Resting HRV Sample Entropy Predicts the Magnitude of Post-Exercise Vagal Withdrawal in Young Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Variables
2.2. Experimental Protocol
2.3. Statistical Analysis
2.4. Ethics Approval and Consent to Participate
3. Results
3.1. Baseline Parameters
3.2. Autonomic Responses to Exercise
3.3. Cognitive Changes
3.4. Habitual Activity Comparisons
3.5. Baseline Predictors (Complexity vs. Questionnaires)
3.6. Responder Taxonomy (Autonomic–Cognitive Quadrants)
3.7. Equivalence and Sensitivity (Habitual Activity Effects)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garrett, J.; Chak, C.; Bullock, T.; Giesbrecht, B. A systematic review and Bayesian meta-analysis provide evidence for an effect of acute physical activity on cognition in young adults. Commun. Psychol. 2024, 2, 82. [Google Scholar] [CrossRef]
- Chang, Y.-K.; Ren, F.-F.; Li, R.-H.; Ai, J.-Y.; Kao, S.-C.; Etnier, J.L. Effects of acute exercise on cognitive function: A meta-review of 30 systematic reviews with meta-analyses. Psychol. Bull. 2025, 151, 240–259. [Google Scholar] [CrossRef]
- Cao, Y.; Li, S.; Zha, Y.; Yan, X.; Jia, J.; Luo, Y.; Chi, A. Effects of different incremental treadmill exercise protocols on the autonomic nervous system in healthy college students: A comparative study based on heart rate variability analysis. Front. Physiol. 2025, 16, 1579929. [Google Scholar] [CrossRef]
- Mekoulou Ndongo, J.; Bika Lele, E.C.; Guessogo, W.R.; Mbang Mbian, W.; Ayina Ayina, C.N.; Guyot, J.; Ngongang Ouankou, C.; Temfemo, A.; Kojom Foko, L.P.; Tchoudjin, E. Post-exercise heart rate variability recovery after 800-m endurance run load among Cameroonian adolescent’s males. Sports Med. Health Sci. 2023, 5, 283–289. [Google Scholar] [CrossRef]
- Addleman, J.S.; Lackey, N.S.; DeBlauw, J.A.; Hajduczok, A.G. Heart Rate Variability Applications in Strength and Conditioning: A Narrative Review. J. Funct. Morphol. Kinesiol. 2024, 9, 93. [Google Scholar] [CrossRef]
- Geovanini, G.R.; Vasques, E.R.; de Oliveira Alvim, R.; Mill, J.G.; Andreão, R.V.; Vasques, B.K.; Pereira, A.C.; Krieger, J.E. Age and Sex Differences in Heart Rate Variability and Vagal Specific Patterns–Baependi Heart Study. Glob. Heart 2020, 15, 71. [Google Scholar] [CrossRef]
- Seo, M.-W.; Park, T.-Y.; Jung, H.C. Sex Differences in Heart Rate Variability and Vascular Function Following High-Intensity Interval Training in Young Adults. J. Hum. Kinet. 2023, 90, 89–100. [Google Scholar] [CrossRef]
- Willoughby, A.R.; Alikhani, I.; Karsikas, M.; Chua, X.Y.; Chee, M.W.L. Country differences in nocturnal sleep variability: Observations from a large-scale, long-term sleep wearable study. Sleep Med. 2023, 110, 155–165. [Google Scholar] [CrossRef]
- Zamora-Justo, J.A.; Campos-Aguilar, M.; Beas-Jara, M.D.C.; Galván-Fernández, P.; Ponciano-Gómez, A.; Sigrist-Flores, S.C.; Jiménez-Flores, R.L.; Muñoz-Diosdado, A. Utility of nonlinear analysis of heart rate variability in early detection of metabolic syndrome. Front. Physiol. 2025, 16, 1597314. [Google Scholar] [CrossRef]
- Sempere-Ruiz, N.; Sarabia, J.M.; Baladzhaeva, S.; Moya-Ramón, M. Reliability and validity of a non-linear index of heart rate variability to determine intensity thresholds. Front. Physiol. 2024, 15, 1329360. [Google Scholar] [CrossRef]
- Santos, L.E.R.; Dames, K.K.; DE Oliveira, E.S.D.; Fernandes, M.S.S.; Filgueira, T.O.; Mesquita, B.M.S.; DE Souza, C.F.C.X.M.; Lattari, E.; Santos, T.M. Entropy of Heart Rate on Self-Selected Interval Exercises in Older Women. Int. J. Exerc. Sci. 2023, 16, 525–537. [Google Scholar] [CrossRef]
- Deka, B.; Deka, D. Nonlinear analysis of heart rate variability signals in meditative state: A review and perspective. BioMed. Eng. OnLine 2023, 22, 35. [Google Scholar] [CrossRef]
- Parraca, J.A.; Alegrete, J.; Villafaina, S.; Batalha, N.; Fuentes-García, J.P.; Muñoz, D.; Fernandes, O. Heart Rate Variability Monitoring during a Padel Match. Int. J. Environ. Res. Public Health 2022, 19, 3623. [Google Scholar] [CrossRef]
- Arumugam, A.; Alsaafin, N.; Shalash, R.J.; Qadah, R.M.; Al-Sharman, A.; Moustafa, I.M.; Shousha, T.M.; Kumaran, S.D.; Migliorini, F.; Maffulli, N. Concurrent validity between self-reported International Physical Activity Questionnaire Short Form and Fibion accelerometer data among young adults in the UAE. Eur. J. Med. Res. 2024, 29, 426. [Google Scholar] [CrossRef]
- Frederick, G.M.; Threadgill, E.G.; Yli-Piipari, S.; Kirk, T.N. Validity of the International Physical Activity Questionnaire—Short form Among Individuals with Visual Impairments. Res. Q. Exerc. Sport 2025, 13, 1–9. [Google Scholar] [CrossRef]
- Peng, S.; Khairani, A.Z.; Rabiu Uba, A.; Yuan, F. Physical activity measurement tools among college students in intervention studies: A systematic review. PLoS ONE 2025, 20, e0321593. [Google Scholar] [CrossRef]
- Blasco-Peris, C.; Climent-Paya, V.; Vetrovsky, T.; García-Álvarez, M.I.; Manresa-Rocamora, A.; Beltrán-Carrillo, V.J.; Sarabia, J.M. International Physical Activity Questionnaire Short Form and accelerometer-assessed physical activity: Concurrent validity using six cut-points in HF patients. ESC Heart Fail. 2023, 11, 126–135. [Google Scholar] [CrossRef]
- Lynch, L.; McCarron, M.; McCallion, P.; Burke, E. To Identify and Compare ActivPAL Objectively Measured Activity Levels with Self-Reported Activity from the International Physical Activity Questionnaire in Older Adults With Intellectual Disability. J. Appl. Res. Intellect. Disabil. 2024, 38, e13327. [Google Scholar] [CrossRef]
- Sember, V.; Meh, K.; Sorić, M.; Starc, G.; Rocha, P.; Jurak, G. Validity and Reliability of International Physical Activity Questionnaires for Adults across EU Countries: Systematic Review and Meta Analysis. Int. J. Environ. Res. Public Health 2020, 17, 7161. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.X.; Lin, Y.Q.; Wang, L.; Zeng, Z.N.; Xie, X.L.; Chen, Q.Y.; Wei, S.C. Reliability and validity of the Pittsburgh Sleep Quality Index among frontline COVID-19 health care workers using classical test theory and item response theory. J. Clin. Sleep Med. 2022, 18, 541–551. [Google Scholar] [CrossRef]
- Shadzi, M.R.; Rahmanian, M.; Heydari, A.; Salehi, A. Structural validity of the Pittsburgh Sleep Quality Index among medical students in Iran. Sci. Rep. 2024, 14, 1538. [Google Scholar] [CrossRef]
- Sohrabi, M.; Gholami, A.; Hassanzadeh, P.; Hatami, S.; Ajdarkosh, H.; Zamani, F.; Doustmohammadian, A. Examining the factor structure of the Pittsburgh Sleep Quality Index and its determinants among GI cancer patients. BMC Cancer 2024, 24, 1577. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index (PSQI): A new instrument for psychiatric research and practice. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Noone, J.; Mucinski, J.M.; DeLany, J.P.; Sparks, L.M.; Goodpaster, B.H. Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab. 2024, 36, 702–724. [Google Scholar] [CrossRef]
- Gronwald, T.; Schaffarczyk, M.; Reinsberger, C.; Hoos, O. Heart Rate Variability—Methods and Analysis in Sports Medicine and Exercise Science. Dtsch. Z. Sportmed. 2024, 75, 113–118. [Google Scholar] [CrossRef]
- Besson, C.; Baggish, A.L.; Monteventi, P.; Schmitt, L.; Stucky, F.; Gremeaux, V. Assessing the clinical reliability of short-term heart rate variability: Insights from controlled dual-environment and dual-position measurements. Sci. Rep. 2025, 15, 5611. [Google Scholar] [CrossRef]
- Boulaguiem, Y.; Quartier, J.; Lapteva, M.; Kalia, Y.N.; Victoria-Feser, M.P.; Guerrier, S.; Couturier, D.L. Finite sample corrections for average equivalence testing. Stat. Med. 2024, 43, 833–854. [Google Scholar] [CrossRef]
- Lakens, D.; Scheel, A.M.; Isager, P.M. Equivalence Testing for Psychological Research: A Tutorial. Adv. Methods Pract. Psychol. Sci. 2018, 1, 259–269. [Google Scholar] [CrossRef]
- Nunan, D.; Sandercock, G.R.H.; Brodie, D.A. A Quantitative Systematic Review of Normal Values for Short-Term Heart Rate Variability in Healthy Adults. Pacing Clin. Electrophysiol. 2010, 33, 1407–1417. [Google Scholar] [CrossRef]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Robertson, I.H.; Manly, T.; Andrade, J.; Baddeley, B.T.; Yiend, J. ‘Oops!’: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia 1997, 35, 747–758. [Google Scholar] [CrossRef]
- Stoet, G. PsyToolkit: A Novel Web-Based Method for Running Online Questionnaires and Reaction-Time Experiments. Teach. Psychol. 2016, 44, 24–31. [Google Scholar] [CrossRef]
- Magnon, V.; Vallet, G.T.; Benson, A.; Mermillod, M.; Chausse, P.; Lacroix, A.; Bouillon-Minois, J.B.; Dutheil, F. Does heart rate variability predict better executive functioning? A systematic review and meta-analysis. Cortex 2022, 155, 218–236. [Google Scholar] [CrossRef]
- Nes, B.M.; Janszky, I.; Wisløff, U.; Støylen, A.; Karlsen, T. Age-predicted maximal heart rate in healthy subjects: The HUNT Fitness Study. Scand. J. Med. Sci. Sports 2012, 23, 697–704. [Google Scholar] [CrossRef]
- Castiglioni, P.; Merati, G.; Parati, G.; Faini, A. Sample, Fuzzy and Distribution Entropies of Heart Rate Variability: What Do They Tell Us on Cardiovascular Complexity? Entropy 2023, 25, 281. [Google Scholar] [CrossRef]
- Chand, K.; Chandra, S.; Dutt, V. A comprehensive evaluation of linear and non-linear HRV parameters between paced breathing and stressful mental state. Heliyon 2024, 10, e32195. [Google Scholar] [CrossRef]
- Berry, N.T.; Bechke, E.; Shriver, L.H.; Calkins, S.D.; Keane, S.P.; Shanahan, L.; Wideman, L. Heart Rate Dynamics During Acute Recovery From Maximal Aerobic Exercise in Young Adults. Front. Physiol. 2021, 12, 627320. [Google Scholar] [CrossRef]
- Sudo, M.; Costello, J.T.; McMorris, T.; Ando, S. The effects of acute high-intensity aerobic exercise on cognitive performance: A structured narrative review. Front. Behav. Neurosci. 2022, 16, 957677. [Google Scholar] [CrossRef]
- Steele, J.; Fisher, J.P.; Smith, D.; Schoenfeld, B.J.; Yang, Y.; Nakagawa, S. Meta-analysis of variation in sport and exercise science: Examples of application within resistance training research. J. Sports Sci. 2023, 41, 1617–1634. [Google Scholar] [CrossRef]
- Kaufmann, S.; Gronwald, T.; Herold, F.; Hoos, O. Heart Rate Variability-Derived Thresholds for Exercise Intensity Prescription in Endurance Sports: A Systematic Review of Interrelations and Agreement with Different Ventilatory and Blood Lactate Thresholds. Sports Med.-Open 2023, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Granero-Gallegos, A.; González-Quílez, A.; Plews, D.; Carrasco-Poyatos, M. HRV-Based Training for Improving VO2max in Endurance Athletes. A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 7999. [Google Scholar] [CrossRef]
- Manresa-Rocamora, A.; Sarabia, J.M.; Javaloyes, A.; Flatt, A.A.; Moya-Ramón, M. Heart Rate Variability-Guided Training for Enhancing Cardiac-Vagal Modulation, Aerobic Fitness, and Endurance Performance: A Methodological Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 10299. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vegelis, V.; Miezaja, I.A.; Mikelsone, I.; Jurka, A. Resting HRV Sample Entropy Predicts the Magnitude of Post-Exercise Vagal Withdrawal in Young Adults. Medicina 2025, 61, 1766. https://doi.org/10.3390/medicina61101766
Vegelis V, Miezaja IA, Mikelsone I, Jurka A. Resting HRV Sample Entropy Predicts the Magnitude of Post-Exercise Vagal Withdrawal in Young Adults. Medicina. 2025; 61(10):1766. https://doi.org/10.3390/medicina61101766
Chicago/Turabian StyleVegelis, Valters, Ieva Anna Miezaja, Indra Mikelsone, and Antra Jurka. 2025. "Resting HRV Sample Entropy Predicts the Magnitude of Post-Exercise Vagal Withdrawal in Young Adults" Medicina 61, no. 10: 1766. https://doi.org/10.3390/medicina61101766
APA StyleVegelis, V., Miezaja, I. A., Mikelsone, I., & Jurka, A. (2025). Resting HRV Sample Entropy Predicts the Magnitude of Post-Exercise Vagal Withdrawal in Young Adults. Medicina, 61(10), 1766. https://doi.org/10.3390/medicina61101766