Proliferative Diabetic Retinopathy in Young-Onset Type 1 Diabetes in Croatia: Risk Factors and a Predictive Economic Model for National Screening
Abstract
1. Introduction
2. Patients and Methods
2.1. Health-Economy Model
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
References
- Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef]
- Wong, T.Y.; Cheung, C.M.G.; Larsen, M.; Sharma, S.; Simo, R. Diabetic retinopathy. Nat. Rev. Dis. Primers 2016, 2, 16012. [Google Scholar] [CrossRef]
- Sauesund, E.S.; Jørstad, Ø.K.; Brunborg, C.; Moe, M.C.; Erke, M.G.; Fosmark, D.S.; Petrovski, G. A pilot study of implementing diabetic retinopathy screening in the Oslo region, Norway: Baseline results. Biomedicines 2023, 11, 1222. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas, 11th ed.; International Diabetes Federation: Brussels, Belgium, 2025; Available online: https://diabetesatlas.org (accessed on 8 November 2025).
- World Health Organization. Strengthening Diagnosis and Treatment of Diabetic Retinopathy in the South-East Asia Region. Available online: https://apps.who.int/iris/bitstream/handle/10665/334224/9789290227946-eng.pdf (accessed on 18 June 2023).
- Lee, R.; Wong, T.Y.; Sabanayagam, C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2015, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- You, W.P.; Henneberg, M. Type 1 diabetes prevalence increasing globally and regionally: The role of natural selection and life expectancy at birth. BMJ Open Diabetes Res. Care 2016, 4, e000161. [Google Scholar] [CrossRef] [PubMed]
- Maahs, D.M.; West, N.A.; Lawrence, J.M.; Mayer-Davis, E.J. Epidemiology of type 1 diabetes. Endocrinol. Metab. Clin. North Am. 2010, 39, 481–497. [Google Scholar] [CrossRef] [PubMed]
- Ogle, G.D.; Wang, F.; Haynes, A.; Gregory, G.A.; King, T.W.; Deng, K.; Dabelea, D.; James, S.; Jenkins, A.J.; Li, X.; et al. Global type 1 diabetes prevalence, incidence, and mortality estimates 2025: Results from the International diabetes Federation Atlas, 11th Edition, and the T1D Index Version 3.0. Diabetes Res. Clin. Pract. 2025, 225, 112277. [Google Scholar] [CrossRef]
- Gregory, G.A.; Robinson, T.I.G.; Linklater, S.E.; Wang, F.; Colagiuri, S.; de Beaufort, C.; Donaghue, K.C.; Harding, J.L.; Wander, P.L.; Zhang, X.; et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: A modelling study. Lancet Diabetes Endocrinol. 2022, 10, 741–760. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Ogle, G.D.; James, S.; Dabelea, D.; Pihoker, C.; Svennson, J.; Maniam, J.; Klatman, E.L.; Patterson, C.C. Global estimates of incidence of type 1 diabetes in children and adolescents: Results from the International Diabetes Federation Atlas, 10th edition. Diabetes Res. Clin. Pract. 2022, 183, 109083. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Karvonen, M.; Viik-Kajander, M.; Moltchanova, E.; Libman, I.; Laporte, R.; Tuomilehto, J. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care 2010, 23, 1516–1526. [Google Scholar] [CrossRef] [PubMed]
- Patterson, C.C.; Dahlquist, G.G.; Gyürüs, E.; Green, A.; Soltész, G.; EURODIAB Study Group. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: A multicentre prospective registration study. Lancet 2009, 373, 2027–2033. [Google Scholar] [CrossRef]
- Hannula, V. The Prevalence of Diabetic Retinopathy and Its Effect on Social Wellbeing and Health Related Quality of Life in Children and Young Adults with Type 1 Diabetes. Master’s Thesis, University of Oulu, Oulu, Finland, 2015. [Google Scholar]
- Hamman, R.F.; Bell, R.A.; Dabelea, D.; D’Agostino, R.B., Jr.; Dolan, L.; Imperatore, G.; Lawrence, J.M.; Linder, B.; Marcovina, S.M.; Mayer-Davis, E.J.; et al. The SEARCH for Diabetes in Youth study: Rationale, findings, and future directions. Diabetes Care 2014, 37, 3336–3344. [Google Scholar] [CrossRef]
- Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 diabetes. Lancet 2014, 383, 69–82. [Google Scholar] [CrossRef]
- Eurodiab Ace Study Group. Variation and trends in incidence of childhood diabetes in Europe. Lancet 2000, 355, 873–876. [Google Scholar] [CrossRef]
- Stipancic, G.; La Grasta Sabolic, L.; Malenica, M.; Radica, A.; Skrabic, V.; Tiljak, M.K. Incidence and trends of childhood Type 1 diabetes in Croatia from 1995 to 2003. Diabetes Res. Clin. Pract. 2008, 80, 122–127. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Wareham, N.J. Epidemiology of diabetes. Medicine 2014, 42, 698–702. [Google Scholar] [CrossRef]
- Tuomilehto, J. The emerging global epidemic of type 1 diabetes. Curr. Diabetes Rep. 2013, 13, 795–804. [Google Scholar] [CrossRef]
- The CroDiab Registry. Diabetes. Available online: https://www.hzjz.hr/sluzba-epidemiologija-prevencija-nezaraznih-bolesti/odjel-za-koordinaciju-i-provodenje-programa-i-projekata-za-prevenciju-kronicnih-nezaraznih-bolest/dijabetes/ (accessed on 19 May 2023).
- Rojnic Putarek, N.; Ille, J.; Spehar Uroic, A.; Skrabic, V.; Stipancic, G.; Krnic, N.; Radica, A.; Marjanac, I.; Severinski, S.; Svigir, A.; et al. Incidence of type 1 diabetes mellitus in 0 to 14-yr-old children in Croatia--2004 to 2012 study. Pediatr. Diabetes 2015, 16, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Surowiec, P.; Matejko, B.; Kopka, M.; Filemonowicz-Skoczek, A.; Klupa, T.; Cyganek, K.; Romanowska-Dixon, B.; Malecki, M.T. Low prevalence of diabetic retinopathy in patients with long-term type 1 diabetes and current good glycemic control—One-center retrospective assessment. Endocrine 2022, 75, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Laiginhas, R.; Madeira, C.; Lopes, M.; Neves, J.S.; Barbosa, M.; Rosas, V.; Carvalho, D.; Falcão-Reis, F.; Falcão, M. Risk factors for prevalent diabetic retinopathy and proliferative diabetic retinopathy in type 1 diabetes. Endocrine 2019, 66, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Jansson, R.W.; Hufthammer, K.O.; Krohn, J. Diabetic retinopathy in type 1 diabetes patients in Western Norway. Acta Ophthalmol. 2018, 96, 465–474. [Google Scholar] [CrossRef]
- Rajalakshmi, R.; Amutha, A.; Ranjani, H.; Ali, M.K.; Unnikrishnan, R.; Anjana, R.M.; Narayan, K.V.; Mohan, V. Prevalence and risk factors for diabetic retinopathy in Asian Indians with young onset type 1 and type 2 diabetes. J. Diabetes Complicat. 2014, 28, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.K.; Huang, X.G.; Yao, J.Y. Effects of Cigarette Smoking on Retinal and Choroidal Thickness: A Systematic Review and Meta-Analysis. J. Ophthalmol. 2019, 2019, 8079127. [Google Scholar] [CrossRef]
- Omae, T.; Nagaoka, T.; Yoshida, A. Effects of Habitual Cigarette Smoking on Retinal Circulation in Patients with Type 2 Diabetes. Investig. Ophthalmol. Vis. Sci. 2016, 57, 1345–1351. [Google Scholar] [CrossRef]
- Wong, T.Y.; Sun, J.; Kawasaki, R.; Ruamviboonsuk, P.; Gupta, N.; Lansingh, V.C.; Maia, M.; Mathenge, W.; Moreker, S.; Muqit, M.M.; et al. Guidelines on Diabetic Eye Care: The International Council of Ophthalmology Recommendations for Screening, Follow-up, Referral, and Treatment Based on Resource Settings. Ophthalmology 2018, 125, 1608–1622. [Google Scholar] [CrossRef]
- Early Treatment Diabetic Retinopathy Study Research Group. Grading Diabetic Retinopathy from Stereoscopic Color Fundus Photographs—An Extension of the Modified Airlie House Classification: ETDRS Report Number 10. Ophthalmology 2020, 127, 99–119. [Google Scholar] [CrossRef]
- Sauesund, E.S.; Hertzberg, S.N.W.; Jørstad, Ø.K.; Moe, M.C.; Erke, M.G.; Fosmark, D.S.; Petrovski, G. A health economic pilot study comparing two diabetic retinopathy screening strategies. Sci Rep. 2024, 14, 15618. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.; Klein, B.E.; Moss, S.E. Visual impairment in diabetes. Ophthalmology 1984, 91, 1–9. [Google Scholar] [CrossRef]
- Klein, R.; Klein, B.E.; Moss, S.E.; Davis, M.D.; DeMets, D.L. The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch. Ophthalmol. 1984, 102, 520–526. [Google Scholar] [CrossRef]
- Hietala, K.; Harjutsalo, V.; Forsblom, C.; Groop, P.H.; FinnDiane Study Group. Age at Onset and the Risk of Proliferative Retinopathy in Type 1 Diabetes. Diabetes Care 2010, 33, 1315–1319. [Google Scholar] [CrossRef]
- Klein, R.; Knudtson, M.D.; Lee, K.E.; Gangnon, R.; Klein, B.E. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology 2008, 115, 1859–1868. [Google Scholar] [CrossRef]
- Heintz, E.; Wiréhn, A.B.; Peebo, B.B.; Rosenqvist, U.; Levin, L.A. Prevalence and healthcare costs of diabetic retinopathy: A population-based register study in Sweden. Diabetologia 2010, 53, 2147–2154. [Google Scholar] [CrossRef]
- Lind, M.; Pivodic, A.; Svensson, A.-M.; Ólafsdóttir, A.F.; Wedel, H.; Ludvigsson, J. HbA1c level as a risk factor for retinopathy and nephropathy in children and adults with type 1 diabetes: Swedish population based cohort study. BMJ 2019, 366, l4894. [Google Scholar] [CrossRef] [PubMed]
- Jia, W. Contribution of sex hormones in the progression of diabetic microvascular diseases. J. Diabetes Investig. 2012, 3, 231–232. [Google Scholar] [CrossRef] [PubMed]
- Marcovecchio, M.L.; Tossavainen, P.H.; Dunger, D.B. Prevention and treatment of microvascular disease in childhood type 1 diabetes. Br. Med. Bull. 2010, 94, 145–164. [Google Scholar] [CrossRef]
- UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998, 352, 854–865. [Google Scholar] [CrossRef]
- Yam, J.C.S.; Kwok, A.K.H. Update on the treatment of diabetic retinopathy. Hong Kong Med. J. 2007, 13, 46–60. [Google Scholar]
- Chiang, J.L.; Maahs, D.M.; Garvey, K.C.; Hood, K.K.; Laffel, L.M.; Weinzimer, S.A.; Wolfsdorf, J.I.; Schatz, D. Type 1 Diabetes in Children and Adolescents: A Position Statement by the American Diabetes Association. Diabetes Care 2018, 41, 2026–2044. [Google Scholar] [CrossRef]
- Rajalakshmi, R.; Shanthirani, C.S.; Anandakumar, A.; Anjana, R.M.; Murthy, G.V.S.; Gilbert, C.; Mohan, V. Assessment of diabetic retinopathy in type 1 diabetes in a diabetes care center in South India-Feasibility and awareness improvement study. Indian J. Ophthalmol. 2020, 68, 92–95. [Google Scholar] [CrossRef]
- Klein, R.; Klein, B.E.; Moss, S.E.; Davis, M.D.; DeMets, D.L. Is blood pressure a predictor of the incidence or progression of diabetic retinopathy? Arch. Intern. Med. 1989, 149, 2427–2432. [Google Scholar] [CrossRef]
- Klein, B.E.; Klein, R.; Moss, S.E. Is serum cholesterol associated with progression of diabetic retinopathy or macular edema in persons with younger-onset diabetes of long duration? Am. J. Ophthalmol. 1999, 128, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Sinav, S.; Onelge, M.A.; Onelge, S.; Sinav, B. Plasma lipids and lipoproteins in retinopathy of type I (insulin-dependent) diabetic patients. Ann. Ophthalmol. 1993, 25, 64–66. [Google Scholar]
- Hautala, N.; Hannula, V.; Palosaari, T.; Ebeling, T.; Falck, A. Prevalence of diabetic retinopathy in young adults with type 1 diabetes since childhood: The Oulu cohort study of diabetic retinopathy. Acta Ophthalmol. 2014, 92, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Contreras, I.; Oviedo, S.; Vettoretti, M.; Visentin, R.; Vehí, J. Personalized blood glucose prediction: A hybrid approach using grammatical evolution and physiological models. PLoS ONE 2017, 12, e0187754. [Google Scholar] [CrossRef]
- Rohan, T.E.; Frost, C.D.; Wald, N.J. Prevention of blindness by screening for diabetic retinopathy: A quantitative assessment. BMJ 1989, 299, 1198–1201. [Google Scholar] [CrossRef]
- Jones, S.; Edwards, R.T. Diabetic retinopathy screening: A systematic review of the economic evidence. Diabet. Med. 2010, 27, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Tomić, M.; Raštegorac, P.; Vrabec, R.; Poljičanin, T.; Rahelićet, D. Telemedicine for Diabetic Retinopathy Screening in Croatia. Coll. Antropol. 2020, 44, 175–179. [Google Scholar] [CrossRef]
- Grauslund, J.; Andersen, N.; Andresen, J.; Flesner, P.; Haamann, P.; Heegaard, S.; Larsen, M.; Laugesen, C.S.; Schielke, K.; Skov, J.; et al. Evidence-based Danish guidelines for screening of diabetic retinopathy. Acta Ophthalmol. 2018, 96, 763–769. [Google Scholar] [CrossRef]
- UK Government. Optical Coherence Tomography (OCT) in Diabetic Eye Screening (DES) Surveillance Clinics. Available online: https://www.gov.uk/government/publications/diabetic-eye-screening-optical-coherence-tomography-in-surveillance/optical-coherence-tomography-oct-in-diabetic-eye-screening-des-surveillance-clinics-starting-1-october (accessed on 30 March 2025).
- Thomas, R.L.; Winfield, T.G.; Prettyjohns, M.; Dunstan, F.D.; Cheung, W.-Y.; Anderson, P.M.; Peter, R.; Luzio, S.D.; Owens, D.R. Cost-effectiveness of biennial screening for diabetes related retinopathy in people with type 1 and type 2 diabetes compared to annual screening. Eur. J. Health Econ. 2020, 21, 993–1002. [Google Scholar] [CrossRef]
- Li, H.; Li, G.; Li, N.; Liu, C.; Yuan, Z.; Gao, Q.; Hao, S.; Fan, S.; Yang, J. Cost-effectiveness analysis of artificial intelligence-based diabetic retinopathy screening in rural China based on the Markov model. PLoS ONE 2023, 18, e0291390. [Google Scholar] [CrossRef] [PubMed]

| Variable | PDR (n = 27) | NPDR (n = 31) | p |
|---|---|---|---|
| Age (years) | 0.616 * | ||
| Median [min–max] | 49 [28–58] | 47 [35–55] | |
| Sex n (%) | 0.849 ‡ | ||
| Female | 12 (44) | 13 (42) | |
| Male | 15 (56) | 18 (58) | |
| Duration of diabetes (years) | <0.001 * | ||
| Median [min–max] | 31 [15–40] | 20 [10–27] | |
| Age at onset of diabetes (years) | <0.001 * | ||
| Median [min–max] | 18 [10–30] | 28 [17–30] | |
| Current glycosylated hemoglobin (HBA1c) level (%) | <0.001 † | ||
| (mean ± SD) | 7.9 ± 1.4 | 5.9 ± 0.7 | |
| Systolic BP (mm Hg) | 0.001 † | ||
| (mean ± SD) | 139 ± 10 | 129 ± 10 | |
| Diastolic BP (mm Hg) | 0.014 † | ||
| (mean ± SD) | 86 ± 4.7 | 81 ± 9.2 | |
| Current blood glucose level (mmol/L) | <0.001 † | ||
| (mean ± SD) | 7.5 ± 1.4 | 6.0 ± 0.7 | |
| Total cholesterol (mmol/L) | 0.436 † | ||
| (mean ± SD) | 4.34 ± 1.10 | 4.14 ± 0.81 | |
| LDL (mmol/L) | <0.001 * | ||
| Median [min–max] | 2.6 [1–4] | 1.7 [1–3] | |
| Triglycerides (mmol/L) | 0.001 * | ||
| Median [min–max] | 1.9 [0.9–2.7] | 1.5 [0–2] | |
| Long-term blood glucose control § n (%) | <0.001 ‡ | ||
| Good (HbA1c ≤ 7%) | 4 (15) | 22 (71) | |
| Poor (HbA1c > 7%) | 23 (85) | 9 (29) | |
| Regularity of ophthalmological examinations ‖ n (%) | <0.001 ‡ | ||
| Regular | 5 (19) | 27 (87) | |
| Irregular | 22(81) | 4 (13) |
| Variable | PDR n (%) | NPDR n (%) | p * | OR (95% CI) | p † |
|---|---|---|---|---|---|
| Long-term blood glucose control ‡ | |||||
| Good (HbA1c ≤ 7%) ‖ | 4 (15) | 22 (71) | <0.001 | 14 (3.8–52) | <0.001 |
| Poor (HbA1c > 7%) | 23 (85) | 9 (29) | |||
| Regularity of ophthalmological examinations § | |||||
| Regular ‖ | 5 (19) | 27 (87) | <0.001 | 29.7 (7–124) | <0.001 |
| Irregular | 22 (81) | 4 (13) | |||
| Age of onset of diabetes (years) | |||||
| ≤18 | 16 (59) | 4 (13) | 0.001 | 9.8 (2.7–36) | <0.001 |
| >18 ‖ | 11 (41) | 27 (87) | |||
| Duration of diabetes (years) | |||||
| ≤22.5 ‖ | 7 (26) | 22 (71) | 0.002 | 7 (2–22.2) | <0.001 |
| >22.5 | 20 (74) | 9 (29) |
| Scenario | Population Screened | Screening Cost (Euros/€) | Expected PDR Cases w/o Screening | PDR Cases Prevented | Net Economic Impact * |
|---|---|---|---|---|---|
| Annual—Low Uptake (30%) | 3000 | €230,610.0 | 1410 | 987 | €7,113,753.24 |
| Annual—Medium (60%) | 6000 | €461,220.0 | 2820 | 1973 | €14,220,298.85 |
| Annual—High (90%) | 9000 | €691,830.0 | 4230 | 2961 | €21,341,259.45 |
| Biennial—Medium (60%) | 6000 (every 2 years) | €230,610.0 | 2820 | ~1973 | €14,220,298.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borjan, I.; Pleština-Borjan, I.; Znaor, L.; Pavić, M.; Josifova, T.; Marković, I.; Petrovski, B.É.; Petrovski, G. Proliferative Diabetic Retinopathy in Young-Onset Type 1 Diabetes in Croatia: Risk Factors and a Predictive Economic Model for National Screening. Medicina 2025, 61, 2168. https://doi.org/10.3390/medicina61122168
Borjan I, Pleština-Borjan I, Znaor L, Pavić M, Josifova T, Marković I, Petrovski BÉ, Petrovski G. Proliferative Diabetic Retinopathy in Young-Onset Type 1 Diabetes in Croatia: Risk Factors and a Predictive Economic Model for National Screening. Medicina. 2025; 61(12):2168. https://doi.org/10.3390/medicina61122168
Chicago/Turabian StyleBorjan, Ivan, Ivna Pleština-Borjan, Ljubo Znaor, Maja Pavić, Tatjana Josifova, Irena Marković, Beáta Éva Petrovski, and Goran Petrovski. 2025. "Proliferative Diabetic Retinopathy in Young-Onset Type 1 Diabetes in Croatia: Risk Factors and a Predictive Economic Model for National Screening" Medicina 61, no. 12: 2168. https://doi.org/10.3390/medicina61122168
APA StyleBorjan, I., Pleština-Borjan, I., Znaor, L., Pavić, M., Josifova, T., Marković, I., Petrovski, B. É., & Petrovski, G. (2025). Proliferative Diabetic Retinopathy in Young-Onset Type 1 Diabetes in Croatia: Risk Factors and a Predictive Economic Model for National Screening. Medicina, 61(12), 2168. https://doi.org/10.3390/medicina61122168

