Inflammatory Semaphorins in the Pathogenesis and Prognosis of Acute Ischemic Stroke
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.1.1. Inclusion Criteria for Patients
- Patients over the age of 45 who were admitted to the emergency department within the first 24 h after acute stroke.
2.1.2. Inclusion Criteria for the Control Group
- No previous history of stroke.
2.1.3. Exclusion Criteria for Patients
- Not admitted to the hospital within the first 24 h of ischemic stroke;
- Inability to reach the patient’s blood sample;
- Inability to access anamnesis from the file or incomplete anamnesis;
- The patient’s desire to withdraw from the study.
2.1.4. Exclusion Criteria for the Control Group
- Previous stroke history.
2.2. Evaluation Criteria
2.3. Study of Semaphorin Levels in Serum Samples by ELISA Method in the Laboratory
2.4. Evaluation of Results
2.5. Statistical Analyses
3. Results
3.1. Characteristics of Patients
3.2. Stroke Characteristics and TOAST Classification of Patients
3.3. Comparison of Serum Semaphorin Levels Among Groups and Analysis of Their Associations with Clinical and Laboratory Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haupt, M.; Gerner, S.T.; Bähr, M.; Doeppner, T.R. Neuroprotective Strategies for Ischemic Stroke—Future Perspectives. Int. J. Mol. Sci. 2023, 24, 4334. [Google Scholar] [CrossRef]
- Hasan, T.F.; Hasan, H.; Kelley, R.E. Overview of Acute Ischemic Stroke Evaluation and Management. Biomedicines 2021, 9, 1486. [Google Scholar] [CrossRef]
- Shen, Z.; Xiang, M.; Chen, C.; Ding, F.; Wang, Y.; Shang, C.; Cui, X. Glutamate Excitotoxicity: Potential Therapeutic Target for Ischemic Stroke. Biomed. Pharmacother. 2022, 151, 113125. [Google Scholar] [CrossRef]
- Mao, R.; Zong, N.; Hu, Y.; Chen, Y.; Xu, Y. Neuronal Death Mechanisms and Therapeutic Strategy in Ischemic Stroke. Neurosci. Bull. 2022, 38, 1229–1247. [Google Scholar] [CrossRef] [PubMed]
- Ashafaq, M.; Alam, M.I.; Khan, A.; Islam, F.; Khuwaja, G.; Hussain, S.; Islam, F. Nanoparticles of Resveratrol Attenuate Oxidative Stress and Inflammation after Ischemic Stroke in Rats. Int. Immunopharmacol. 2021, 94, 107494. [Google Scholar] [CrossRef]
- Bernardo-Castro, S.; Sousa, J.A.; Brás, A.; Cecília, C.; Rodrigues, B.; Almendra, L.; Sargento-Freitas, J. Pathophysiology of Blood–Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke. Front. Neurol. 2020, 11, 594672. [Google Scholar] [CrossRef]
- Lu, Q.; Zhu, L. The Role of Semaphorins in Metabolic Disorders. Int. J. Mol. Sci. 2020, 21, 5641. [Google Scholar] [CrossRef]
- Kiseleva, E.P.; Rutto, K.V. Semaphorin 3A in the Immune System: Twenty Years of Study. Biochemistry 2022, 87, 640–657. [Google Scholar] [CrossRef]
- Du, H.; Xu, Y.; Zhu, L. Role of Semaphorins in Ischemic Stroke. Front. Mol. Neurosci. 2022, 15, 848506. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.F.; Li, X.; Parker, M.W.; Waltenberger, J.; Becker, P.M.; Vander Kooi, C.W. Mechanistic Basis for the Potent Anti-Angiogenic Activity of Semaphorin 3F. Biochemistry 2013, 52, 7551–7558. [Google Scholar] [CrossRef] [PubMed]
- Carvalheiro, T.; Affandi, A.J.; Malvar-Fernández, B.; Dullemond, I.; Cossu, M.; Ottria, A.; García, S. Induction of Inflammation and Fibrosis by Semaphorin 4A in Systemic Sclerosis. Arthritis Rheumatol. 2019, 71, 1711–1722. [Google Scholar] [CrossRef]
- Lu, J.J.; Su, Y.W.; Wang, C.J.; Li, D.F.; Zhou, L. Semaphorin 4D Promotes the Proliferation and Metastasis of Bladder Cancer via PI3K/AKT Pathway Activation. Tumori J. 2019, 105, 231–242. [Google Scholar] [CrossRef]
- You, Y.; Liu, H.; Liu, G.; Wu, Z.; Chen, Y.; Ma, H.; Ma, Y. Elevated Serum Semaphorin 7A Levels Are Associated with Acute Atherothrombotic Stroke. J. Cell. Mol. Med. 2019, 23, 911–920. [Google Scholar] [CrossRef]
- Wang, P.; Mao, Y.M.; Liu, L.N.; Zhao, C.N.; Li, X.M.; Pan, H.F. Decreased Expression of Semaphorin 3A and 7A and Their Association with Systemic Lupus Erythematosus. Immunol. Investig. 2020, 49, 69–80. [Google Scholar] [CrossRef]
- Liu, L.N.; Wang, P.; Zou, Y.F.; Xu, Z.; Cheng, J.; Zhang, Y.; Pan, H.F. Semaphorin-3A and Semaphorin-7A Gene SNPs and Systemic Lupus Erythematosus Susceptibility. Autoimmunity 2019, 52, 161–167. [Google Scholar] [CrossRef]
- Sheinenzon, A.; Shehadeh, M.; Michelis, R.; Shaoul, E.; Ronen, O. Serum Albumin Levels and Inflammation. Int. J. Biol. Macromol. 2021, 184, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Zhang, X.; Ruan, G.T.; Zhang, K.P.; Tang, M.; Zhang, Q.; Shi, H.P. One-Year Mortality in Patients with Cancer Cachexia: Association with Albumin and Total Protein. Cancer Manag. Res. 2021, 13, 6775–6783. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Kumar, S.; Yadav, R. Association of Serum Albumin and High-Sensitivity C-Reactive Protein with Ischemic Stroke Severity. Crit. Care Innov. 2024, 7, 25–34. [Google Scholar]
- Dziedzic, T.; Pera, J.; Slowik, A.; Gryz-Kurek, E.A.; Szczudlik, A. Hypoalbuminemia in Acute Ischemic Stroke: Frequency and Correlates. Eur. J. Clin. Nutr. 2007, 61, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wang, A.; Meng, X.; Lin, J.; Jiang, Y.; Jing, J.; Wang, Y. Low Serum Albumin Predicts Poor Outcome in Ischemic Stroke or TIA. Stroke Vasc. Neurol. 2021, 6, 398–405. [Google Scholar] [CrossRef]
- Xing, E.; Billi, A.C.; Gudjonsson, J.E. Sex Bias and Autoimmune Diseases. J. Investig. Dermatol. 2022, 142, 857–866. [Google Scholar] [CrossRef]
- Kronzer, V.L.; Bridges, S.L., Jr.; Davis, J.M. Why Women Have More Autoimmune Diseases Than Men: An Evolutionary Perspective. Evol. Appl. 2021, 14, 629–633. [Google Scholar] [CrossRef]
- Hou, J.; Zheng, L.; Li, X.; Sun, Y. CircZNF609 Sponges miR-135b to Upregulate SEMA3A Expression and Alleviate ox-LDL-Induced Atherosclerosis. Mol. Cell. Biochem. 2025, 480, 1105–1120. [Google Scholar] [CrossRef]
- Hou, S.T.; Nilchi, L.; Li, X.; Gangaraju, S.; Jiang, S.X.; Aylsworth, A.; Monette, R.; Slinn, J. Semaphorin 3A elevates vascular permeability and contributes to cerebral ischemia-induced brain damage. Sci. Rep. 2015, 5, 7890. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Zhang, W.; Chen, C.; Wu, J.; Chen, L. Sema4D/PlexinB1 inhibition ameliorates blood–brain barrier damage and improves outcome after stroke in rats. FASEB J. 2018, 32, 2184–2197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xu, Q.; Wang, A.; Jiang, Y.; Meng, X.; Zhou, M.; Liu, G. Hemoglobin Concentration and Clinical Outcomes after Acute Ischemic Stroke. J. Am. Heart Assoc. 2021, 10, e022547. [Google Scholar] [CrossRef]
- Simats, A.; Liesz, A. Systemic Inflammation after Stroke: Implications for Post-Stroke Comorbidities. EMBO Mol. Med. 2022, 14, e16269. [Google Scholar] [CrossRef] [PubMed]
- Kollikowski, A.M.; Pham, M.; März, A.G.; Papp, L.; Nieswandt, B.; Stoll, G.; Schuhmann, M.K. Platelet Activation and Chemokine Release in Hyperacute Human Stroke. Transl. Stroke Res. 2022, 13, 364–369. [Google Scholar] [CrossRef]
- Liu, F.; Yang, P.; Wang, Y.; Shi, M.; Wang, R.; Xu, Q.; He, J. HS-CRP Modifies the Prognostic Value of Platelet Count in Ischemic Stroke. J. Am. Heart Assoc. 2023, 12, e030007. [Google Scholar] [CrossRef] [PubMed]
- Franzolin, G.; Tamagnone, L. Semaphorin Signaling in Cancer-Associated Inflammation. Int. J. Mol. Sci. 2019, 20, 377. [Google Scholar] [CrossRef]
- Qamar, T.; Misra, D.P.; Kar, S. Semaphorins and Their Receptors: Emerging Cellular Biomarkers and Therapeutic Targets in Autoimmune and Inflammatory Disorders. Life Sci. 2024, 123, 123281. [Google Scholar] [CrossRef] [PubMed]
| Parameter | Stroke Patients (n = 45) | Controls (n = 40) | * p-Value |
|---|---|---|---|
| Age (years, mean ± SD) | 65.22 ± 11.17 | 64.56 ± 9.5 | 0.673 |
| Sex (F/M) | 17/28 | 18/21 | 0.437 |
| Smoking, n (%) | 31 (68.9) | 11 (27.5) | 0.001 |
| Hypertension, n (%) | 23 (51.1) | 10 (25.0) | 0.021 |
| Diabetes mellitus, n (%) | 12 (26.7) | 5 (12.5) | 0.090 |
| Hyperlipidemia, n (%) | 1 (2.2) | 1 (2.5) | 0.940 |
| Coronary heart disease, n (%) | 13 (28.9) | 4 (10.0) | 0.040 |
| Atrial fibrillation, n (%) | 3 (6.7) | 1 (2.5) | 0.310 |
| Chronic kidney disease, n (%) | 3 (6.7) | 1 (2.5) | 0.310 |
| Semaphorin | Patient (Mean ± SD) | Control (Avg ± SS) | p-Value |
|---|---|---|---|
| 3A | 1.71 ± 2.11 | 2.37 ± 2.35 | 0.704 |
| 3F | 9.08 ± 3.67 | 9.83 ± 3.46 | 0.087 |
| 4A | 8.35 ± 3.29 | 14.86 ± 3.16 | <0.001 |
| 4D | 2.02 ± 1.34 | 3.01 ± 4.16 | 0.300 |
| 7A | 3.33 ± 0.56 | 1.97 ± 0.52 | <0.001 |
| Parameter | 3A | 3F | 4A | 4D | 7A | |
|---|---|---|---|---|---|---|
| ALT | r | 0.192 | 0.019 | 0.435 | 0.058 | −0.109 |
| p | 0.208 | 0.904 | 0.003 | 0.705 | 0.474 | |
| n | 45 | 45 | 45 | 45 | 45 | |
| Albumin | r | 0.534 | −0.051 | 0.046 | −0.185 | −0.412 |
| p | 0.001 | 0.740 | 0.762 | 0.224 | 0.005 | |
| n | 45 | 45 | 45 | 45 | 45 | |
| Total Cholesterol | r | 0.441 | 0.246 | 0.329 | −0.093 | −0.056 |
| p | 0.004 | 0.104 | 0.029 | 0.543 | 0.714 | |
| n | 45 | 45 | 45 | 45 | 45 | |
| LDL | r | 0.429 | 0.258 | 0.305 | −0.049 | 0.069 |
| p | 0.006 | 0.087 | 0.044 | 0.747 | 0.651 | |
| n | 45 | 45 | 45 | 45 | 45 | |
| Neutrophyl | r | 0.017 | 0.038 | 0.330 | −0.016 | 0.078 |
| p | 0.912 | 0.802 | 0.027 | 0.917 | 0.610 | |
| n | 45 | 45 | 45 | 45 | 45 | |
| Hemoglobin | r | −0.123 | 0.145 | 0.349 | 0.168 | 0.124 |
| p | 0.420 | 0.340 | 0.020 | 0.270 | 0.416 | |
| n | 45 | 45 | 45 | 45 | 45 | |
| Platelet | r | 0.346 | 0.192 | 0.077 | −0.134 | −0.241 |
| p | 0.029 | 0.207 | 0.614 | 0.381 | 0.110 | |
| n | 45 | 45 | 45 | 45 | 45 | |
| Monosyt | r | 0.027 | 0.052 | 0.343 | −0.153 | −0.121 |
| p | 0.861 | 0.736 | 0.023 | 0.314 | 0.428 | |
| n | 45 | 45 | 45 | 45 | 45 | |
| Lenfosyt | r | 0.025 | 0.089 | 0.283 | −0.026 | −0.249 |
| p | 0.873 | 0.561 | 0.060 | 0.866 | 0.099 | |
| n | 45 | 45 | 45 | 45 | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çiçekli, E.; Kotan, D.; Avcı, L. Inflammatory Semaphorins in the Pathogenesis and Prognosis of Acute Ischemic Stroke. Medicina 2025, 61, 2060. https://doi.org/10.3390/medicina61112060
Çiçekli E, Kotan D, Avcı L. Inflammatory Semaphorins in the Pathogenesis and Prognosis of Acute Ischemic Stroke. Medicina. 2025; 61(11):2060. https://doi.org/10.3390/medicina61112060
Chicago/Turabian StyleÇiçekli, Esen, Dilcan Kotan, and Levent Avcı. 2025. "Inflammatory Semaphorins in the Pathogenesis and Prognosis of Acute Ischemic Stroke" Medicina 61, no. 11: 2060. https://doi.org/10.3390/medicina61112060
APA StyleÇiçekli, E., Kotan, D., & Avcı, L. (2025). Inflammatory Semaphorins in the Pathogenesis and Prognosis of Acute Ischemic Stroke. Medicina, 61(11), 2060. https://doi.org/10.3390/medicina61112060

