novel Load Management Solution for Athletes? Recommendations for Sport Medicine and Performance Practitioners. Sports Health 2025, 17, 156–163. [Google Scholar] [CrossRef]
- Schneider, J.E.; Blodgett, M.; Lang, S.; Merritt, C.; Santen, S.A. Mental Practice: Applying Successful Strategies in Sports to the Practice of Emergency Medicine. Ann. Emerg. Med. 2024, 84, 159–166. [Google Scholar] [CrossRef]
- Jeannerod, M.; Decety, J. Mental motor imagery: A window into the representational stages of action. Curr. Opin. Neurobiol. 1995, 5, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Decety, J. Do imagined and executed actions share the same neural substrate? Cogn. Brain Res. 1996, 3, 87–93. [Google Scholar] [CrossRef]
- Collet, C.; Guillot, A.; Lebon, F.; MacIntyre, T.; Moran, A. Measuring Motor Imagery Using Psychometric, Behavioral, and Psychophysiological Tools. Exerc. Sport Sci. Rev. 2011, 39, 85–92. [Google Scholar] [CrossRef]
- Collet, C.; Guillot, A. (Eds.) Autonomic Nervous System Activities during Imagined Movements. In The Neurophysiological Foundations of Mental and Motor Imagery; Oxford University Press: Oxford, UK, 2010; pp. 95–108. [Google Scholar]
- Michel, M.; Terragno, E.; Bereau, M.; Magnin, E.; Gueugneau, N.; Soares, A.V.; Sagawa, Y. Exploring motor imagery as a therapeutic intervention for Parkinson’s disease patients: A scoping review. Front. Neurol. 2024, 15, 1422672. [Google Scholar] [CrossRef]
- Shen, S.; Chu, T.; Wang, J.; Zhao, H.; Tang, J.; Xu, L.; Ni, W.; Tan, L.; Chen, Y. Progress in the application of motor imagery therapy in upper limb motor function rehabilitation of stroke patients with hemiplegia. Front. Neurol. 2025, 16, 1454499. [Google Scholar] [CrossRef]
- Abreu, A.M.; Candidi, M.; Aglioti, S.M. Catching on it early: Bodily and brain anticipatory mechanisms for excellence in sport. Prog. BrainRes. 2017, 234, 53–67. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, C.-H.; Sun, L.; Zhang, T.-R.; Luo, J. The impact of physical activity on inhibitory control of adult ADHD: A systematic review and meta-analysis. J. Glob. Health 2025, 15, 04025. [Google Scholar] [CrossRef] [PubMed]
- Malloggi, E.; Zelič, Ž.; Santarcangelo, E.L. The Role of Interoceptive Sensitivity and Hypnotizability in Motor Imagery. Brain Sci. 2024, 14, 832. [Google Scholar] [CrossRef]
- Craig, A.D. How do you feel? Interoception: The sense of the physiological condition of the body. Nat. Rev. Neurosci. 2002, 3, 655–666. [Google Scholar] [CrossRef]
- Jeganathan, J.; Campbell, M.E.J.; Legrand, N.; Allen, M.; Breakspear, M. Aberrant Cardiac Interoception in Psychosis. Schizophr. Bull. 2024, 51, 208–216. [Google Scholar] [CrossRef]
- Khalsa, S.S.; Adolphs, R.; Cameron, O.G.; Critchley, H.D.; Davenport, P.W.; Feinstein, J.S.; Feusner, J.D.; Garfinkel, S.N.; Lane, R.D.; Mehling, W.E.; et al. Interoception and Mental Health: A Roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 501–513. [Google Scholar] [CrossRef]
- Mulder, J.; Boelens, M.; van der Velde, L.A.; Brust, M.; Kiefte-de-Jong, J.C. The role of interoception in lifestyle factors: A systematic review. Neurosci. Biobehav. Rev. 2025, 169, 106018. [Google Scholar] [CrossRef]
- Garfinkel, S.N.; Seth, A.K.; Barrett, A.B.; Suzuki, K.; Critchley, H.D. Knowing your own heart: Distinguishing interoceptive accuracy from interoceptive awareness. Biol. Psychol. 2015, 104, 65–74. [Google Scholar] [CrossRef]
- Murphy, J.; Catmur, C.; Bird, G. Classifying individual differences in interoception: Implications for the measurement of interoceptive awareness. Psychon. Bull. Rev. 2019, 26, 1467–1471. [Google Scholar] [CrossRef]
- Schandry, R.; Sparrer, B.; Weitkunat, R. From the heart to the brain: A study of heartbeat contingent scalp potentials. Int. J. Neurosci. 1986, 30, 261–275. [Google Scholar] [CrossRef]
- Reed, S.D.; Harver, A.; Katkin, E.S. Interoception. In Principles of Psychophysiology: Physical, Social, and Inferential Elements; Cacioppo, J.T., Tassinary, L.G., Eds.; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Park, H.D.; Blanke, O. Heartbeat-evoked cortical responses: Underlying mechanisms, functional roles, and methodological considerations. Neuroimage 2019, 197, 502–511. [Google Scholar] [CrossRef]
- Mehling, W.E.; Acree, M.; Stewart, A.; Silas, J.; Jones, A. The Multidimensional Assessment of Interoceptive Awareness, Version 2 (MAIA-2). PLoS ONE 2018, 13, e0208034. [Google Scholar] [CrossRef]
- Porges, S. Body Perception Questionnaire; Laboratory of Development Assessment, University of Maryland: College Park, MD, USA, 1993. [Google Scholar]
- Zhang, R.; Deng, H.; Xiao, X. The Insular Cortex: An Interface Between Sensation, Emotion and Cognition. Neurosci. Bull. 2024, 40, 1763–1773. [Google Scholar] [CrossRef]
- Manetti, R.; Manzoni, D.; Orsini, P.; Sebastiani, L.; Santarcangelo, E.L. Postural effects of interoceptive imagery as a function of hypnotizability. Physiol. Behav. 2021, 229, 113222. [Google Scholar] [CrossRef]
- Raimo, S.; Di Vita, A.; Boccia, M.; Iona, T.; Cropano, M.; Gaita, M.; Guariglia, C.; Grossi, D.; Palermo, L. The Body across the Lifespan: On the Relation between Interoceptive Sensibility and High-Order Body Representations. Brain Sci. 2021, 11, 493. [Google Scholar] [CrossRef]
- Paolucci, T.; de Sire, A.; Agostini, F.; Bernetti, A.; Salomè, A.; Altieri, M.; Di Piero, V.; Ammendolia, A.; Mangone, M.; Paoloni, M. Efficacy of interoceptive and embodied rehabilitative training protocol in patients with mild multiple sclerosis: A randomized controlled trial. Front. Neurol. 2022, 13, 1095180. [Google Scholar] [CrossRef]
- Wallman-Jones, A.; Palser, E.R.; Benzing, V.; Schmidt, M. Acute physical-activity related increases in interoceptive ability are not enhanced with simultaneous interoceptive attention. Sci. Rep. 2022, 12, 15054. [Google Scholar] [CrossRef]
- Balconi, M.; Allegretta, R.A.; Angioletti, L. Autonomic synchrony induced by hyperscanning interoception during interpersonal synchronization tasks. Front. Hum. Neurosci. 2023, 17, 1200750. [Google Scholar] [CrossRef] [PubMed]
- Balconi, M.; Angioletti, L. Electrophysiology of interoception: Parietal posterior area supports social synchronization. Soc. Neurosci. 2018, 18, 16–27. [Google Scholar] [CrossRef]
- Bečev, O.; Kozáková, E.; Sakálošová, L.; Mareček, R.; Majchrowicz, B.; Roman, R.; Brázdil, M. Actions of a shaken heart: Interoception interacts with action processing. Biol. Psychol. 2022, 169, 108288. [Google Scholar] [CrossRef] [PubMed]
- Heck, G.H.; Varga, S. “The great mixing machine”: Multisensory integration and brain-breath coupling in the cerebral cortex. Pflugers Arch. Eur. J. Physiol. 2022, 475, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.; Brewer, R.; Plans, D.; Khalsa, S.S.; Catmur, C.; Bird, G. Testing the independence of self-reported interoceptive accuracy and attention. Q. J. Exp. Psychol. 2020, 73, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Almarcha, M.; González, I.; Balagué, N.; Javierre, C. Prescribing or co-designing exercise in healthy adults? Effects on mental health and interoceptive awareness. Front. Behav. Neurosci. 2022, 16, 944193. [Google Scholar] [CrossRef]
- Nakamura, N.H.; Oku, Y.; Fukunaga, M. “Brain–breath” interactions: Respiration-timing–dependent impact on functional brain networks and beyond. Prog. Neurobiol. 2023, 35, 165–182. [Google Scholar] [CrossRef]
- Rivest-Gadbois, E.; Boudrias, M.-H. What are the known effects of yoga on the brain in relation to motor performances, body awareness and pain? A narrative review. Complement. Ther. Med. 2019, 44, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Tellegen, A.; Atkinson, G. Openness to absorbing and self-altering experiences (“absorption”), a trait related to hypnotic susceptibility. J. Abnorm. Psychol. 1974, 83, 268–277. [Google Scholar] [CrossRef]
- Zheng, R.; Shen, H.; He, Y.; Ge, L.-K.; Zhao, D.; Zhu, S.; Cai, L.; Wang, Y.; Mehling, W.E.; Wei, G.-X. Exploring Individual Differences in Interoception Among Athletes Based on a Three-Dimensional Construct of Interoception. Psychophysiology 2025, 62, e14766. [Google Scholar] [CrossRef]
- Weineck, F.; Schultchen, D.; Hauke, G.; Messner, M.; Pollatos, O. Using bodily postures to reduce anxiety and improve interoception: A comparison between powerful and neutral poses. PLoS ONE 2020, 15, e0242578. [Google Scholar] [CrossRef]
- Critchley, H.D.; Garfinkel, S.N. Interactions between visceral afferent signaling and stimulus processing. Front. Neurosci. 2015, 9, 286. [Google Scholar] [CrossRef]
- Rosati, A.; Belcari, I.; Santarcangelo, E.L.; Sebastiani, L. Interoceptive Accuracy as a Function of Hypnotizability. Int. J. Clin. Exp. Hypn. 2021, 69, 441–452. [Google Scholar] [CrossRef]
- Yoris, A.E.; Cira, L.F.; Luque-Casado, A.; Salvotti, C.; Tajadura-Jiménez, A.; Avancini, C.; Zarza-Rebollo, J.A.; Sanabria, D.; Perakakis, P. Delving into the relationship between regular physical exercise and cardiac interoception in two cross-sectional studies. Neuropsychologia 2024, 198, 108867. [Google Scholar] [CrossRef] [PubMed]
- Rogowska, A.M.; Tataruch, R. The relationship between mindfulness and athletes’ mental skills may be explained by emotion regulation and self-regulation. BMC Sports Sci. Med. Rehabil. 2024, 16, 68. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.D.; Harrison, N.A. Visceral influences on brain and behavior. Neuron 2013, 77, 624–638. [Google Scholar] [CrossRef] [PubMed]
Group C | Group E | ||||||
---|---|---|---|---|---|---|---|
Questionnaire | Scale | T0 | T0 | T1 | |||
MAIA | mean | SD | mean | SD | mean | SD | |
Noticing | 3.18 | 0.93 | 3. 57 | 0.82 | 4.31 | 0.56 | |
Not distracting | 2.10 | 0.70 | 2.38 | 0.85 | 2.42 | 0.65 | |
Not worrying | 2.46 | 1.16 | 2.43 | 0.93 | 2.38 | 0.93 | |
Attention regulation * | 2.61 | 0.58 | 3.23 | 0.77 | 3.94 | 0.62 | |
Emotional awareness * | 2.56 | 1.22 | 3.87 | 0.74 | 4.25 | 0.82 | |
Self-regulation * | 2.57 | 1.22 | 3.42 | 0.74 | 3.79 | 0.78 | |
Body listening * | 2.38 | 1.04 | 3.01 | 1.01 | 3.62 | 0.93 | |
Trusting * | 2.82 | 1.27 | 3.52 | 1.07 | 3.99 | 0.81 | |
BPQ | BOA | 15.00 | 2.87 | 15.93 | 3.23 | 18.30 | 2.2 |
SUP | 10.81 | 2.92 | 10.67 | 2.42 | 9.48 | 1.97 | |
BOASUP | 12.00 | 2.75 | 11.78 | 2.5 | 11.85 | 1.63 | |
IAS * | 3.87 | 0.70 | 4.48 | 0.55 | 6.59 | 0.38 | |
Performance | satisfaction * | 6.59 | 0.95 | 7.44 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Tella, C.; Santarcangelo, E.L. Motor Imagery Training Improves Interoception and Satisfaction with Performance. Medicina 2025, 61, 734. https://doi.org/10.3390/medicina61040734
Di Tella C, Santarcangelo EL. Motor Imagery Training Improves Interoception and Satisfaction with Performance. Medicina. 2025; 61(4):734. https://doi.org/10.3390/medicina61040734
Chicago/Turabian StyleDi Tella, Chiara, and Enrica L. Santarcangelo. 2025. "Motor Imagery Training Improves Interoception and Satisfaction with Performance" Medicina 61, no. 4: 734. https://doi.org/10.3390/medicina61040734
APA StyleDi Tella, C., & Santarcangelo, E. L. (2025). Motor Imagery Training Improves Interoception and Satisfaction with Performance. Medicina, 61(4), 734. https://doi.org/10.3390/medicina61040734