A Novel Therapeutic Target for Pediatric Pneumonia: Sestrin2
Abstract
1. Introduction
2. Materials and Methods
2.1. Institutional Review Board Statement
2.2. Study Design and Setting
2.3. Data Collection and Variables
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prina, E.; Ranzani, O.T.; Torres, A. Community-acquired pneumoni. Lancet 2015, 386, 1097–1108. [Google Scholar] [CrossRef]
- Luyt, C.E.; Hékimian, G.; Koulenti, D.; Chastre, J. Microbial cause of ICU-acquired pneumonia: Hospital-acquired pneumonia versus ventilator-associated pneumonia. Curr. Opin. Crit. Care. 2018, 24, 332–338. [Google Scholar] [CrossRef]
- Poljsak, B.; Šuput, D.; Milisav, I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid Med. Cell Longev. 2013, 956792. [Google Scholar] [CrossRef] [PubMed]
- Agita, A.; Alsagaff, M.T. Inflammation, immunity, and hypertension. Acta Med. Indones. 2017, 49, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Quinton, L.J.; Mizgerd, J.P. Dynamics of lung defense in pneumonia: Resistance, resilience, and remodeling. Annu. Rev. Physiol. 2015, 77, 407–430. [Google Scholar] [CrossRef]
- Pinegin, B.; Vorobjeva, N.; Pashenkov, M.; Chernyak, B. The role of mitochondrial ROS in antibacterial immunity. J. Cell Physiol. 2018, 233, 3745–3754. [Google Scholar] [CrossRef]
- Dunnill, C.; Patton, T.; Brennan, J.; Barrett, J.; Dryden, M.; Cooke, J.; Leaper, D.; Georgopoulos, N.T.; Tirlapur, U.; Shokrollahi, K.; et al. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 2017, 14, 89–96. [Google Scholar] [CrossRef]
- Chua, S.L.; Ding, Y.; Liu, Y.; Cai, Z.; Zhou, J.; Swarup, S.; Drautz-Moses, D.I.; Schuster, S.C.; Kjelleberg, S.; Givskov, M.; et al. Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels. Open Biol. 2017, 7, 170197. [Google Scholar] [CrossRef]
- Jung, H.S.; Kang, B.J.; Ra, S.W.; Seo, K.W.; Jegal, Y.; Jun, J.B.; Jung, J.; Jeong, J.; Jeon, H.-J.; Ahn, J.-S.; et al. Elucidation of bacterial pneumonia-causing pathogens in patients with respiratory viral infection. Tuberc. Respir. Dis. 2018, 81, 349. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Zhang, L.; Huang, Y.; Li, J.; Wang, C.; Chen, Q.; Liu, H.; Zhou, Y.; Sun, X.; Xu, J.; et al. Sestrin2 increases in aortas and plasma from aortic dissection patients and alleviates angiotensin II-induced smooth muscle cell apoptosis via the Nrf2 pathway. Life Sci. 2019, 218, 132–138. [Google Scholar] [CrossRef]
- Kim, H.; An, S.; Ro, S.H.; Teixeira, F.; Park, G.J.; Kim, C.; Cho, C.S.; Kim, J.S.; Jakob, U.; Lee, J.H.; et al. Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains. Nat. Commun. 2015, 6, 10025. [Google Scholar] [CrossRef]
- Budanov, A.V.; Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 2008, 134, 451–460. [Google Scholar] [CrossRef]
- Budanov, A.V.; Sablina, A.A.; Feinstein, E.; Koonin, E.V.; Chumakov, P.M. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 2004, 304, 596–600. [Google Scholar] [CrossRef]
- Olson, N.; Hristova, M.; Heintz, N.H.; Lounsbury, K.M.; van der Vliet, A. Activation of hypoxia-inducible factor-1 protects airway epithelium against oxidant-induced barrier dysfunction. Am. J. Physiol. Lung. Cell Mol. Physiol. 2011, 301, L993–L1002. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Doycheva, D.M.; Xu, L.; Tang, J.; Yan, M.; Zhang, J.H. Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood-brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats. Neurobiol. Dis. 2016, 95, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, M.; Sun, M.; Zhang, Z.; Yang, X.; Ma, T.; Yuan, C.; Ji, F.; Zhao, H.; Dong, Y.; et al. Sestrin2 is an endogenous antioxidant that improves contractile function in the heart during exposure to ischemia and reperfusion stress. Free Radic. Biol. Med. 2021, 165, 385–394. [Google Scholar] [CrossRef]
- Jegal, K.H.; Kim, E.O.; Kim, J.K.; Kim, S.H.; Chung, K.T.; Chung, K.H.; Kim, H.S.; Hwang, H.J.; Yang, M.H.; Kim, Y.H.; et al. Luteolin prevents liver from tunicamycin-induced endoplasmic reticulum stress via nuclear factor erythroid 2-related factor 2-dependent Sestrin2 induction. Toxicol. Appl. Pharm. 2020, 399, 115036. [Google Scholar] [CrossRef]
- Fang, C.; Yang, Z.; Shi, L.; Li, Y.; Yan, R.; Cheng, X.; Wu, F.; Zhang, C.; Song, J.; Wu, J.; et al. Circulating sestrin levels are increased in hypertension patients. Dis. Markers 2020, 2020, 3787295. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, Q.; Zhai, H.; Du, X.; Sun, S.; Wang, H. Explorating the involvement of plasma Sestrin2 in obstructive sleep apnea. Can. Respir. J. 2019, 2019, 2047674. [Google Scholar] [CrossRef] [PubMed]
- Rai, N.; Kumar, R.; Desai, G.R.; Reddy, B.V.; Shaik, A.B.; Rao, K.S.; Moirangthem, A.; Rajeswari, V.D.; Hemalatha, R.; Mahaboob, V.S.; et al. Relative alterations in blood-based levels of sestrin in Alzheimer’s disease and mild cognitive impairment patients. J. Alzheimers Dis. 2016, 54, 1147–1155. [Google Scholar] [CrossRef]
- Nourbakhsh, M.; Sharifi, R.; Ghorbanhosseini, S.S.; Meshkani, R.; Bandarian, F.; Zarkesh, M.; Zali, M.R.; Asgarian, S.; Dehnavi, S.; Rezaei, M.; et al. Evaluation of plasma TRB3 and Sestrin2 levels in obese and normal-weight children. Child. Obes. 2017, 13, 409–414. [Google Scholar] [CrossRef]
- Mao, E.W.; Cheng, X.B.; Li, W.C.; Wang, X.Q.; Wu, L.M.; Chen, H.Y.; Zhao, J.; Liu, Y.; Zhang, Y.; Huang, Z.Y.; et al. Association between serum Sestrin2 level and diabetic peripheral neuropathy in type 2 diabetic patients. World J. Clin. Cases. 2021, 9, 11156–11164. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Williams, D.J.; Arnold, S.R.; Ampofo, K.; Bramley, A.M.; Reed, C.; Stockmann, C.; Anderson, E.J.; Grijalva, C.G.; Self, W.H.; et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N. Engl. J. Med. 2015, 372, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.E.; Lorch, S.A.; Sheffler-Collins, S.; Kronman, M.P.; Shah, S.S. National hospitalization trends for pediatric pneumonia and associated complications. Pediatrics 2010, 126, 204–212. [Google Scholar] [CrossRef]
- Meyer Sauteur, P.M. Challenges and progress toward determining pneumonia etiology. Clin. Infect. Dis. 2020, 71, 514–516. [Google Scholar] [CrossRef]
- Zar, H.J.; Barnett, W.; Stadler, A.; Gardner-Lubbe, S.; Myer, L.; Nicol, M.P. Aetiology of childhood pneumonia in a well vaccinated South African birth cohort: A nested case-control study of the Drakenstein Child Health Study. Lancet Respir. Med. 2016, 10, e50. [Google Scholar] [CrossRef]
- Bradley, J.S.; Byington, C.L.; Shah, S.S.; Alverson, B.; Carter, E.R.; Harrison, C.; Kaplan, S.L.; Mace, S.E.; McCracken, G.H.; Moore, M.R.; et al. The management of community-acquired pneumonia in infants and children older than 3 months of age: Clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 53, e25–e76. [Google Scholar] [CrossRef]
- Neuman, M.I.; Hall, M.; Lipsett, S.C.; Mahant, S.; Williams, D.J.; Bramley, A.M.; Stockmann, C.; Ampofo, K.; Grijalva, C.G.; Self, W.H.; et al. Utility of blood culture among children hospitalized with community-acquired pneumonia. Pediatrics 2017, 140, e20171013. [Google Scholar] [CrossRef] [PubMed]
- Berg, A.S.; Inchley, C.S.; Fjaerli, H.O.; Leegaard, T.M.; Lindbaek, M.; Nakstad, B. Clinical features and inflammatory markers in pediatric pneumonia: A prospective study. Eur. J. Pediatr. 2017, 176, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, W.; Zhai, Z.; Wang, S.; Gao, C. Inflammation-modulating nanoparticles for pneumonia therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1763. [Google Scholar] [CrossRef]
- Dharmaraja, A.T. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J. Med. Chem. 2017, 60, 3221–3240. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, Z. The pathophysiological role of mitochondrial oxidative stress in lung diseases. J. Transl. Med. 2017, 15, 207. [Google Scholar] [CrossRef]
- Howard, M.D.; Greineder, C.F.; Hood, E.D.; Muzykantov, V.R. Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation. J. Control Release. 2014, 177, 34–41. [Google Scholar] [CrossRef]
- Lin, Q.; Ma, Y.; Chen, Z.; Li, H.; Zhang, J.; Wang, Y.; Liu, X.; Zhou, L.; Yang, S.; Zhao, P.; et al. Sestrin-2 regulates podocyte mitochondrial dysfunction and apoptosis under high-glucose conditions via AMPK. Int. J. Mol. Med. 2020, 45, 1361–1362. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed]
| Group | p | |||
|---|---|---|---|---|
| Patient | Control | |||
| N (%) | N (%) | |||
| Sex | Male | 21 (53.8) | 20 (54.1) | 0.985 |
| Female | 18 (46.2) | 17 (45.9) | ||
| Chronic Illness/ Comorbidity | Yes | 0 (0) | 0 (0) | - |
| No | 39 (100) | 37 (100) | ||
| Multiplex real-time PCR | Positive | 6 (15.4) | 0 (0) | - |
| Negative | 33 (100) | 31 (100) | ||
| Isolation from Culture | Yes | 0 (0) | 0 (0) | - |
| No | 39 (100) | 31 (100) | ||
| Groups | p | ||||
|---|---|---|---|---|---|
| Patient | Control | ||||
| Median (25–75%) | Mean ± SD | Median (25–75%) | Mean ± SD | ||
| Age (months) | 48 (12–84) | 86 (48–132) | 0.014 *‡ | ||
| SESN2 (ng/mL) | 2.89 (1.94–4.1) | 3.58 (2.94–4.38) | 0.039 *‡ | ||
| ROS (units) | 394.35 (322.61–586.14) | 380.99 (320.03–410.54) | 0.057 ‡ | ||
| CRP (mg/L) | 16 (8–67) | 0.8 (0.5–3.74) | 0.001 *‡ | ||
| Procalcitonin (ug/L) | 0.68 (0.06–1.2) | 0.04 (0.01–0.5) | 0.001 *‡ | ||
| WBC count (103/uL) | 13,457.44 ± 6461.99 | 7520.81 ± 2084.53 | 0.001 *† | ||
| Hb (g/dL) | 12 (11–13) | 12 (11.6–13.5) | 0.129 ‡ | ||
| PLT count (103/uL) | 365 (265–476) | 306 (264–383) | 0.091 ‡ | ||
| PMNL count (103/uL) | 7983.59 ± 4063.36 | 3165.27 ± 1168.56 | 0.001 *† | ||
| Lymphocyte count (103/uL) | 3330 (2030–5650) | 2990 (2220–3770) | 0.380 ‡ | ||
| Urea (mg/dL) | 18 (13–25) | 21 (17–25) | 0.226 ‡ | ||
| Creatinine (mg/dL) | 0.25 (0.18–0.42) | 0.44 (0.3–0.56) | 0.001 *‡ | ||
| AST (U/L) | 31 (22–44) | 26 (21–35) | 0.059 ‡ | ||
| ALT (U/L) | 18 (12–34) | 16 (11–19) | 0.227 ‡ | ||
| Albumin (g/L) | 3.8 ± 0.56 | 4.16 ± 0.38 | 0.001 *† | ||
| Sex | p | |||
|---|---|---|---|---|
| Male | Female | |||
| Median (25–75%) | Median (25–75%) | |||
| Patient (n = 39) | SESN2 (ng/mL) | 2.89 (1.94–4.09) | 3.13 (1.96–4.1) | 0.922 |
| ROS (units) | 452.78 (346.03–604.73) | 386.34 (311.52–537.5) | 0.364 | |
| Control (n = 37) | SESN2 (ng/mL) | 3.72 (3.08–4.24) | 3.56 (2.86–4.55) | 0.892 |
| ROS (units) | 367.19 (288.24–393.18) | 412.67 (363.68–490.62) | 0.002 * | |
| Group | SESN2 (ng/mL) | ROS (Units) | Age (Months) | CRP (mg/L) | Procalcitonin (ug/L) | ||
|---|---|---|---|---|---|---|---|
| Patient (n = 39) | ROS (units) | r | 0.743 ** | ||||
| p | 0.001 | ||||||
| Age (months) | r | −0.467 * | −0.552 ** | ||||
| p | 0.003 | 0.001 | |||||
| CRP (mg/L) | r | −0.342 * | −0.132 | 0.181 | |||
| p | 0.033 | 0.425 | 0.271 | ||||
| Procalcitonin (ug/L) | r | −0.093 | −0.011 | −0.020 | 0.596 ** | ||
| p | 0.575 | 0.946 | 0.903 | 0.001 | |||
| Control (n = 37) | ROS (units) | r | 0.140 | ||||
| p | 0.409 | ||||||
| Age (months) | r | −0.284 | 0.089 | ||||
| p | 0.089 | 0.602 | |||||
| CRP (mg/L) | r | −0.379 * | −0.044 | 0.036 | |||
| p | 0.021 | 0.796 | 0.832 | ||||
| Procalcitonin (ug/L) | r | −0.363 * | −0.015 | 0.046 | 0.771 ** | ||
| p | 0.029 | 0.932 | 0.789 | 0.001 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uygun, H.; Çiçek, Z.N.; Ercan, K.; Taysi, S. A Novel Therapeutic Target for Pediatric Pneumonia: Sestrin2. Medicina 2025, 61, 1904. https://doi.org/10.3390/medicina61111904
Uygun H, Çiçek ZN, Ercan K, Taysi S. A Novel Therapeutic Target for Pediatric Pneumonia: Sestrin2. Medicina. 2025; 61(11):1904. https://doi.org/10.3390/medicina61111904
Chicago/Turabian StyleUygun, Hatice, Zeynep Nur Çiçek, Kenan Ercan, and Seyithan Taysi. 2025. "A Novel Therapeutic Target for Pediatric Pneumonia: Sestrin2" Medicina 61, no. 11: 1904. https://doi.org/10.3390/medicina61111904
APA StyleUygun, H., Çiçek, Z. N., Ercan, K., & Taysi, S. (2025). A Novel Therapeutic Target for Pediatric Pneumonia: Sestrin2. Medicina, 61(11), 1904. https://doi.org/10.3390/medicina61111904

