Assessment of Quality of Life in Lithuanian Patients with Multimorbidity Using the EQ-5D-5L Questionnaire
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Sociodemographic Data
3.2. EQ-5D-5L Data Overview
3.3. EQ-5D-5L: Sociodemographic Correlations
3.4. EQ-5D-5L: Chronic Disease Correlations
3.5. Reliability and Validity Analysis
4. Discussion
4.1. Questionnaire Validity and Reliability Analysis
4.2. Quality of Life in Sociodemographic and Chronic Disease Data Groups
4.3. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salisbury, C.; Johnson, L.; Purdy, S.; Valderas, J.M.; Montgomery, A.A. Epidemiology and impact of multimorbidity in primary care: A retrospective cohort study. Br. J. Gen. Pract. 2011, 61, e12–e21. [Google Scholar] [CrossRef] [PubMed]
- Navickas, R.; Visockienė, Ž.; Puronaitė, R.; Rukšėnienė, M.; Kasiulevičius, V.; Jurevičienė, E. Prevalence and structure of multiple chronic conditions in Lithuanian population and the distribution of the associated healthcare resources. Eur. J. Intern. Med. 2015, 26, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Jurevičienė, E.; Onder, G.; Visockienė, Ž.; Puronaitė, R.; Petrikonytė, D.; Gargalskaitė, U.; Kasiulevičius, V.; Navickas, R. Does multimorbidity still remain a matter of the elderly: Lithuanian national data analysis. Health Policy 2018, 122, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Soley-Bori, M.; Ashworth, M.; Bisquera, A.; Dodhia, H.; Lynch, R.; Wang, Y.; Fox-Rushby, J. Impact of multimorbidity on healthcare costs and utilisation: A systematic review of the UK literature. Br. J. Gen. Pract. 2020, 71, e39–e46. [Google Scholar] [CrossRef]
- Vaitkaitiene, E.; Makari, J.; Zaborskis, A. Conception of quality of life and health-related quality-of-life investigations in children population. Medicina 2007, 43, 746. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.B.; Kazibwe, J.; Nikolaidis, G.F.; Linnosmaa, I.; Rijken, M.; van Olmen, J. Costs of multimorbidity: A systematic review and meta-analyses. BMC Med. 2022, 20, 234. [Google Scholar] [CrossRef]
- Makovski, T.T.; Schmitz, S.; Zeegers, M.P.; Stranges, S.; van den Akker, M. Multimorbidity and quality of life: Systematic literature review and meta-analysis. Ageing Res. Rev. 2019, 53, 100903. [Google Scholar] [CrossRef]
- Fortin, M.; Lapointe, L.; Hudon, C.; Vanasse, A.; Ntetu, A.L.; Maltais, D. Multimorbidity and quality of life in primary care: A systematic review. Health Qual. Life Outcomes 2004, 2, 51. [Google Scholar] [CrossRef]
- Lee, J.E.; Lee, J.; Shin, R.; Oh, O.; Lee, K.S. Treatment burden in multimorbidity: An integrative review. BMC Prim. Care 2024, 25, 352. [Google Scholar] [CrossRef] [PubMed]
- Hajek, A.; Kretzler, B.; König, H.-H. Multimorbidity, Loneliness, and Social Isolation. A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 8688. [Google Scholar] [CrossRef] [PubMed]
- Duncan, P.; Murphy, M.; Man, M.-S.; Chaplin, K.; Gaunt, D.; Salisbury, C. Development and validation of the Multimorbidity Treatment Burden Questionnaire (MTBQ). BMJ Open 2020, 8, e019413. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, C.; Coulter, A.; Wright, L. Short form 36 (SF36) health survey questionnaire: Normative data for adults of working age. BMJ 1993, 306, 1437–1440. [Google Scholar] [CrossRef] [PubMed]
- Lins, L.; Carvalho, F.M. SF-36 total score as a single measure of health-related quality of life: Scoping review. SAGE Open Med. 2016, 4, 2050312116671725. [Google Scholar] [CrossRef] [PubMed]
- Herdman, M.; Gudex, C.; Lloyd, A.; Janssen, M.; Kind, P.; Parkin, D.; Bonsel, G.; Badia, X. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual. Life Res. 2011, 20, 1727–1736. [Google Scholar] [CrossRef] [PubMed]
- Devlin, N.; Pickard, S.; Busschbach, J. The Development of the EQ-5D-5L and its Value Sets. In Value Sets for EQ-5D-5L: A Compendium, Comparative Review & User Guide; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Derkach, M.; Al Sayah, F.; Ohinmaa, A.; Svenson, L.W.; Johnson, J.A. Comparative performance of the EuroQol EQ-5D-5L and the CDC healthy days measures in assessing population health. J. Patient-Rep. Outcomes 2022, 6, 64. [Google Scholar] [CrossRef]
- Feng, Y.; Devlin, N.; Herdman, M. Assessing the health of the general population in England: How do the three- and five-level versions of EQ-5D compare? Health Qual. Life Outcomes 2015, 13, 171. [Google Scholar] [CrossRef]
- Golicki, D.; Jakubczyk, M.; Graczyk, K.; Niewada, M. Valuation of EQ-5D-5L Health States in Poland: The First EQ-VT-Based Study in Central and Eastern Europe. PharmacoEconomics 2019, 37, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- Tavakol, M.; Dennick, R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53–55. [Google Scholar] [CrossRef]
- Piedmont, R.L. Inter-item Correlations. In Encyclopedia of Quality of Life and Well-Being Research; Springer: Dordrecht, The Netherlands, 2014; pp. 3303–3304. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Saraiva, P. On Shannon entropy and its applications. Kuwait J. Sci. 2023, 50, 194–199. [Google Scholar] [CrossRef]
- Młyńczak, K.; Golicki, D. Validity of the EQ-5D-5L questionnaire among the general population of Poland. Qual. Life Res. 2021, 30, 817–829. [Google Scholar] [CrossRef]
- Ferreira, P.L.; Pereira, L.N.; Antunes, P.; Ferreira, L.N. EQ-5D-5L Portuguese population norms. Eur. J. Health Econ. 2023, 24, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, G.; Garin, O.; Pardo, Y.; Vilagut, G.; Pont, À.; Suárez, M.; Neira, M.; Rajmil, L.; Gorostiza, I.; Ramallo-Fariña, Y.; et al. Validity of the EQ-5D-5L and reference norms for the Spanish population. Qual. Life Res. 2018, 27, 2337–2348. [Google Scholar] [CrossRef]
- Agborsangaya, C.B.; Lahtinen, M.; Cooke, T.; Johnson, J.A. Comparing the EQ-5D 3L and 5L: Measurement properties and association with chronic conditions and multimorbidity in the general population. Health Qual. Life Outcomes 2014, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ford, E.S.; Mokdad, A.H.; Balluz, L.S.; Brown, D.W.; Giles, W.H. Clustering of Cardiovascular Disease Risk Factors and Health-Related Quality of Life among US Adults. Value Health 2008, 11, 689–699. [Google Scholar] [CrossRef]
- Ko, H.-Y.; Lee, J.-K.; Shin, J.-Y.; Jo, E. Health-Related Quality of Life and Cardiovascular Disease Risk in Korean Adults. Korean J. Fam. Med. 2015, 36, 349–356. [Google Scholar] [CrossRef] [PubMed]
- de Visser, C.L.; Bilo, H.J.G.; Groenier, K.H.; de Visser, W.; Meyboom-de Jong, B. The influence of cardiovascular disease on quality of life in type 2 diabetics. Qual. Life Res. 2002, 11, 249–261. [Google Scholar] [CrossRef]
- Kontoangelos, K.; Soulis, D.; Soulaidopoulos, S.; Antoniou, C.K.; Tsiori, S.; Martinaki, S.; Mourikis, I.; Tsioufis, K.; Papageorgiou, C.; Katsi, V. Health Related Quality of Life and Cardiovascular Risk Factors. Behav. Med. 2024, 50, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Mallamaci, F.; Pisano, A.; Tripepi, G. Physical activity in chronic kidney disease and the EXerCise Introduction To Enhance trial. Nephrol. Dial. Transplant. 2020, 35, ii18–ii22. [Google Scholar] [CrossRef]
- Aldossari, K.K.; Shubair, M.M.; Al-Zahrani, J.; Alduraywish, A.A.; AlAhmary, K.; Bahkali, S.; Aloudah, S.M.; Almustanyir, S.; Al-Rizqi, L.; El-Zahaby, S.A.; et al. Association between Chronic Pain and Diabetes/Prediabetes: A Population-Based Cross-Sectional Survey in Saudi Arabia. Pain Res. Manag. 2020, 2020, 8239474. [Google Scholar] [CrossRef] [PubMed]
- Iezzoni, L.I.; McCarthy, E.P.; Davis, R.B.; Siebens, H. Mobility difficulties are not only a problem of old age. J. Gen. Intern. Med. 2001, 16, 235–243. [Google Scholar] [CrossRef]
- Garratt, A.M.; Hansen, T.M.; Augestad, L.A.; Rand, K.; Stavem, K. Norwegian population norms for the EQ-5D-5L: Results from a general population survey. Qual. Life Res. 2022, 31, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Bartley, E.J.; Fillingim, R.B. Sex differences in pain: A brief review of clinical and experimental findings. Br. J. Anaesth. 2013, 111, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Tinetti, M.E.; Naik, A.D.; Dindo, L.; Costello, D.M.; Esterson, J.; Geda, M.; Rosen, J.; Hernandez-Bigos, K.; Smith, C.D.; Ouellet, G.M.; et al. Association of Patient Priorities-Aligned Decision-Making With Patient Outcomes and Ambulatory Health Care Burden Among Older Adults With Multiple Chronic Conditions: A Nonrandomized Clinical Trial. JAMA Intern. Med. 2019, 179, 1688–1697. [Google Scholar] [CrossRef] [PubMed]
N = 498 | % | |
---|---|---|
Mean age (SD), years | 65.1(9.4) | |
Age years (missing data: n = 10, 2.0%) | ||
<60 | 142 | 29.1 |
60–64 | 107 | 21.9 |
65–70 | 92 | 18.9 |
70+ | 147 | 30.1 |
Sex (missing data: n = 0; 0%) | ||
Male | 200 | 40.2 |
Female | 298 | 59.8 |
Educational level (missing data: n = 5, 1.0%) | ||
Early education (0–10 years) | 107 | 21.7 |
High school (11–12 years) | 43 | 8.7 |
Some tertiary education (13–14 years) | 183 | 37.1 |
University (14+ years) | 157 | 31.8 |
Other | 3 | 0.6 |
Employment status (missing data: n = 3, 0.6%) | ||
Employed | 173 | 34.9 |
Unemployed | 49 | 9.9 |
Employed retire | 38 | 7.7 |
Retired | 221 | 44.6 |
Other | 14 | 2.8 |
Number of self-reported long-term conditions (IQR) | 3.0 | 3.0–5.0 |
2 | 48 | 9.6 |
3 | 202 | 40.6 |
4 | 121 | 24.3 |
5+ | 127 | 25.5 |
Self-reported long-term conditions | ||
Hypertension | 498 | 100.0 |
Cardiovascular Disease | 208 | 41.5 |
Chronic Ischemic Heart Disease | 54 | 10.8 |
Heart Failure | 168 | 33.7 |
Atrial Fibrillation | 84 | 16.9 |
Diabetes | 176 | 35.3 |
Thyroid Gland Diseases | 57 | 11.4 |
Hypothyroidism | 12 | 2.4 |
COPD | 20 | 4.0 |
Asthma | 54 | 10.8 |
Joint Disease | 19 | 3.8 |
Osteoporosis | 16 | 3.2 |
Chronic kidney disease | 31 | 6.2 |
Average health measure scores | ||
SF-36 question item 1 score (SD) a | 2.32 (0.70) | |
EQ VAS scale score (SD) b | 62.87 (16.6) |
Mobility, (%) | Self-Care, (%) | Usual Activities, (%) | Pain/Discomfort, (%) | Anxiety/Depression, (%) | |
---|---|---|---|---|---|
1 (no problems) | 243 (48.8) | 407 (81.7) | 326 (65.5) | 126 (25.3) | 287 (57.6) |
2 (slight problems) | 129 (25.9) | 64 (12.9) | 95 (19.1) | 183 (36.7) | 136 (27.3) |
3 (moderate problems) | 100 (20.1) | 24 (4.8) | 66 (13.3) | 151 (30.3) | 60 (12.0) |
4 (severe problems) | 26 (5.2) | 2 (0.4) | 9 (1.8) | 38 (7.6) | 13 (2.6) |
5 (extreme problems/unable to carry out) | 0 (0) | 1 (0.2) | 2 (0.4) | 0 (0) | 2 (0.4) |
p-Values a | p-Values in Different EQ-5D-5L Groups b | ||||||||
---|---|---|---|---|---|---|---|---|---|
N | 11111 State *, % | Other States *, % | EQ-5D-5L | Mobility | Self-Care | Usual Activities | Pain/Discomfort | Anxiety/Depression | |
Age groups | |||||||||
<60 | 142 | 25.4 | 74.6 | p = 0.001, χ2 (1) = 16.126 | p = 0.026, χ2 (1) = 18.946 | p = 0.0454, χ2 (1) = 11.898 | p = 0.182, χ2 (1) = 16.198 | p = 0.233, χ2 (1) = 11.664 | p = 0.007, χ2 (1) = 27.273 |
60–64 | 107 | 15.9 | 84.1 | ||||||
65–70 | 92 | 12.0 | 88.0 | ||||||
70+ | 147 | 8.8 | 91.2 | ||||||
Sex | |||||||||
Male | 200 | 21.0 | 79.0 | p = 0.010, χ2 (1) = 6.607 | p = 0.097, χ2 (1) = 6.326 | p = 0.371, χ2 (1) = 4.266 | p = 0.190, χ2 (1) = 6.130 | p < 0.001, χ2 (1) = 21.672 | p = 0.002, χ2 (1) = 16.849 |
Female | 298 | 12.4 | 87.6 | ||||||
Education | |||||||||
Elementary | 107 | 15.9 | 84.1 | ||||||
Secondary | 43 | 16.3 | 83.7 | ||||||
Professional | 183 | 13.7 | 86.3 | ||||||
University | 157 | 17.8 | 82.2 | p = 0.376, χ2 (1) = 0.784 | p = 0.011, χ2 (1) = 25.846 | p = 0.076, χ2 (1) = 24.659 | p = 0.020, χ2 (1) = 29.608 | p = 0.038, χ2 (1) = 21.989 | p = 0.297, χ2 (1) = 18.474 |
Other | 3 | 0 | 100 | ||||||
Employment | |||||||||
Employed | 173 | 26.6 | 73.4 | p < 0.001, χ2 (1) = 24.649 | p < 0.001, χ2 (1) = 42.066 | p < 0.001, χ2 (1) = 46.020 | p < 0.001, χ2 (1) = 50.260 | p = 0.035, χ2 (1) = 22.275 | p = 0.485, χ2 (1) = 15.549 |
Unemployed | 49 | 8.2 | 91.8 | ||||||
Retired and working | 38 | 18.4 | 81.6 | ||||||
Retired | 221 | 9.5 | 90.5 | ||||||
Other | 14 | 7.1 | 92.9 |
p-Values a | EQ-5D-5L p-Values for Separate Groups b | ||||||||
---|---|---|---|---|---|---|---|---|---|
Absent/Present | n | % | EQ-5D-5L | Mobility | Self-Care | Usual Activities | Pain/Discomfort | Anxiety/Depression | |
I20 Angina pectoris | A | 290 | 58.23 | ||||||
P | 208 | 41.77 | p = 0.025, χ2 (1) = 5.006 | p = 0.040, χ2 (1) = 8.326 | p = 0.217, χ2 (1) = 5.769 | p = 0.360, χ2 (1) = 4.356 | p = 0.093, χ2 (1) = 6.410 | p = 0.078, χ2 (1) = 8.409 | |
I25 Chronic ischemic heart disease | A | 444 | 89.16 | ||||||
P | 54 | 10.84 | p = 0.823, χ2 (1) = 0.050 | p = 0.414, χ2(1) = 2.856 | p = 0.122, χ2 (1) = 7.269 | p = 0.364, χ2 (1) = 4.325 | p = 0.399, χ2 (1) = 2.950 | p = 0.446, χ2 (1) = 3.717 | |
I50 Heart failure | A | 330 | 66.27 | ||||||
P | 168 | 33.73 | p = 0.026, χ2 (1) = 5.036 | p < 0.001, χ2 (1) = 31.843 | p = 0.006, χ2 (1) = 14.515 | p < 0.001, χ2 (1) = 28.245 | p = 0.070, χ2 (1) = 7.059 | p < 0.001, χ2 (1) = 20.504 | |
I48 Atrial fibrillation and flutter | A | 414 | 83.13 | ||||||
P | 84 | 16.87 | p = 0.016, χ2 (1) = 5.757 | p = 0.004,χ2 (1) = 13.268 | p = 0.379, χ2 (1) = 4.207 | p = 0.125, χ2 (1) = 7.214 | p = 0.795, χ2 (1) = 1.026 | p = 0.035, χ2 (1) = 10.317 | |
E11 Type II diabetes mellitus | A | 322 | 64.66 | ||||||
P | 176 | 35.34 | p = 0.593, χ2 (1) = 0.285 | p = 0.959, χ2 (1) = 0.307 | p = 0.526, χ2 (1) = 3.194 | p = 0.849, χ2 (1) = 1.371 | p = 0.013 χ2 (1) = 10.810 | p = 0.121 χ2 (1) = 7.292 | |
E06 Thyroiditis | A | 441 | 88.55 | ||||||
P | 57 | 11.45 | p = 0.688, χ2 = 0.161 | p = 0.929, χ2 = 0.452 | p = 0.780, χ2 = 1.761 | p = 0.845, χ2 = 1.396 | p = 0.686, χ2 = 1.485 | p = 0.610, χ2 = 2.695 | |
E89 Postprocedural endocrine and metabolic disorders | A | 486 | 97.59 | ||||||
P | 12 | 2.41 | p = 0470, χ2 (1) = 0.522 | p = 0.758, χ2 (1) = 1.180 | p = 0.709, χ2 (1) = 2.147 | p = 0.710, χ2 (1) = 2.139 | p = 0.599, χ2 (1) = 1.874 | p = 0.594, χ2 (1) = 2.790 | |
J44 COPD | A | 478 | 95.98 | ||||||
P | 20 | 4.02 | p = 0.464, χ2 (1) = 0.537 | p = 0.869, χ2 (1) = 0.718 | p = 0.356, χ2 (1) = 4.392 | p = 0.005, χ2 (1) = 14.739 | p = 0.464, χ2 (1) = 2.561 | p = 0.602, χ2 (1) = 2.741 | |
J45 Asthma | A | 444 | 89.16 | ||||||
P | 54 | 10.84 | p = 0.823, χ2 (1) = 0.050 | p = 0.179, χ2 (1) = 4.901 | p = 0.980, χ2 (1) = 0.434 | p = 0.794, χ2 (1) = 1.682 | p = 0.794, χ2 (1) = 1.682 | p = 0.002, χ2 (1) = 17.500 | |
M05/M06 Joint diseases | A | 479 | 96.18 | ||||||
P | 19 | 3.82 | p = 0.054, χ2 (1) = 3.724 | p = 0.007, χ2 (1) = 12.206 | p = 0.002, χ2 (1) = 17.159 | p = 0.003, χ2 (1) = 15.907 | p = 0.035, χ2 (1) = 8.614 | p = 0.006, χ2 (1) = 14.532 | |
M80/M81 Osteoporosis | A | 482 | 96.79 | ||||||
P | 16 | 3.21 | p = 0.708, χ2 (1) = 0.140 | p = 0.838, χ2 (1) = 0.847 | p = 0.577, χ2 (1) = 2.886 | p = 0.011, χ2 (1) = 13.025 | p = 0.396, χ2 (1) = 2.970 | p = 0.001, χ2 (1) = 17.588 | |
N18 CKD | A | 467 | 93.78 | ||||||
P | 31 | 6.22 | p = 0.330, χ2 (1) = 0.948 | p = 0.705, χ2 (1) = 1.403 | p = 0.721, χ2 (1) = 2.082 | p = 0.016, χ2 (1) = 12.232 | p = 0.838, χ2 (1) = 0.847 | p = 0.687, χ2 (1) = 2.265 |
EQ-5D-5L Index | SF-36 HT & | EQ VAS | ||||
---|---|---|---|---|---|---|
Correlation | 95% CI * | Correlation | 95% CI | Correlation | 95% CI | |
EQ-5D-5L index | 0.456 | (0.381, 0.526) | 0.391 | (0.314, 0.464) | ||
SF-36 HT & | 0.462 | (0.387, 0.531) | ||||
SF-36 PF & | 0.576 | (0.512, 0.634) | 0.408 | (0.329, 0.481) | ||
SF-36 PH & | 0.308 | (0.221, 0.390) | 0.217 | (0.126, 0.303) | ||
SF-36 EP & | 0.158 | (0.066, 0.248) | 0.057 | (−0.036, 0.149) | ||
SF-36 EF & | 0.423 | (0.345, 0.496) | 0.424 | (0.346, 0.496) | ||
SF-36 EWB & | 0.278 | (0.191, 0.360) | 0.313 | (0.229, 0.393) | ||
SF-36 SCF & | 0.356 | (0.273, 0.433) | 0.238 | (0.150, 0.322) | ||
SF-36 P & | 0.541 | (0.473, 0.603) | 0.361 | (0.279, 0.438) | ||
SF-36 GH & | 0.403 | (0.324, 0.477) | 0.484 | (0.411, 0.551) | ||
1 Mobility a | −0.648 | (−0.697, −0.594) | −0.388 | (−0.464, −0.308) | −0.372 | (−0.446, −0.293) |
2 Self-care | −0.593 | (−0.648, −0.533) | −0.333 | (−0.412, −0.249) | −0.262 | (−0.342, −0.178) |
3 Usual activities | −0.638 | (−0.687, −0.582) | −0.417 | (−0.490, −0.339) | −0.381 | (−0.454, −0.303) |
4 Pain/discomfort | −0.820 | (−0.847, −0.788) | −0.382 | (−0.457, −0.301) | −0.301 | (−0.380, −0.219) |
5 Anxiety/depression | −0.550 | (−0.609, −0.486) | −0.241 | (−0.325, −0.153) | −0.179 | (−0.263, −0.092) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasiliauskienė, O.; Vasiliauskas, D.; Kontrimienė, A.; Jaruševičienė, L.; Liseckienė, I. Assessment of Quality of Life in Lithuanian Patients with Multimorbidity Using the EQ-5D-5L Questionnaire. Medicina 2025, 61, 292. https://doi.org/10.3390/medicina61020292
Vasiliauskienė O, Vasiliauskas D, Kontrimienė A, Jaruševičienė L, Liseckienė I. Assessment of Quality of Life in Lithuanian Patients with Multimorbidity Using the EQ-5D-5L Questionnaire. Medicina. 2025; 61(2):292. https://doi.org/10.3390/medicina61020292
Chicago/Turabian StyleVasiliauskienė, Olga, Dovydas Vasiliauskas, Aušrinė Kontrimienė, Lina Jaruševičienė, and Ida Liseckienė. 2025. "Assessment of Quality of Life in Lithuanian Patients with Multimorbidity Using the EQ-5D-5L Questionnaire" Medicina 61, no. 2: 292. https://doi.org/10.3390/medicina61020292
APA StyleVasiliauskienė, O., Vasiliauskas, D., Kontrimienė, A., Jaruševičienė, L., & Liseckienė, I. (2025). Assessment of Quality of Life in Lithuanian Patients with Multimorbidity Using the EQ-5D-5L Questionnaire. Medicina, 61(2), 292. https://doi.org/10.3390/medicina61020292