The Impact of Additional Exercise Interventions on Physical Performance and Muscle Strength of Frail Patients After Open-Heart Surgery: A Randomized Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Patients’ Selection
2.2. Patients’ Assessment and Allocation to Groups
2.3. Exercise Interventions
2.4. Study Outcomes
2.5. Adverse Events
2.6. Sample Size Calculation
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 23 December 2024).
- Population Structure and Ageing. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_structure_and_ageing (accessed on 23 December 2024).
- Sustainable Development Impact Meetings. World Economic Forum. Available online: https://www.weforum.org/meetings/sustainable-development-impact-meetings-2024/ (accessed on 23 December 2024).
- Timmis, A.; Aboyans, V.; Vardas, P.; Townsend, N.; Torbica, A.; Kavousi, M.; Boriani, G.; Huculeci, R.; Kazakiewicz, D.; Scherr, D.; et al. European Society of Cardiology: The 2023 Atlas of Cardiovascular Disease Statistics. Eur. Heart J. 2024, 45, 4019–4062. [Google Scholar] [CrossRef]
- Marinus, N.; Vigorito, C.; Giallauria, F.; Haenen, L.; Jansegers, T.; Dendale, P.; Feys, P.; Meesen, R.; Timmermans, A.; Spildooren, J.; et al. Frailty is highly prevalent in specific cardiovascular diseases and females, but significantly worsens prognosis in all affected patients: A systematic review. Ageing Res. Rev. 2021, 66, 101233. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, C.; Stelfox, H.; Norris, C.; Rolfson, D.; Meyer, S.; Zibdawi, M.; Bagshaw, S. Association between preoperative frailty and outcomes among adults undergoing cardiac surgery: A prospective cohort study. CMAJ Open 2021, 9, E777–E787. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Nomura, Y.; Suffredini, G.; Bush, B.; Tian, J.; Yamaguchi, A.; Walston, J.; Hasan, R.; Mandal, K.; Schena, S.; et al. Functional Outcomes of Frail Patients After Cardiac Surgery: An Observational Study. Anesth. Analg. 2020, 130, 1534–1544. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Yanagawa, B.; An, K.R.; Arora, R.C.; Verma, S.; Friedrich, J.O.; Canadian Cardiovascular Surgery Meta-Analysis Working Group. Frailty and pre-frailty in cardiac surgery: A systematic review and meta-analysis of 66,448 patients. J. Cardiothorac. Surg. 2021, 16, 184. [Google Scholar] [CrossRef]
- Dibben, G.; Faulkner, J.; Oldridge, N.; Rees, K.; Thompson, D.R.; Zwisler, A.-D.; Taylor, R.S. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2021, 2021, CD001800. [Google Scholar] [CrossRef]
- ESC Prevention of CVD Programme: Rehabilitation. Available online: https://www.escardio.org/Education/ESC-Prevention-of-CVD-Programme/Rehabilitation (accessed on 4 August 2025).
- Servey, J.T.; Stephens, M. Cardiac Rehabilitation: Improving Function and Reducing Risk. Am. Fam. Physician 2016, 94, 37–43. [Google Scholar]
- Taylor, R.S.; Brown, A.; Ebrahim, S.; Jolliffe, J.; Noorani, H.; Rees, K.; Skidmore, B.; Stone, J.A.; Thompson, D.R.; Oldridge, N. Exercise-based rehabilitation for patients with coronary heart disease: Systematic review and meta-analysis of randomized controlled trials. Am. J. Med. 2004, 116, 682–692. [Google Scholar] [CrossRef]
- Wang, H.; Huang, W.Y.; Zhao, Y. Efficacy of Exercise on Muscle Function and Physical Performance in Older Adults with Sarcopenia: An Updated Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 8212. [Google Scholar] [CrossRef]
- Merchant, R.A.; Morley, J.E.; Izquierdo, M. Exercise, Aging and Frailty: Guidelines for Increasing Function. J. Nutr. Health Aging 2021, 25, 405–409. [Google Scholar] [CrossRef]
- Widhalm, K.; Maul, L.; Durstberger, S.; Putz, P.; Klupper, C.; Werner, F. Real-Time Digitized Visual Feedback in Exercise Therapy for Lower Extremity Functional Deficits: Qualitative Study of Usability Factors During Prototype Testing. JMIR Serious Games 2024, 12, e51771. [Google Scholar] [CrossRef] [PubMed]
- Ekambaram, D.; Ponnusamy, V. Real-Time Monitoring and Assessment of Rehabilitation Exercises for Low Back Pain through Interactive Dashboard Pose Analysis Using Streamlit—A Pilot Study. Electronics 2024, 13, 3782. [Google Scholar] [CrossRef]
- Tsiakas, K.; Huber, M.; Makedon, F. A multimodal adaptive session manager for physical rehabilitation exercising. In Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece, 1–3 July 2015; ACM: Corfu, Greece, 2015; pp. 1–8. [Google Scholar]
- Van Den Berg, M.; Sherrington, C.; Killington, M.; Smith, S.; Bongers, B.; Hassett, L.; Crotty, M. Video and computer-based interactive exercises are safe and improve task-specific balance in geriatric and neurological rehabilitation: A randomised trial. J. Physiother. 2016, 62, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Jirasakulsuk, N.; Saengpromma, P.; Khruakhorn, S. Real-Time Telerehabilitation in Older Adults With Musculoskeletal Conditions: Systematic Review and Meta-analysis. JMIR Rehabil. Assist. Technol. 2022, 9, e36028. [Google Scholar] [CrossRef]
- Brusilovsky, P.; Kobsa, A.; Nejdl, W. The Adaptive Web: Methods and Strategies of Web Personalization; The adaptive web; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-72079-9. [Google Scholar]
- Li, Y.; Gao, Y.; Hu, S.; Chen, H.; Zhang, M.; Yang, Y.; Liu, Y. Effects of multicomponent exercise on the muscle strength, muscle endurance and balance of frail older adults: A meta-analysis of randomised controlled trials. J. Clin. Nurs. 2023, 32, 1795–1805. [Google Scholar] [CrossRef]
- Lee, Y.; Lin, C.; Wu, W.; Chiu, H.; Huang, H. Virtual reality exercise programs ameliorate frailty and fall risks in older adults: A meta-analysis. J. Am. Geriatr. Soc. 2023, 71, 2946–2955. [Google Scholar] [CrossRef]
- Toft, B.S.; Rodkjær, L.Ø.; Sørensen, L.; Saugbjerg, M.R.; Bekker, H.L.; Modrau, I.S. Feasibility of early digital health rehabilitation after cardiac surgery in the elderly: A qualitative study. BMC Health Serv. Res. 2024, 24, 113. [Google Scholar] [CrossRef]
- Etayo-Urtasun, P.; Sáez de Asteasu, M.L.; Izquierdo, M. Comparison of hospitalisation settings and exercise interventions in acute care: A systematic review and meta-analysis. Age Ageing 2025, 54, afaf035. [Google Scholar] [CrossRef]
- MacEachern, E.; Quach, J.; Giacomantonio, N.; Theou, O.; Hillier, T.; Abel-Adegbite, I.; Gonzalez-Lara, M.; Kehler, D.S. Cardiac rehabilitation and frailty: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2024, 31, 1960–1976. [Google Scholar] [CrossRef]
- Hopewell, S.; Chan, A.-W.; Collins, G.S.; Hróbjartsson, A.; Moher, D.; Schulz, K.F.; Tunn, R.; Aggarwal, R.; Berkwits, M.; Berlin, J.A.; et al. CONSORT 2025 explanation and elaboration: Updated guideline for reporting randomised trials. BMJ 2025, 389, e081124. [Google Scholar] [CrossRef]
- Stonkuvienė, V.; Kubilius, R.; Lendraitienė, E. Effects of Different Exercise Interventions on Fall Risk and Gait Parameters in Frail Patients After Open Heart Surgery: A Pilot Study. Medicina 2025, 61, 206. [Google Scholar] [CrossRef]
- Afilalo, J. Evaluating and Treating Frailty in Cardiac Rehabilitation. Clin. Geriatr. Med. 2019, 35, 445–457. [Google Scholar] [CrossRef] [PubMed]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories, ATS statement: Guidelines for the Six-Minute Walk Test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [CrossRef] [PubMed]
- Jetté, M.; Sidney, K.; Blümchen, G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A. Fundamentals of Resistance Training: Progression and Exercise Prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Beia, R.; Wassermann, A.; Raps, S.; Mayhew, J.; Uder, M.; Kemmler, W. Developing Accurate Repetition Prediction Equations for Trained Older Adults with Osteopenia. Sports 2024, 12, 233. [Google Scholar] [CrossRef]
- Barbalho, M.; Gentil, P.; Raiol, R.; Del Vecchio, F.B.; Ramirez-Campillo, R.; Coswig, V.S. High 1RM Tests Reproducibility and Validity are not Dependent on Training Experience, Muscle Group Tested or Strength Level in Older Women. Sports 2018, 6, 171. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Pescatello, L.S., Ed.; Wolters Kluwer, Lippincott Williams & Wilkins: Baltimore, MD, USA, 2014; ISBN 978-1-60913-955-1. [Google Scholar]
- Brzycki, M. Strength Testing—Predicting a One-Rep Max from Reps-to-Fatigue. J. Phys. Educ. Recreat. Dance 1993, 64, 88–90. [Google Scholar] [CrossRef]
- Vaishya, R.; Misra, A.; Vaish, A.; Ursino, N.; D’Ambrosi, R. Hand grip strength as a proposed new vital sign of health: A narrative review of evidences. J. Health Popul. Nutr. 2024, 43, 7. [Google Scholar] [CrossRef]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef]
- Silva, L.G.D.C.; Da Silva, S.L.A.; Freire, J.C.G.; Nascimento, E.D.S.; De Andrade, P.R.; Pereira, D.S.; Brito, G.E.G. Exercise-based physiotherapeutic interventions in frailty syndrome: A systematic review and meta-analysis. Physiother. Res. Int. 2024, 29, e2092. [Google Scholar] [CrossRef] [PubMed]
- Rinaldo, L.; Caligari, M.; Acquati, C.; Nicolazzi, S.; Paracchini, G.; Sardano, D.; Giordano, A.; Marcassa, C.; Corrà, U. Functional capacity assessment and Minimal Clinically Important Difference in post-acute cardiac patients: The role of Short Physical Performance Battery. Eur. J. Prev. Cardiol. 2022, 29, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Crouch, R. Minimal clinically important difference for change in 6-minute walk test distance of adults with pathology: A systematic review. J. Eval. Clin. Pract. 2017, 23, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Minimal clinically important difference for grip strength: A systematic review. J. Phys. Ther. Sci. 2019, 31, 75–78. [Google Scholar] [CrossRef]
- Kirn, D.R.; Reid, K.F.; Hau, C.; Phillips, E.M.; Fielding, R.A. What is a Clinically Meaningful Improvement in Leg-Extensor Power for Mobility-limited Older Adults? J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 632–636. [Google Scholar] [CrossRef]
- Santin, L.; Fonseca, J.; Hirata, R.P.; Hernandes, N.A.; Pitta, F. Minimal important difference of two methods for assessment of quadriceps femoris strength post exercise program in individuals with COPD. Heart Lung 2022, 54, 56–60. [Google Scholar] [CrossRef]
- Ding, R.-S.; Lin, K.-L.; Wang, W.-H.; Huang, M.-H.; Liou, I.-H. Early Phase I Cardiac Rehabilitation Integrated with Multidisciplinary Post-Acute Care in Decompensated Heart Failure: Insights from Serial Cardiopulmonary Exercise Testing. Medicina 2025, 61, 1080. [Google Scholar] [CrossRef]
- James, K.; Jamil, Y.; Kumar, M.; Kwak, M.J.; Nanna, M.G.; Qazi, S.; Troy, A.L.; Butt, J.H.; Damluji, A.A.; Forman, D.E.; et al. Frailty and Cardiovascular Health. J. Am. Heart Assoc. 2024, 13, e031736. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Saco-Ledo, G.; Morales, J.S.; Gallardo-Gómez, D.; Morales-Palomo, F.; López-Ortiz, S.; Rivas-Baeza, B.; Castillo-García, A.; Jiménez-Pavón, D.; Santos-Lozano, A.; et al. Effects of physical exercise on physical function in older adults in residential care: A systematic review and network meta-analysis of randomised controlled trials. Lancet Healthy Longev. 2023, 4, e247–e256. [Google Scholar] [CrossRef]
- Huang, W.-T.; Liu, C.-Y.; Shih, C.-C.; Chen, Y.-S.; Chou, C.-L.; Lee, J.-T.; Chiou, A.-F. Effects of a home-based multicomponent exercise programme on frailty in post-cardiac surgery patients: A randomized controlled trial. Eur. J. Cardiovasc. Nurs. 2025, 24, 580–592. [Google Scholar] [CrossRef]
- Poli, L.; Greco, G.; Cataldi, S.; Ciccone, M.M.; De Giosa, A.; Fischetti, F. Multicomponent versus aerobic exercise intervention: Effects on hemodynamic, physical fitness and quality of life in adult and elderly cardiovascular disease patients: A randomized controlled study. Heliyon 2024, 10, e36200. [Google Scholar] [CrossRef]
- Yang, X.; Li, S.; Xu, L.; Liu, H.; Li, Y.; Song, X.; Bao, J.; Liao, S.; Xi, Y.; Guo, G. Effects of multicomponent exercise on frailty status and physical function in frail older adults: A meta-analysis and systematic review. Exp. Gerontol. 2024, 197, 112604. [Google Scholar] [CrossRef]
- Martínez-Aldao, D.; Diz, J.C.; Varela, S.; Sánchez-Lastra, M.A.; Ayán, C. Impact of a five-month detraining period on the functional fitness and physical activity levels on active older people. Arch. Gerontol. Geriatr. 2020, 91, 104191. [Google Scholar] [CrossRef] [PubMed]
- Mañas, A.; Gómez-Redondo, P.; Valenzuela, P.L.; Morales, J.S.; Lucía, A.; Ara, I. Unsupervised home-based resistance training for community-dwelling older adults: A systematic review and meta-analysis of randomized controlled trials. Ageing Res. Rev. 2021, 69, 101368. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.-H.; Cheng, Y.-H.; Yang, T.-H.; Lee, S.-J.; Yang, Y.-R.; Wang, R.-Y. Effects of strength exercises combined with other training on physical performance in frail older adults: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2022, 102, 104757. [Google Scholar] [CrossRef] [PubMed]
- Carnavale, B.F.; Da Silva Santos, V.R.; Farche, A.C.S.; Rossi, P.G.; Fiogbé, E.; De Souza Buto, M.S.; De Vassimon-Barroso, V.; De Medeiros Takahashi, A.C. Effects of a multicomponent training and detraining on frailty status, physical activity level, sedentary behavior patterns and physical performance of pre-frail older adults: A randomized controlled trial. Eur. Geriatr. Med. 2024, 15, 1701–1712. [Google Scholar] [CrossRef]
- Liu, J.Y.W.; Yin, Y.-H.; Kor, P.P.K.; Kwan, R.Y.C.; Lee, P.H.; Chien, W.T.; Siu, P.M.; Hill, K.D. Effects of an individualised exercise programme plus Behavioural Change Enhancement (BCE) strategies for managing fatigue in frail older adults: A cluster randomised controlled trial. BMC Geriatr. 2023, 23, 370. [Google Scholar] [CrossRef]
- Labata-Lezaun, N.; González-Rueda, V.; Llurda-Almuzara, L.; López-de-Celis, C.; Rodríguez-Sanz, J.; Bosch, J.; Vicente-Rodríguez, G.; Gorczakowska, D.; Araluze-Arizti, P.; Pérez-Bellmunt, A. Effectiveness of multicomponent training on physical performance in older adults: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2023, 104, 104838. [Google Scholar] [CrossRef]
- Cacau, L.D.A.P.; Oliveira, G.U.; Maynard, L.G.; Araújo Filho, A.A.D.; Silva, W.M.D., Jr.; Cerqueria Neto, M.L.; Antoniolli, A.R.; Santana-Filho, V.J. The use of the virtual reality as intervention tool in the postoperative of cardiac surgery. Rev. Bras. Cir. Cardiovasc. 2013, 28, 281–289. [Google Scholar] [CrossRef]
- Beigienė, A.; Petruševičienė, D.; Barasaitė, V.; Kubilius, R.; Macijauskienė, J. Cardiac Rehabilitation and Complementary Physical Training in Elderly Patients after Acute Coronary Syndrome: A Pilot Study. Medicina 2021, 57, 529. [Google Scholar] [CrossRef]
- Serdar, C.C.; Cihan, M.; Yücel, D.; Serdar, M.A. Sample size, power and effect size revisited: Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Medica 2021, 31, 010502. [Google Scholar] [CrossRef]
- Khan, M.S.; Khan, M.A.A.; Irfan, S.; Siddiqi, T.J.; Greene, S.J.; Anker, S.D.; Sreenivasan, J.; Friede, T.; Tahhan, A.S.; Vaduganathan, M.; et al. Reporting and interpretation of subgroup analyses in heart failure randomized controlled trials. ESC Heart Fail. 2021, 8, 26–36. [Google Scholar] [CrossRef]
Type of Activity | Description |
---|---|
(CG) Conventional Rehabilitation Program | |
Aerobic training | Frequency: 6 times/week Intensity: light-moderate (Borg 9–13); intensity 37–45% VO2max, peak heart rate (HRpeak) 57–63%, heart rate reserve from 30–39% Duration: up to 40–45 min Type: aerobic endurance with cycle ergometer |
Stretching exercises | Frequency: 7 times/week Intensity: light-to-moderate (Borg 9–13) Duration: 10 min Type: passive stretching and ROM for major muscle groups |
Breathing exercises | Frequency: 7 times/week Intensity: light (Borg 9–11) Duration: 10 min Type: diaphragmatic breathing |
(IG-1) Conventional rehabilitation program plus multicomponent dynamic training | |
Aerobic activity | Frequency: 3 times/week Intensity: moderate (Borg 12–13) Duration: 20–30 min Type: aerobic endurance (stair climbing, walking, cycling or other cyclic aerobic activity) |
Sensorimotor training | Frequency: 3 times/week Intensity: light-to-moderate (Borg 9–13) Duration: 15–20 min Type: sensorimotor, balance, coordination with balance platforms |
Muscle strength | Frequency: 3 times/week Intensity: starting from light (30% of 1RM) and increasing to moderate-vigorous (Borg 9–17) Extent: 8–10 exercises (3 sessions, 10 repetitions) Type: strength training with resistance bands and free weights. |
Flexibility | Frequency: 3 times/week Intensity: light (Borg 9–11) Duration: 5–10 min Type: ROM, stretching |
(IG-2) Conventional rehabilitation program plus combined computer-based interactive cardiac program | |
Gait improvement and aerobic activity | Frequency: 3 times/week Intensity: moderate (Borg 12–13) Duration: 20–30 min Type: gait training and aerobic endurance training with Biodex GaitTrainer™3 treadmill and Zebris FDMT |
Sensorimotor training | Frequency: 3 times/week Intensity: light-to-moderate (Borg 9–13) Duration: ~20 min, each training mode lasted for 3 min Type: sensorimotor, balance, coordination with Biodex Balance SD |
Muscle strength | Frequency: 3 times/week Intensity: starting from light (30% of 1RM) and increasing to moderate-vigorous (Borg 9–17) Extent: 8–10 exercises (3 sessions, 10 repetitions) Type: strength with HUR device |
Characteristic | CG (n = 51) | IG-1 (n = 51) | IG-2 (n = 51) | p * | p ** CG vs. IG-2 | p ** IG-1 vs. IG-2 | p ** CG vs. IG-1 |
---|---|---|---|---|---|---|---|
Age, years, median (range) | 73 (65; 88) | 71 (65; 87) | 71 (65; 87) | 0.314 | 0.435 | >0.99 | 0.801 |
Sex, n (%) | |||||||
Male | 38 (74.5) | 28 (54.9) | 33 (64.7) | 0.177 | NA | ||
Female | 13 (25.5) | 23 (45.1) | 18 (35.3) | ||||
Height, m, median (range) | 1.70 (1.52; 1.85) | 1.66 (1.49; 1.78) | 1.71 (1.52; 1.85) | 0.006 | >0.99 | 0.006 | 0.058 |
Weight, kg, median (range) | 77 (52; 118) | 76 (46; 107) | 80 (59; 111) | 0.025 | 0.519 | 0.020 | 0.529 |
BMI, kg/m2, median (range) | 27.70 (20.31; 37.88) | 27.44 (18.71; 41.02) | 28.41 (20.42; 37.34) | 0.356 | >0.99 | 0.457 | > 0.99 |
LVEF, % | 50 (30; 55) | 50 (15; 58) | 50 (34; 60) | 0.186 | 0.229 | 0.581 | > 0.99 |
Beginning of CR after surgery, days | 15 (9; 45) | 14 (10; 49) | 14 (10;49) | 0.060 | 0.062 | 0.324 | > 0.99 |
CR duration, days | 20 (9; 20) | 20 (9; 20) | 19 (14; 20) | 0.227 | >0.99 | 0.257 | > 0.99 |
Surgery type, n (%) | |||||||
CABG | 29 (56.9) | 32 (62.7) | 37 (72.5) | 0.573 | NA | ||
Heart valve surgery | 9 (17.6) | 7 (13.7) | 6 (11.8) | ||||
AVR-CABG | 13 (25.5) | 12 (23.5) | 8 (15.7) | ||||
Current smokers, n (%) | 2 (3.9) | 7 (13.7) | 5 (39.8) | 0.225 | NA | ||
Comorbidities, n (%) | |||||||
Diabetes | 8 (15.7) | 7 (13.7) | 11 (21.6) | 0.548 | NA | ||
COPD | 0 (0.0) | 2 (3.9) | 1 (2.0) | 0.361 | NA | ||
Atrial fibrillation | 18 (35.3) | 14 (27.5) | 15 (29.4) | 0.671 | NA | ||
Arterial hypertension | 47 (92.2) | 47 (92.2) | 46 (90.2) | 0.919 | NA | ||
Depression | 1 (2.0) | 1 (2.0) | 0 (2.0) | 0.603 | NA | ||
Diseases of the musculoskeletal system | 5 (9.8) | 2 (3.9) | 9 (17.6) | 0.076 | NA | ||
Oncological diseases | 6 (11.8) | 5 (9.8) | 3 (5.9) | 0.577 | NA | ||
Dyslipidemia | 42 (82.4) | 41 (80.4) | 37 (72.5) | 0.444 | NA | ||
Total EFS, score, median (range) | 6 (4; 10) | 6 (4; 13) | 6 (4; 11) | 0.748 | >0.99 | >0.99 | >0.99 |
Frailty classification, n (%) | |||||||
Vulnerable | 21 (41.2) | 23 (45.1) | 19 (37.3) | 0.800 | NA | ||
Mild Frailty | 22 (43.1) | 21 (41.2) | 22 (43.1) | ||||
Moderate Frailty | 7 (13.7) | 6 (11.8) | 9 (17.6) | ||||
Severe Frailty | 1 (2.0) | 1 (2.0) | 1 (2.0) |
Parameters | CG (n = 46) | ES | p * | IG-1 (n = 46) | ES | p * | IG-2 (n = 46) | ES | p * | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T0 | T1 | T0 | T1 | |||||||
SPPB, score | 10 (5; 12) | 12 (7; 12) | 0.613 | <0.001 | 10 (6; 12) | 11 (6; 12) | 0.744 | <0.001 | 10 (6; 12) | 11 (8; 12) | 0.664 | <0.001 |
6MWD, m | 283.5 (151; 545) | 358 (160; 570) | 0.813 | <0.001 | 276 (150; 418) | 398.5 (269; 736) | 0.871 | <0.001 | 300 (149; 456) | 392.5 (228; 533) | 0.808 | <0.001 |
Peak workload, W | 42.5 (28; 82) | 55 (36; 109) | 0.831 | <0.001 | 48.5 (27; 91) | 60 (29; 136) | 0.852 | <0.001 | 50 (34; 90) | 61 (36; 110) | 0.725 | <0.001 |
Grip strength, kg | ||||||||||||
Right, kg | 32 (16; 64) | 33 (16; 56) | 0.302 | <0.001 | 27 (12; 45) | 28 (14; 45) | 0.264 | 0.123 | 34 (12; 50) | 34 (15; 52) | 0.457 | 0.001 |
Left, kg | 31 (10; 54) | 32 (12; 56) | 0.525 | <0.001 | 24 (12; 45) | 25 (10; 47) | 0.230 | 0.262 | 27 (10; 48) | 29 (9; 52) | 0.648 | <0.001 |
Leg press 1RM, kg | 30 (16; 47) | 33 (17; 47) | 0.629 | <0.001 | 32 (17; 62) | 45 (19; 65) | 0.754 | <0.001 | 34.5 (16; 56) | 47 (23; 65) | 0.820 | <0.001 |
Parameters | T1–T0 | p * | CG vs. IG-2 | IG-1 vs. IG-2 | CG vs. IG-1 | |||||
---|---|---|---|---|---|---|---|---|---|---|
CG (n = 46) | IG-1 (n = 46) | IG-2 (n = 46) | ES | p ** | ES | p ** | ES | p ** | ||
SPPB, score | 1 (–2; 6) | 1 (–1; 4) | 1 (–1; 5) | 0.939 | 0.013 | 0.913 | 0.034 | 0.729 | 0.027 | 0.812 |
6MWD, m | 58.5 (–113; 361) | 101 (11; 318) | 75 (–124; 221) | 0.047 | 0.110 | 0.359 | 0.174 | 0.126 | 0.240 | 0.014 |
Peak workload, W | 11 (–8; 37) | 13 (–4; 45) | 11.5 (–18; 33) | 0.572 | 0.078 | 0.438 | 0.108 | 0.313 | 0.021 | 0.816 |
Grip strength, kg | ||||||||||
Right hand | 1 (–12; 10) | 2 (–6; 7) | 2 (–6; 10) | 0.690 | 0.086 | 0.414 | 0.067 | 0.517 | 0.017 | 0.865 |
Left hand | 2 (–6; 7) | 0.5 (–7; 11) | 2 (–6; 9) | 0.262 | 0.038 | 0.737 | 0.159 | 0.120 | 0.129 | 0.222 |
Leg press 1RM, kg | 3 (–7; 12) | 9 (–15; 34) | 11.5 (–11; 33) | <0.001 | 0.613 | <0.001 | 0.127 | 0.215 | 0.480 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stonkuvienė, V.; Kubilius, R.; Lendraitienė, E. The Impact of Additional Exercise Interventions on Physical Performance and Muscle Strength of Frail Patients After Open-Heart Surgery: A Randomized Trial. Medicina 2025, 61, 1812. https://doi.org/10.3390/medicina61101812
Stonkuvienė V, Kubilius R, Lendraitienė E. The Impact of Additional Exercise Interventions on Physical Performance and Muscle Strength of Frail Patients After Open-Heart Surgery: A Randomized Trial. Medicina. 2025; 61(10):1812. https://doi.org/10.3390/medicina61101812
Chicago/Turabian StyleStonkuvienė, Vitalija, Raimondas Kubilius, and Eglė Lendraitienė. 2025. "The Impact of Additional Exercise Interventions on Physical Performance and Muscle Strength of Frail Patients After Open-Heart Surgery: A Randomized Trial" Medicina 61, no. 10: 1812. https://doi.org/10.3390/medicina61101812
APA StyleStonkuvienė, V., Kubilius, R., & Lendraitienė, E. (2025). The Impact of Additional Exercise Interventions on Physical Performance and Muscle Strength of Frail Patients After Open-Heart Surgery: A Randomized Trial. Medicina, 61(10), 1812. https://doi.org/10.3390/medicina61101812