Small-Molecule GLP-1 Receptor Agonists: A Promising Pharmacological Approach
Abstract
1. Introduction
2. Peptidic GLP-1R Agonists
2.1. Efficacy in Diabetes and Obesity
2.2. Cardioprotective, Neuroprotective, and Other Benefits
2.3. Limitations of GLP-1R Agonist
3. The GLP-1 Receptor: Structure, Signaling, and Implications for Non-Peptidic Agonists
4. Materials and Methods
5. Small-Molecule Agonists of GLP-1R
5.1. Boc5
5.2. TT-OAD2
5.3. TTP-273
5.4. Danuglipron
5.5. Orforglipron
5.6. HRS-7535
5.7. ECC5004
5.8. CT-996
5.9. Aleniglipron
5.10. ID110521156
5.11. XW-014
5.12. PF-06954522
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mcintyre, N.; Holdsworth, C.D.; Turner, D.S. New interpretation of oral glucose tolerance. Lancet 1964, 284, 20–21. [Google Scholar] [CrossRef]
- Elrick, H.; Stimmler, L.; Hlad, C.J.; Arai, Y. Plasma Insulin Response to Oral and Intravenous Glucose Administration1. J. Clin. Endocrinol. Metab. 1964, 24, 1076–1082. [Google Scholar] [CrossRef]
- Perley, M.J.; Kipnis, D.M. Plasma Insulin Responses to Oral and Intravenous Glucose: Studies in Normal and Diabetic Subjects. J. Clin. Investig. 1967, 46, 1954–1962. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Meier, J.J. Incretin Hormones: Their Role in Health and Disease. Diabetes Obes. Metab. 2018, 20, 5–21. [Google Scholar] [CrossRef]
- Reimann, F.; Habib, A.M.; Tolhurst, G.; Parker, H.E.; Rogers, G.J.; Gribble, F.M. Glucose Sensing in L Cells: A Primary Cell Study. Cell Metab. 2008, 8, 532–539. [Google Scholar] [CrossRef]
- Parker, H.E.; Habib, A.M.; Rogers, G.J.; Gribble, F.M.; Reimann, F. Nutrient-Dependent Secretion of Glucose-Dependent Insulinotropic Polypeptide from Primary Murine K Cells. Diabetologia 2009, 52, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J.; Nauck, M.A. The Incretin System: Glucagon-like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes. Lancet 2006, 368, 1696–1705. [Google Scholar] [CrossRef]
- Holst, J.J. The Physiology of Glucagon-like Peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Müller, T.D. Incretin Hormones and Type 2 Diabetes. Diabetologia 2023, 66, 1780–1795. [Google Scholar] [CrossRef]
- Baggio, L.L.; Drucker, D.J. Biology of Incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef]
- Nurkolis, F.; Harbuwono, D.S.; Taslim, N.A.; Soegondo, S.; Suastika, K.; Sparringa, R.A.; Mustika, A.; Syam, A.F.; Santini, A.; Holly, J.M.P.; et al. New Insight on Dietary Strategies to Increase Insulin Sensitivity and Reduce Diabetes Prevalence: An Expert Perspective and Recommendation. Discov. Food 2025, 5, 136. [Google Scholar] [CrossRef]
- Gilbert, M.P.; Pratley, R.E. GLP-1 Analogs and DPP-4 Inhibitors in Type 2 Diabetes Therapy: Review of Head-to-Head Clinical Trials. Front. Endocrinol. 2020, 11, 178. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Wu, X.; Zou, H.; Wang, B.; Zhu, R.; Jones, C.L.; Fenaux, M. Preclinical Pharmacology of Low Molecular Weight GLP-1 Receptor Agonist XW014. J. Hepatol. 2022, 77, S726. [Google Scholar] [CrossRef]
- Hinnen, D. Glucagon-like Peptide 1 Receptor Agonists for Type 2 Diabetes. Diabetes Spectr. 2017, 30, 202–210. [Google Scholar] [CrossRef]
- Levin, P.A.; Nguyen, H.; Wittbrodt, E.; Kim, S.C. Glucagon-like Peptide-1 Receptor Agonists: A Systematic Review of Comparative Effectiveness Research. Diabetes Metab. Syndr. Obes. 2017, 10, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Petrova, L.; Andreevska, K.; Parvova, I.; Petkova, V. Systematic Review of the Efficacy and Safety of GLP-1 Receptor Agonists in the Treatment of Patients with Type 2 Diabetes Mellitus. Pharmacia 2024, 71, 1–17. [Google Scholar] [CrossRef]
- Moiz, A.; Filion, K.B.; Toutounchi, H.; Tsoukas, M.A.; Yu, O.H.Y.; Peters, T.M.; Eisenberg, M.J. Efficacy and Safety of Glucagon-like Peptide-1 Receptor Agonists for Weight Loss Among Adults Without Diabetes: A Systematic Review of Randomized Controlled Trials. Ann. Intern. Med. 2025, 178, 199–217. [Google Scholar] [CrossRef]
- Kalra, S.; Baruah, M.; Sahay, R.; Unnikrishnan, A.; Uppal, S.; Adetunji, O. Glucagon-like Peptide-1 Receptor Agonists in the Treatment of Type 2 Diabetes: Past, Present, and Future. Indian J. Endocrinol. Metab. 2016, 20, 254. [Google Scholar] [CrossRef]
- Sreenivasan, C.; Parikh, A.; Francis, A.J.; Kanthajan, T.; Pandey, M.; AlQassab, O.; Nath, T.S.; Sreenivasan, C.; Parikh, A.; Francis, A.J.; et al. Evaluating Cardiovascular Benefits of Glucagon-like Peptide-1 Receptor Agonists (GLP-1 RAs) in Type 2 Diabetes Mellitus: A Systematic Review. Cureus 2024, 16, e66697. [Google Scholar] [CrossRef]
- Marsico, F.; Paolillo, S.; Gargiulo, P.; Bruzzese, D.; Dell, S.; Esposito, I.; Renga, F.; Esposito, L.; Marciano, C.; Dellegrottaglie, S.; et al. Effects of Glucagon-like Peptide-1 Receptor Agonists on Major Cardiovascular Events in Patients with Type 2 Diabetes Mellitus with or without Established Cardiovascular Disease: A Meta-Analysis of Randomized Controlled Trials. Eur. Heart J. 2020, 41, 3346–3358. [Google Scholar] [CrossRef]
- Bethel, M.A.; Patel, R.A.; Merrill, P.; Lokhnygina, Y.; Buse, J.B.; Mentz, R.J.; Pagidipati, N.J.; Chan, J.C.; Gustavson, S.M.; Iqbal, N.; et al. Cardiovascular Outcomes with Glucagon-like Peptide-1 Receptor Agonists in Patients with Type 2 Diabetes: A Meta-Analysis. Lancet Diabetes Endocrinol. 2018, 6, 105–113. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, L.; Moura, H.; Chaves, P.C.; Neves, J.S.; Ferreira, J.P. The Impact of Glucagon-like Peptide-1 Receptor Agonists on Kidney Outcomes A Meta-Analysis of Randomized Placebo-Controlled Trials. Clin. J. Am. Soc. Nephrol. 2025, 20, 159–168. [Google Scholar] [CrossRef]
- Felix, N.; Gauza, M.M.; Bittar, V.; Nogueira, A.; Costa, T.A.; Godoi, A.; de Lucena, L.A.; Gonçalves, O.R.; Pinto, L.C.S.; Tramujas, L.; et al. Cardiovascular and Kidney Outcomes of Glucagon-like Peptide 1 Receptor Agonist Therapy in Type 2 Diabetes Mellitus and Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Cardiorenal Med. 2025, 15, 98–107. [Google Scholar] [CrossRef]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.E.; Bakris, G.; Baeres, F.M.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Hölscher, C. Protective Properties of GLP-1 and Associated Peptide Hormones in Neurodegenerative Disorders. Br. J. Pharmacol. 2022, 179, 695–714. [Google Scholar] [CrossRef] [PubMed]
- Kopp, K.O.; Glotfelty, E.J.; Li, Y.; Greig, N.H. Glucagon-like Peptide-1 (GLP-1) Receptor Agonists and Neuroinflammation: Implications for Neurodegenerative Disease Treatment. Pharmacol. Res. 2022, 186, 106550. [Google Scholar] [CrossRef]
- Choi, J.G.; Winn, A.N.; Skandari, M.R.; Franco, M.I.; Staab, E.M.; Alexander, J.; Wan, W.; Zhu, M.; Huang, E.S.; Philipson, L.; et al. First-Line Therapy for Type 2 Diabetes with Sodium-Glucose Cotransporter-2 Inhibitors and Glucagon-like Peptide-1 Receptor Agonists A Cost-Effectiveness Study. Ann. Intern. Med. 2022, 175, 1392–1400. [Google Scholar] [CrossRef]
- Wharton, S.; Davies, M.; Dicker, D.; Lingvay, I.; Mosenzon, O.; Rubino, D.M.; Pedersen, S.D. Postgraduate Medicine Managing the Gastrointestinal Side Effects of GLP-1 Receptor Agonists in Obesity: Recommendations for Clinical Practice. Postgrad. Med. 2021, 134, 14–19. [Google Scholar] [CrossRef]
- Shetty, R.; Basheer, F.T.; Poojari, P.G.; Thunga, G.; Chandran, V.P.; Acharya, L.D. Adverse Drug Reactions of GLP-1 Agonists: A Systematic Review of Case Reports. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102427. [Google Scholar] [CrossRef]
- Yang, Z.; Lv, Y.; Yu, M.; Mei, M.; Xiang, L.; Zhao, S.; Li, R. GLP-1 Receptor Agonist-Associated Tumor Adverse Events: A Real-World Study from 2004 to 2021 Based on FAERS. Front. Pharmacol. 2022, 13, 925377. [Google Scholar] [CrossRef] [PubMed]
- Shilleh, A.H.; Viloria, K.; Broichhagen, J.; Campbell, J.E.; Hodson, D.J. GLP1R and GIPR Expression and Signaling in Pancreatic Alpha Cells, Beta Cells and Delta Cells. Peptides 2024, 175, 171179. [Google Scholar] [CrossRef]
- Renner, É.; Dóra, F.; Oszwald, E.; Dobolyi, Á.; Palkovits, M. Elevated Glucagon-like Peptide-1 Receptor Level in the Paraventricular Hypothalamic Nucleus of Type 2 Diabetes Mellitus Patients. Int. J. Mol. Sci. 2022, 23, 15945. [Google Scholar] [CrossRef] [PubMed]
- El Eid, L.; Reynolds, C.A.; Tomas, A.; Jones, B. Biased Agonism and Polymorphic Variation at the GLP-1 Receptor: Implications for the Development of Personalised Therapeutics. Pharmacol. Res. 2022, 184, 106411. [Google Scholar] [CrossRef]
- Marzook, A.; Tomas, A.; Jones, B. The Interplay of Glucagon-like Peptide-1 Receptor Trafficking and Signalling in Pancreatic Beta Cells. Front. Endocrinol. 2021, 12, 678055. [Google Scholar] [CrossRef]
- Liu, L.; Rashid, M.; Wess, J. Regulation of GLP-1 and Glucagon Receptor Function by β-Arrestins in Metabolically Important Cell Types. Biochemistry 2025, 64, 978–986. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, T.; Wu, Y.; Peng, Y.; Wei, X.; Lu, T.; Jiao, Y. Binding Sites and Design Strategies for Small Molecule GLP-1R Agonists. Eur. J. Med. Chem. 2024, 275, 116632. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Choi, C.; Bae, J.; Choi, H.-J. Structural Insights into GPCR Signaling Activated by Peptide Ligands: From Molecular Mechanism to Therapeutic Application. Exp. Mol. Med. 2025, 57, 1467–1481. [Google Scholar] [CrossRef] [PubMed]
- Moon, M.J.; Park, S.; Kim, D.-K.; Cho, E.B.; Hwang, J.-I.; Vaudry, H.; Seong, J.Y. Structural and Molecular Conservation of Glucagon-like Peptide-1 and Its Receptor Confers Selective Ligand-Receptor Interaction. Front. Endocrinol. 2012, 3, 141. [Google Scholar] [CrossRef]
- Gong, B.; Yao, Z.; Zhou, C.; Wang, W.; Sun, L.; Han, J. Glucagon-like Peptide-1 Analogs: Miracle Drugs Are Blooming? Eur. J. Med. Chem. 2024, 269, 116342. [Google Scholar] [CrossRef]
- Ke, Z.; Ma, Q.; Ye, X.; Wang, Y.; Jin, Y.; Zhao, X.; Su, Z. Peptide GLP-1 Receptor Agonists: From Injection to Oral Delivery Strategies. Biochem. Pharmacol. 2024, 229, 116471. [Google Scholar] [CrossRef]
- Yuan, S.; Xia, L.; Wang, C.; Wu, F.; Zhang, B.; Pan, C.; Fan, Z.; Lei, X.; Stevens, R.C.; Sali, A.; et al. Conformational Dynamics of the Activated GLP-1 Receptor-G s Complex Revealed by Cross-Linking Mass Spectrometry and Integrative Structure Modeling. ACS Cent. Sci. 2023, 9, 992–1007. [Google Scholar] [CrossRef]
- Koole, C.; Wootten, D.; Simms, J.; Miller, L.J.; Christopoulos, A.; Sexton, P.M. Second Extracellular Loop of Human Glucagon-like Peptide-1 Receptor (GLP-1R) Has a Critical Role in GLP-1 Peptide Binding and Receptor Activation. J. Biol. Chem. 2012, 287, 3642–3658. [Google Scholar] [CrossRef]
- de Graaf, C.; Donnelly, D.; Wootten, D.; Lau, J.; Sexton, P.M.; Miller, L.J.; Ahn, J.-M.; Liao, J.; Fletcher, M.M.; Yang, D.; et al. Glucagon-like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol. Rev. 2016, 68, 954–1013. [Google Scholar] [CrossRef]
- Knudsen, L.B.; Lau, J. The Discovery and Development of Liraglutide and Semaglutide. Front. Endocrinol. 2019, 10, 155. [Google Scholar] [CrossRef]
- Pandey, S.; Mangmool, S.; Parichatikanond, W. Multifaceted Roles of GLP-1 and Its Analogs: A Review on Molecular Mechanisms with a Cardiotherapeutic Perspective. Pharmaceuticals 2023, 16, 836. [Google Scholar] [CrossRef]
- Luna Ceron, E.; Reddy, S.D.; Kattamuri, L.; Muvva, D.M.; Chozet, L.; Bright, T. Current Insights, Advantages and Challenges of Small Molecule Glucagon-like Peptide 1 Receptor Agonists: A Scoping Review. J. Brown Hosp. Med. 2025, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Cong, Z.; Zhou, Q.; Li, Y.; Chen, L.-N.; Zhang, Z.-C.; Liang, A.; Liu, Q.; Wu, X.; Dai, A.; Xia, T.; et al. Structural Basis of Peptidomimetic Agonism Revealed by Small-Molecule GLP-1R Agonists Boc5 and WB4-24. Proc. Natl. Acad. Sci. USA 2022, 119, e2200155119. [Google Scholar] [CrossRef] [PubMed]
- Saldívar-Cerón, H.I.; Vargas-Camacho, J.A.; León-Cabrera, S.; Briseño-Díaz, P.; Castañeda-Ramírez, A.E.; Muciño-Galicia, A.E.; Díaz-Domínguez, M.R. Oral Small-Molecule GLP-1 Receptor Agonists: Mechanistic Insights and Emerging Therapeutic Strategies. Sci. Pharm. 2025, 93, 26. [Google Scholar] [CrossRef]
- Chen, D.; Liao, J.; Li, N.; Zhou, C.; Liu, Q.; Wang, G.; Zhang, R.; Zhang, S.; Lin, L.; Chen, K.; et al. A Nonpeptidic Agonist of Glucagon-like Peptide 1 Receptors with Efficacy in Diabetic Db/Db Mice. Proc. Natl. Acad. Sci. USA 2007, 104, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Min, H.; Ni, G.; Gao, W.W.; Qing, L.; Wu, X.Y.; Ma, D.W.; Zhong, D.F.; Ge, G.B.; Chuan, L.; Chen, X.Y.; et al. A Continued Saga of Boc5, the First Non-Peptidic Glucagon-like Peptide-1 Receptor Agonist with in Vivo Activities. Acta Pharmacol. Sin. 2012, 33, 148–154. [Google Scholar] [CrossRef]
- Su, H.; He, M.; Li, H.; Liu, Q.; Wang, J.; Wang, Y.; Gao, W.; Zhou, L.; Liao, J.; Young, A.A.; et al. Boc5, a Non-Peptidic Glucagon-like Peptide-1 Receptor Agonist, Invokes Sustained Glycemic Control and Weight Loss in Diabetic Mice. PLoS ONE 2008, 3, e2892. [Google Scholar] [CrossRef] [PubMed]
- Ge, G.-B.; Ai, C.-Z.; Hu, W.-B.; Hou, J.; Zhu, L.-L.; He, G.-Y.; Fang, Z.-Z.; Liang, S.-C.; Wang, F.-Y.; Yang, L. The Role of Serum Albumin in the Metabolism of Boc5: Molecular Identification, Species Differences and Contribution to Plasma Metabolism. Eur. J. Pharm. Sci. 2013, 48, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Wootten, D.; Savage, E.E.; Willard, F.S.; Bueno, A.B.; Sloop, K.W.; Christopoulos, A.; Sexton, P.M. Differential Activation and Modulation of the Glucagon-like Peptide-1 Receptor by Small Molecule Ligands. Mol. Pharmacol. 2013, 83, 822–834. [Google Scholar] [CrossRef]
- He, M.; Su, H.; Gao, W.; Johansson, S.M.; Liu, Q.; Wu, X.; Liao, J.; Young, A.A.; Bartfai, T.; Wang, M.-W. Reversal of Obesity and Insulin Resistance by a Non-Peptidic Glucagon-like Peptide-1 Receptor Agonist in Diet-Induced Obese Mice. PLoS ONE 2010, 5, e14205. [Google Scholar] [CrossRef]
- Guan, N.; Gao, W.; He, M.; Zheng, M.; Xu, X.; Wang, X.; Wang, M.-W. Dynamic Monitoring of β-Cell Injury with Impedance and Rescue by Glucagon-like Peptide-1. Anal. Biochem. 2012, 423, 61–69. [Google Scholar] [CrossRef]
- Zhao, P.; Liang, Y.-L.; Belousoff, M.J.; Deganutti, G.; Fletcher, M.M.; Willard, F.S.; Bell, M.G.; Christe, M.E.; Sloop, K.W.; Inoue, A.; et al. Activation of the GLP-1 Receptor by a Non-Peptidic Agonist. Nature 2020, 577, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Choe, H.J.; Cho, Y.M. Peptidyl and Non-Peptidyl Oral Glucagon-like Peptide-1 Receptor Agonists. Endocrinol. Metab. 2021, 36, 22–29. [Google Scholar] [CrossRef]
- Malik, F.; Li, Z. Non-peptide Agonists and Positive Allosteric Modulators of Glucagon-like Peptide-1 Receptors: Alternative Approaches for Treatment of Type 2 Diabetes. Br. J. Pharmacol. 2022, 179, 511–525. [Google Scholar] [CrossRef]
- Freeman, J.L.R.; Agolory, J.; Valcarce, C. Preclinical Findings with Oral GLP-1 Receptor Agonist TTP273 Reinforce Importance of Neuro-Enteroendocrine Signaling. In Proceedings of the 76th Scientific Sessions of the American Diabetes Association, New Orleans, LA, USA, 10–14 June 2016; Available online: https://vtvtherapeutics.com/wp-content/uploads/pdf/TTP273_ADA2016_GLP_Poster_June2016.pdf (accessed on 4 September 2025).
- Tomlinson, B.; Hu, M.; Zhang, Y.; Chan, P.; Liu, Z.-M. An Overview of New GLP-1 Receptor Agonists for Type 2 Diabetes. Expert Opin. Investig. Drugs 2016, 25, 145–158. [Google Scholar] [CrossRef]
- Freeman, J.L.R.; Dunn, I.M.; Valcarce, C. Beyond topline results for the oral (non-peptide) GLP-1R agonist TTP273 in type 2 diabetes: How much and when. In Proceedings of the 53rd Annual Meeting of the European Association for the Study of Diabetes (EASD), Lisbon, Portugal, 11–15 September 2017. [Google Scholar]
- Study Details|NCT02653599|A Study to Evaluate Safety and Efficacy of TTP273 for 12 Weeks in Subjects with Type 2 Diabetes|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT02653599?intr=TTP273&rank=1 (accessed on 4 September 2025).
- Marathe, P.H.; Gao, H.X.; Close, K.L. American Diabetes Association Standards of Medical Care in Diabetes 2017. J. Diabetes 2017, 9, 320–324. [Google Scholar] [CrossRef]
- Valcarce, C.; Dunn, I.; Freeman, J.L.R. Effects of the Oral, Small Molecule GLP-1R Agonist TTP273 on Patients with Stage 2 Hypertension: Results from a Post Hoc Analysis of the Phase 2 Logra Study. Diabetes 2019, 68, 1015-P. [Google Scholar] [CrossRef]
- Saxena, A.R.; Gorman, D.N.; Esquejo, R.M.; Bergman, A.; Chidsey, K.; Buckeridge, C.; Griffith, D.A.; Kim, A.M. Danuglipron (PF-06882961) in Type 2 Diabetes: A Randomized, Placebo-Controlled, Multiple Ascending-Dose Phase 1 Trial. Nat. Med. 2021, 27, 1079–1087. [Google Scholar] [CrossRef]
- Griffith, D.A.; Edmonds, D.J.; Fortin, J.-P.; Kalgutkar, A.S.; Kuzmiski, J.B.; Loria, P.M.; Saxena, A.R.; Bagley, S.W.; Buckeridge, C.; Curto, J.M.; et al. A Small-Molecule Oral Agonist of the Human Glucagon-like Peptide-1 Receptor. J. Med. Chem. 2022, 65, 8208–8226. [Google Scholar] [CrossRef]
- Fediuk, D.J.; Gorman, D.N.; Stoddard, S.; Zhang, Y.; Ogden, A.G.; Winton, J.A.; Saxena, A.R. Effect of Renal Impairment on the Pharmacokinetics of a Single Oral Dose of Danuglipron in Participants with Type 2 Diabetes. J. Clin. Pharmacol. 2024, 64, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Ono, R.; Furihata, K.; Ichikawa, Y.; Nakazuru, Y.; Bergman, A.; Gorman, D.N.; Saxena, A.R. A Phase 1 Study to Evaluate the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of Danuglipron (PF-06882961), an Oral Small-molecule Glucagon-like Peptide-1 Receptor Agonist, in Japanese Adults with Type 2 Diabetes Mellitus. Diabetes Obes. Metab. 2023, 25, 805–814. [Google Scholar] [CrossRef]
- Saxena, A.R.; Frias, J.P.; Brown, L.S.; Gorman, D.N.; Vasas, S.; Tsamandouras, N.; Birnbaum, M.J. Efficacy and Safety of Oral Small Molecule Glucagon-like Peptide 1 Receptor Agonist Danuglipron for Glycemic Control Among Patients with Type 2 Diabetes. JAMA Netw. Open 2023, 6, e2314493. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.R.; Frias, J.P.; Gorman, D.N.; Lopez, R.N.; Andrawis, N.; Tsamandouras, N.; Birnbaum, M.J. Tolerability, Safety and Pharmacodynamics of Oral, Small-molecule Glucagon-like Peptide-1 Receptor Agonist Danuglipron for Type 2 Diabetes: A 12-week, Randomized, Placebo-controlled, Phase 2 Study Comparing Different Dose-escalation Schemes. Diabetes Obes. Metab. 2023, 25, 2805–2814. [Google Scholar] [CrossRef]
- Buckeridge, C.; Cobain, S.; Bays, H.E.; Matsuoka, O.; Fukushima, Y.; Halstead, P.; Tsamandouras, N.; Sherry, N.; Gorman, D.N.; Saxena, A.R. Efficacy and Safety of Danuglipron (PF-06882961) in Adults with Obesity: A Randomized, Placebo-controlled, Dose-ranging Phase 2b Study. Diabetes Obes. Metab. 2025, 27, 4915–4926. [Google Scholar] [CrossRef]
- Wang, P.; Guo, Z.; Kong, C.; Ma, Y.; Wang, M.; Zhang, X.; Yang, Z. Danuglipron Ameliorates Pressure Overload-Induced Cardiac Remodelling Through the AMPK Pathway. J. Cell. Mol. Med. 2025, 29, e70488. [Google Scholar] [CrossRef]
- Pfizer Provides Update on Oral GLP-1 Receptor Agonist Danuglipron|Pfizer. Available online: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-provides-update-oral-glp-1-receptor-agonist (accessed on 4 September 2025).
- Kawai, T.; Sun, B.; Yoshino, H.; Feng, D.; Suzuki, Y.; Fukazawa, M.; Nagao, S.; Wainscott, D.B.; Showalter, A.D.; Droz, B.A.; et al. Structural Basis for GLP-1 Receptor Activation by LY3502970, an Orally Active Nonpeptide Agonist. Proc. Natl. Acad. Sci. USA 2020, 117, 29959–29967. [Google Scholar] [CrossRef]
- Sloop, K.W.; Cox, A.L.; Wainscott, D.B.; White, A.; Droz, B.A.; Stutsman, C.; Showalter, A.D.; Suter, T.M.; Dunbar, J.D.; Snider, B.M.; et al. The Pharmacological Basis for Nonpeptide Agonism of the GLP-1 Receptor by Orforglipron. Sci. Transl. Med. 2024, 16, eadp5765. [Google Scholar] [CrossRef]
- Kawai, T.; Tanino, F.; Fukazawa, M.; Ogawa, K.; Nagao, S.; Yoshino, H.; Komatsu, S.-I.; Suzuki, Y.; Kawabe, Y. OWL833, an Orally Active Nonpeptide GLP-1 Receptor Agonist, Improves Glucose Tolerance by Increasing Insulin Secretion and Reduces Food Intake of Cynomolgus Monkeys. Diabetes 2018, 67, 1118-P. [Google Scholar] [CrossRef]
- Pratt, E.; Ma, X.; Liu, R.; Robins, D.; Haupt, A.; Coskun, T.; Sloop, K.W.; Benson, C. Orforglipron (LY3502970), a Novel, Oral Non-peptide Glucagon-like Peptide-1 Receptor Agonist: A Phase 1a, Blinded, Placebo-controlled, Randomized, Single- and Multiple-ascending-dose Study in Healthy Participants. Diabetes Obes. Metab. 2023, 25, 2634–2641. [Google Scholar] [CrossRef] [PubMed]
- Pratt, E.; Ma, X.; Liu, R.; Robins, D.; Coskun, T.; Sloop, K.W.; Haupt, A.; Benson, C. Orforglipron (LY3502970), a Novel, Oral Non-peptide Glucagon-like Peptide-1 Receptor Agonist: A Phase 1b, Multicentre, Blinded, Placebo-controlled, Randomized, Multiple-ascending-dose Study in People with Type 2 Diabetes. Diabetes Obes. Metab. 2023, 25, 2642–2649. [Google Scholar] [CrossRef]
- Ma, X.; Liu, R.; Pratt, E.J.; Benson, C.T.; Bhattachar, S.N.; Sloop, K.W. Effect of Food Consumption on the Pharmacokinetics, Safety, and Tolerability of Once-Daily Orally Administered Orforglipron (LY3502970), a Non-Peptide GLP-1 Receptor Agonist. Diabetes Ther. 2024, 15, 819–832. [Google Scholar] [CrossRef]
- Study Details|NCT06440980|A Study to Compare Tablets and Capsules of Orforglipron (LY3502970) in Healthy Participants Who Are Obese or Overweight|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06440980 (accessed on 5 September 2025).
- Study Details|NCT06370728|A Drug-Drug Interaction (DDI) Study of Orforglipron with Carbamazepine in Healthy Participants|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06370728 (accessed on 5 September 2025).
- Study Details|NCT06704763|A Drug-Drug Interaction Study of Orforglipron (LY3502970) with Quinidine in Healthy Participants|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06704763 (accessed on 5 September 2025).
- Study Details|NCT06186622|A Drug-Drug Interaction Study of Orforglipron (LY3502970) in Healthy Overweight and Obese Participants|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06186622 (accessed on 5 September 2025).
- Frias, J.P.; Hsia, S.; Eyde, S.; Liu, R.; Ma, X.; Konig, M.; Kazda, C.; Mather, K.J.; Haupt, A.; Pratt, E.; et al. Efficacy and Safety of Oral Orforglipron in Patients with Type 2 Diabetes: A Multicentre, Randomised, Dose-Response, Phase 2 Study. Lancet 2023, 402, 472–483, Erratum in Lancet 2023, 402, 774. https://doi.org/10.1016/S0140-6736(23)01811-1; Erratum in Lancet 2024, 403, 2786. https://doi.org/10.1016/S0140-6736(24)01314-X. [Google Scholar] [CrossRef]
- Wharton, S.; Blevins, T.; Connery, L.; Rosenstock, J.; Raha, S.; Liu, R.; Ma, X.; Mather, K.J.; Haupt, A.; Robins, D.; et al. Daily Oral GLP-1 Receptor Agonist Orforglipron for Adults with Obesity. N. Engl. J. Med. 2023, 389, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Rosenstock, J.; Hsia, S.; Nevarez Ruiz, L.; Eyde, S.; Cox, D.; Wu, W.-S.; Liu, R.; Li, J.; Fernández Landó, L.; Denning, M.; et al. Orforglipron, an Oral Small-Molecule GLP-1 Receptor Agonist, in Early Type 2 Diabetes. N. Engl. J. Med. 2025, 393, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Study Details|NCT05869903|A Study of Orforglipron (LY3502970) in Adult Participants with Obesity or Overweight with Weight-Related Comorbidities|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05869903 (accessed on 4 September 2025).
- Study Details|NCT05803421|A Study of Daily Oral Orforglipron (LY3502970) Compared with Insulin Glargine in Participants with Type 2 Diabetes and Obesity or Overweight at Increased Cardiovascular Risk|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05803421 (accessed on 4 September 2025).
- Study Details|NCT06952530|A Master Protocol Study of Orforglipron (LY3502970) in Participants with Hypertension and Obesity or Overweight (ATTAIN-Hypertension) GZL2|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06952530 (accessed on 4 September 2025).
- Study Details|NCT06109311|A Study of Orforglipron (LY3502970) in Participants with Type 2 Diabetes and Inadequate Glycemic Control with Insulin Glargine, with or Without Metformin and/or SGLT-2 Inhibitor|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06109311 (accessed on 4 September 2025).
- Study Details|NCT06649045|A Master Protocol for Orforglipron in Participants with Obstructive Sleep Apnea and Obesity or Overweight|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06649045 (accessed on 4 September 2025).
- Wu, J.; Zhou, R.; Zhang, Q.; Zhang, Q.; Qin, H.; Ye, Z.; Xu, Y.; Feng, S.; Shu, C.; Shen, Y.; et al. Safety, Pharmacokinetics and Pharmacodynamics of HRS-7535, a Novel Oral Small Molecule Glucagon-like Peptide-1 Receptor Agonist, in Healthy Participants: A Phase 1, Randomized, Double-blind, Placebo-controlled, Single- and Multiple-ascending Dose, and Food Effect Trial. Diabetes Obes. Metab. 2024, 26, 901–910. [Google Scholar] [CrossRef]
- Guo, L.; Sun, Z.; Zhang, L.; Qin, G.; Li, Y.; Ye, Z.; Xu, Y.; Shu, C.; Liu, P. 837-P: Efficacy and Safety of a Novel Oral Small Molecule Glucagon-like Peptide 1 Receptor Agonist (HRS-7535) in Type 2 Diabetes Mellitus Patients Inadequately Controlled by Metformin. Diabetes 2025, 74, 837-P. [Google Scholar] [CrossRef]
- Gu, W.; Zhang, L.; Li, L.; Wei, D.; Qifu, L.; Zong, Y.; Shu, C.; Dai, W.; Mu, Y. 865-P: Efficacy and Safety of a Novel Oral Small Molecule GLP-1RA in Chinese Obese Adults without Diabetes. Diabetes 2025, 74, 865-P. [Google Scholar] [CrossRef]
- Haggag, A.Z.; Xu, J.; Butcher, L.; Pagnussat, S.; Davies, G.; Lundqvist, S.; Wang, W.; Van Zuydam, N.; Nelander, K.; Jha, A.; et al. Non-clinical and First-in-human Characterization of ECC5004/AZD5004, a Novel Once-daily, Oral Small-molecule GLP-1 Receptor Agonist. Diabetes Obes. Metab. 2025, 27, 551–562. [Google Scholar] [CrossRef]
- Eccogene Receives Milestone Payment of $60 Million from AstraZeneca Following Dosing of the First Patient in Global Phase 2b Program of ECC5004/AZD5004 for the Treatment of Obesity and Type 2 Diabetes. Available online: https://www.globenewswire.com/news-release/2024/10/23/2967622/0/en/Eccogene-Receives-Milestone-Payment-of-60-Million-from-AstraZeneca-Following-Dosing-of-the-First-Patient-in-Global-Phase-2b-Program-of-ECC5004-AZD5004-for-the-Treatment-of-Obesity-.html (accessed on 4 September 2025).
- Study Details|NCT06579092|Effects of AZD5004 in Adults Who Are Living with Obesity or Overweight with at Least 1 Weight-Related Comorbidity|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06579092?term=AZD5004&rank=2 (accessed on 7 September 2025).
- Study Details|NCT06579105|Efficacy, Safety, and Tolerability of Once Daily Oral Administration of AZD5004 Versus Placebo for 26 Weeks in Adults with Type 2 Diabetes Mellitus.|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06579105 (accessed on 7 September 2025).
- Madsbad, S.; Holst, J.J. The Promise of Glucagon-like Peptide 1 Receptor Agonists (GLP-1RA) for the Treatment of Obesity: A Look at Phase 2 and 3 Pipelines. Expert Opin. Investig. Drugs 2025, 34, 197–215. [Google Scholar] [CrossRef]
- Drucker, D.J. GLP-1-Based Therapies for Diabetes, Obesity and Beyond. Nat. Rev. Drug Discov. 2025, 24, 631–650. [Google Scholar] [CrossRef]
- Roche Diagnostics/Pharmaceuticals. Obesity and Diabetes Assets in the Cardiovascular, Renal & Metabolism Pipeline: Virtual IR Event 13 September 2024. Presentation PDF. Available online: https://assets.roche.com/f/176343/x/fd3ea522a9/easd_final_to-share-130924.pdf (accessed on 5 September 2025).
- Luo, J.; Rodriguez, R.; Hergarden, A.; Tracy, T.; Lam, D.; Garai, S.; Marshal, D.; Hansen, S.K.; Chakravarthy, M. 771-P: Efficacy of CT-996, an Oral Small Molecule GLP-1 Receptor Agonist, in Human GLP-1 Receptor Knockin Mice and Obese Cynomolgus Monkeys. Diabetes 2024, 73, 771-P. [Google Scholar] [CrossRef]
- Roche. Ad hoc announcement pursuant to Art. 53 LR: Roche announces positive Phase I results of its oral GLP-1 receptor agonist CT-996 for the treatment of people with obesity. Media release, Basel, 17 July 2024. Available online: https://www.roche.com/media/releases/med-cor-2024-07-17 (accessed on 5 September 2025).
- Study Details|NCT05814107|Phase 1 Study of CT-996 in Overweight/Obese Participants and Patients with Type 2 Diabetes Mellitus|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05814107 (accessed on 5 September 2025).
- Mao, T.; Meng, Q.; Zhang, H.; Zhang, J.J.; Shi, S.; Guan, Z.; Jiang, X.; Zhang, F.; Lei, H.; Lin, X. 760-P: Discovery of GSBR-1290, a Highly Potent, Orally Available, Novel Small Molecule GLP-1 Receptor Agonist. Diabetes 2023, 72, 760-P. [Google Scholar] [CrossRef]
- Coll, B.; Zhang, J.; Chen, L.; Ibarra, L.; Yue, H.; Barth, A.; Bach, M.A. 767-P: A Phase 1b/2a Study of the Safety and Tolerability of GSBR-1290, a Novel Oral Small Molecule Glucagon-like Peptide 1 Receptor Agonist (GLP-1RA), in Healthy Overweight/Obese Volunteers (HOV) and Participants with Type 2 Diabetes Mellitus (T2DM). Diabetes 2024, 73, 767-P. [Google Scholar] [CrossRef]
- Study Details|NCT06693843|A Phase 2b, Dose-Range Finding Study of the Efficacy and Safety of Multiple Doses of Aleniglipron (GSBR-1290) in Participants Living with Obesity or Overweight with at Least One Weight-Related Comorbidity|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06693843?intr=Aleniglipron&rank=1 (accessed on 11 September 2025).
- Je, I.-G.; Im, A.-R.; Lee, D.-G.; Choi, W.-G.; Jang, E.; Park, J.-S.; Kim, D.; Lee, J.; Park, J.; An, K.; et al. 93-LB: Discovery of ID110521156, a Small Molecule GLP-1 Receptor Agonist, for the Treatment of Type 2 Diabetes and Obesity. Diabetes 2023, 72, 93-LB. [Google Scholar] [CrossRef]
- Je, I.-G.; Kyoung, Y.-J.; Yoo, S.-H.; Hong, E.-H.; Kim, M.; Yang, J.-Y.; Won, H.; Lee, S.; Park, J. 1983-LB: A Phase 1 Study of ID110521156, a Small Molecule Glucagon-like Peptide 1 Receptor Agonist, in Healthy Subjects. Diabetes 2025, 74, 1983-LB. [Google Scholar] [CrossRef]
- Study Details|NCT06635226|Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of ID110521156 in Healthy Adult Subjects|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06635226?intr=ID110521156&rank=2 (accessed on 4 September 2025).
- Study Details|NCT05579314|XW014 in Healthy Subjects and Patients with Type 2 Diabetes Mellitus (T2DM)|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05579314?intr=XW-014&rank=1 (accessed on 4 September 2025).
- Study Details|NCT06003777|A Study to Learn How Different Amounts of the Study Medicine Called PF-06954522 Are Tolerated and Act in the Body in Healthy Adults|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06003777?intr=PF-06954522&rank=1 (accessed on 4 September 2025).
- Study Details|NCT06393517|A Study to Learn How Different Forms of the Study Medicine Called PF-06954522 Are Taken Up into the Blood in Healthy Adults|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06393517?intr=PF-06954522&rank=2 (accessed on 4 September 2025).
- Study Details|NCT06279234|A Study to Learn How Different Amounts of PF-06954522 Are Tolerated and Act in Adults with Type 2 Diabetes Mellitus|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT06279234?intr=PF-06954522&rank=3 (accessed on 4 September 2025).
| GLP-1R Agonist | Brand Name | Approval Year | Dose and Route of Administration |
|---|---|---|---|
| Type 2 Diabetes | |||
| Exenatide | Byetta (Astra Zeneca) | 2006 | 5 μg and 10 μg twice a day (SC) |
| Liraglutide | Victoza (Novo Nordisk) | 2009 | 0.6 mg, 1.2 mg and 1.8 mg once a day (SC) |
| Exenatide ER | Bydureon (AstraZeneca) | 2011 | 2 mg once a week (SC) |
| Lixisenatide | Adlyxin/Lyxumia (Sanofi) | 2011 | 10 μg and 20 μg once a day (SC) |
| Dulaglutide | Trulicity (Eli Lilli) | 2014 | 0.75 mg, 1.5 mg, 3 mg and 4.5 mg once a week (SC) |
| Semaglutide | Ozempic (Novo Nordisk) | 2018 | 0.25 mg, 0.5 mg 1 mg and 2 mg once a week (SC) |
| Rybelsus (Novo Nordisk) | 2020 | 1.5 mg, 3 mg, 4 mg, 7 mg, 9 mg, 14 mg 25 mg and 50 mg once a day (PO) | |
| Tirzepatide # | Mounjaro (Eli Lilly) | 2022 | 2.5 mg, 5 mg, 10 mg and 15 mg once a week (SC) |
| Obesity | |||
| Liraglutide | Saxenda (Novo Nordisk) | 2015 | 0.6 mg, 1.2 mg 1.8 mg, 2.4 mg and 3 mg once a day (SC) |
| Semaglutide | Wegovy (Novo Nordisk) | 2021 | 0.25 mg, 0.5 mg 1 mg, 1.7 mg and 2.4 mg once a week (SC) |
| Tirzepatide # | Mounjaro (Eli Lilly) | 2024 | 2.5 mg, 5 mg, 10 mg and 15 mg once a week (SC) |
| Agonist | Developer | Mechanism/Binding Profile | Preclinical Findings | Clinical Development (Phase/NCT) | Key Efficacy Outcomes | Safety/Tolerability |
|---|---|---|---|---|---|---|
| Boc5 | Institute of Materia Medica (Shanghai, China) | Orthosteric full agonist Biased signaling profile, no β-arrestins recruiting | Decreased blood glucose and HbA1c Body weight reduction | - | - | - |
| TT-OAD2 | Eli Lilly & Co. (Indianapolis, IN, USA) | Orthosteric partial agonist Biased signaling profile, no β-arrestins recruiting | Insulinotropic effects | - | - | - |
| TTP-273 | vTv Therapeutics (High Point, NC, USA) | Orthosteric partial agonist Biased signaling profile | Improved glycemic control Reduced food intake | Phase IIa (NCT02653599) | Modest HbA1c reduction and weight loss (150 mg once daily) | Favorable GI tolerability profile |
| Danuglipron (PF-06882961) | Pfizer (New York, NY, USA) | Orthosteric full agonist for cAMP signaling Partial activation of other pathways | Glucose-lowering Anorexigenic effects Cardioprotective effects | Phase IIb (NCT04707313) | Dose-dependent reductions in HbA1c and body weight (40–120 mg twice daily) | Mild GI AEs Asymptomatic liver enzyme elevations |
| Orforglipron (LY3502970, OWL833) | Eli Lilly (Indianapolis, IN, USA)/Chugai Pharmaceutical (Tokyo, Japan) | Orthosteric partial agonist Biased signaling profile, no β-arrestins recruiting | Glucose-lowering activity Reduced food intake | Phase III (NCT05869903) | Significant reductions in HbA1c dose-dependent weight loss (9–45 mg once daily) | GI AEs of mild to moderate intensity |
| HRS-7535 | Shandong Suncadia Medicine (Lianyungang, Jiangsu, China)/Kailera Therapeutics (San Diego, CA, USA) | ND | ND | Phase II (NCT06250946) | HbA1c reductions dose-proportional body weight reduction (30–180 mg once daily) | Mild GI AEs |
| ECC5004 (AZD5004) | Eccogene (Shanghai, China)/AstraZeneca (Cambridge, UK) | Orthosteric full agonist Biased signaling profile, no β-arrestins recruiting | Enhanced insulin secretion Reduction in body weight gain | Phase II (NCT06579105) | Glucose-lowering efficacy and reduction in body weight (4–300 mg once daily) | Mild GI AEs |
| CT-996 | Roche Holding AG (Basel, Switzerland)/Carmot Therapeutics, (Berkeley, Berkeley, CA, USA) | Orthosteric partial agonist Biased signaling profile, reduced β-arrestins recruiting | Improved glycemic control and insulin secretion Body weight regulation | Phase II (NCT07112872) | Body weight reduction (10–120 mg once daily) | Mild to moderate GI AEs |
| Aleniglipron (GSBR-1290) | Structure Therapeutics (Shanghai Shi, China)/ Gasherbrum Bio/ (San Francisco, CA, USA) | Orthosteric full agonist Biased signaling profile, no β-arrestins recruiting | Increase in insulin secretion and glucose clearance Reduction in food intake and body weight | Phase IIb (NCT06693843) | Reduced HbA1c, body weight and plasma glucose (45–120 mg once daily) | Mild to moderate GI AEs |
| ID110521156 | Yunovia (Gyeonggi-do, Republic of Korea)/ Ildong Pharmaceutical (Seoul, Republic of Korea) | Orthosteric full agonist Partial/no activation of other pathways | Reduced plasma glucose levels and enhanced insulin secretion Reductions in food intake and body weight | Phase I (NCT06635226) | In progress | Mild GI AEs |
| XW-014 | Hangzhou Sciwind Biosciences (Zhejiang Sheng, China) | ND | Reduced blood glucose Reduced food intake and body weight | Phase I (NCT05579314) | In progress | In progress |
| PF-06954522 | Pfizer (New York, NY, USA)/Sosei Heptares (Tokyo, Japan) | ND | ND | Phase I (NCT06279234) | ND | Mild to moderate GI AEs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Șeremet, O.C.; Pușcașu, C.; Andrei, C.; Nițulescu, G.; Zbârcea, C.E.; Olaru, O.T. Small-Molecule GLP-1 Receptor Agonists: A Promising Pharmacological Approach. Medicina 2025, 61, 1902. https://doi.org/10.3390/medicina61111902
Șeremet OC, Pușcașu C, Andrei C, Nițulescu G, Zbârcea CE, Olaru OT. Small-Molecule GLP-1 Receptor Agonists: A Promising Pharmacological Approach. Medicina. 2025; 61(11):1902. https://doi.org/10.3390/medicina61111902
Chicago/Turabian StyleȘeremet, Oana Cristina, Ciprian Pușcașu, Corina Andrei, Georgiana Nițulescu, Cristina Elena Zbârcea, and Octavian Tudorel Olaru. 2025. "Small-Molecule GLP-1 Receptor Agonists: A Promising Pharmacological Approach" Medicina 61, no. 11: 1902. https://doi.org/10.3390/medicina61111902
APA StyleȘeremet, O. C., Pușcașu, C., Andrei, C., Nițulescu, G., Zbârcea, C. E., & Olaru, O. T. (2025). Small-Molecule GLP-1 Receptor Agonists: A Promising Pharmacological Approach. Medicina, 61(11), 1902. https://doi.org/10.3390/medicina61111902

