Prognostic Nutritional Index as a Novel Predictor of In-Stent Restenosis: A Retrospective Study
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taniwaki, M.; Stefanini, G.G.; Silber, S.; Richardt, G.; Vranckx, P.; Serruys, P.W.; Buszman, P.E.; Kelbaek, H.; Windecker, S.; RESOLUTE All-Comers Investigators. 4-year clinical outcomes and predictors of repeat revascularization in patients treated with new-generation drug-eluting stents: A report from the RESOLUTE All-Comers trial (A Randomized Comparison of a Zotarolimus-Eluting Stent With an Everolimus-Eluting Stent for Percutaneous Coronary Intervention). J. Am. Coll. Cardiol. 2014, 63, 1617–1625. [Google Scholar] [PubMed]
- Jukema, J.W.; Verschuren, J.J.W.; Ahmed, T.A.N.; Quax, P.H.A. Restenosis after PCI. Part 1: Pathophysiology and risk factors. Nat. Rev. Cardiol. 2011, 9, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Croce, K.; Morooka, T.; Sakuma, M.; Node, K.; Simon, D.I. Vascular inflammation and repair: Implications for re-endothelialization, restenosis, and stent thrombosis. JACC Cardiovasc. Interv. 2011, 4, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Di Giosia, P.; Stamerra, C.A.; Giorgini, P.; Jamialahamdi, T.; Butler, A.E.; Sahebkar, A. The role of nutrition in inflammaging. Ageing Res. Rev. 2022, 77, 101596. [Google Scholar] [CrossRef] [PubMed]
- Takada, T.; Jujo, K.; Inagaki, K.; Abe, T.; Kishihara, M.; Shirotani, S.; Endo, N.; Watanabe, S.; Suzuki, K.; Minami, Y.; et al. Nutritional status during hospitalization is associated with the long-term prognosis of patients with heart failure. ESC Hear. Fail. 2021, 8, 5372–5382. [Google Scholar] [CrossRef]
- Wada, H.; Dohi, T.; Miyauchi, K.; Jun, S.; Endo, H.; Doi, S.; Konishi, H.; Naito, R.; Tsuboi, S.; Ogita, M.; et al. Relationship between the prognostic nutritional index and long-term clinical outcomes in patients with stable coronary artery disease. J. Cardiol. 2018, 72, 155–161. [Google Scholar] [CrossRef]
- Boyraz, B.; Ibisoglu, E.; Aslan, B. The prognostic value of the nutritional prognostic index (NPI) and controlling nutritional status (CONUT) scoring systems in non-ST elevated myocardial infarction patients over 65 years of age. Aging Clin. Exp. Res. 2022, 34, 555–562. [Google Scholar] [CrossRef]
- Smith, S.C.; Dove, J.T.; Jacobs, A.K.; Kennedy, J.W.; Kereiakes, D.; Kern, M.J.; Kuntz, R.E.; Popma, J.J.; Schaff, H.V.; Williams, D.O.; et al. ACC/AHA guidelines for percutaneous coronary intervention (revision of the 1993 PTCA guidelines)-Executive summary. J. Am. Coll. Cardiol. 2001, 37, 2215–2238. [Google Scholar] [CrossRef]
- Mehran, R.; Dangas, G.; Abizaid, A.S.; Mintz, G.S.; Lansky, A.J.; Satler, L.F.; Pichard, A.D.; Kent, K.M.; Stone, G.W.; Leon, M.B. Angiographic patterns of in-stent restenosis: Classification and implications for long-term outcome. Circulation 1999, 100, 1872–1878. [Google Scholar] [CrossRef]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Naito, H.; Nezu, T.; Hosomi, N.; Aoki, S.; Kinoshita, N.; Kuga, J.; Shimomura, R.; Araki, M.; Ueno, H.; Ochi, K.; et al. Controlling nutritional status score for predicting 3-mo functional outcome in acute ischemic stroke. Nutrition 2018, 55–56, 1–6. [Google Scholar] [CrossRef]
- Ni Lochlainn, M.; Cox, N.; Wilson, T.; Hayhoe, R.; Ramsay, S.; Granic, A.; Isanejad, M.; Roberts, H.; Wilson, D.; Welch, C.; et al. Nutrition and Frailty: Opportunities for Prevention and Treatment. Nutrients 2021, 13, 2349. [Google Scholar] [CrossRef] [PubMed]
- Jensen, G.L. Inflammation as the key interface of the medical and nutrition universes: A provocative examination of the future of clinical nutrition and medicine. JPEN J. Parenter. Enter. Nutr. 2006, 30, 453–463. [Google Scholar] [CrossRef]
- Sun, G.; Li, Y.; Peng, Y.; Lu, D.; Zhang, F.; Cui, X.; Zhang, Q.; Li, Z. Impact of the preoperative prognostic nutritional index on postoperative and survival outcomes in colorectal cancer patients who underwent primary tumor resection: A systematic review and meta-analysis. Int. J. Color. Dis. 2019, 34, 681–689. [Google Scholar] [CrossRef]
- Barutcu Atas, D.; Tugcu, M.; Asicioglu, E.; Velioglu, A.; Arikan, H.; Koc, M.; Tuglular, S. Prognostic nutritional index is a predictor of mortality in elderly patients with chronic kidney disease. Int. Urol. Nephrol. 2022, 54, 1155–1162. [Google Scholar] [CrossRef]
- Cheng, Y.; Sung, S.; Cheng, H.; Hsu, P.; Guo, C.; Yu, W.; Chen, C. Prognostic Nutritional Index and the Risk of Mortality in Patients with Acute Heart Failure. J. Am. Heart Assoc. 2017, 6, e004876. [Google Scholar] [CrossRef] [PubMed]
- Akbuğa, K.; Ferik, Ö.K.; Yayla, K.G.; Aslan, T.; Eren, M.; Karanfil, M.; Ekici, B.; Erkan, A.F.; Ercan, E.A.; Kervancioğlu, C. Prognostic Nutritional Index as a New Prediction Tool for Coronary Collateral Development. Acta Cardiol. Sin. 2022, 38, 21. [Google Scholar] [PubMed]
- Lam, F.W.; Cruz, M.A.; Leung, H.C.E.; Parikh, K.S.; Smith, C.W.; Rumbaut, R.E. Histone induced platelet aggregation is inhibited by normal albumin. Thromb Res. 2013, 132, 69–76. [Google Scholar] [CrossRef]
- Arques, S. Human serum albumin in cardiovascular diseases. Eur. J. Intern. Med. 2018, 52, 8–12. [Google Scholar] [CrossRef]
- Weber, C.; Zernecke, A.; Libby, P. The multifaceted contributions of leukocyte subsets to atherosclerosis: Lessons from mouse models. Nat. Rev. Immunol. 2008, 8, 802–815. [Google Scholar] [CrossRef] [PubMed]
- Arero, G.; Arero, A.G.; Mohammed, S.H.; Vasheghani-Farahani, A. Prognostic Potential of the Controlling Nutritional Status (CONUT) Score in Predicting All-Cause Mortality and Major Adverse Cardiovascular Events in Patients with Coronary Artery Disease: A Meta-Analysis. Front. Nutr. 2022, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Skålén, K.; Gustafsson, M.; Rydberg, E.K.; Hultén, L.M.; Wiklund, O.; Innerarity, T.L.; Borén, J. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 2002, 417, 750–754. [Google Scholar] [CrossRef] [PubMed]
- Gordon, D.J.; Probstfield, J.L.; Garrison, R.J.; Neaton, J.D.; Castelli, W.P.; Knoke, J.D.; Jacobs, D.R., Jr.; Bangdiwala, S.; Tyroler, H.A. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 1989, 79, 8–15. [Google Scholar] [CrossRef]
- Wang, Z.J.; Gao, F.; Cheng, W.J.; Yang, Q.; Zhou, Y.J. Body Mass Index and Repeat Revascularization After Percutaneous Coronary Intervention: A Meta-analysis. Can. J. Cardiol. 2015, 31, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, H.; Olschewski, M.; Münzel, T.; Gori, T. Coronary In-Stent Restenosis: Predictors and Treatment. Dtsch. Arztebl. Int. 2021, 118, 637–644. [Google Scholar] [CrossRef]
- Yi, M.; Tang, W.H.; Xu, S.; Ke, X.; Liu, Q. Investigation into the Risk Factors Related to In-stent Restenosis in Elderly Patients With Coronary Heart Disease and Type 2 Diabetes Within 2 Years After the First Drug-Eluting Stent Implantation. Front. Cardiovasc. Med. 2022, 9, 1–12. [Google Scholar] [CrossRef]
- Zbinden, R.; Von Felten, S.; Wein, B.; Tueller, D.; Kurz, D.; Reho, I.; Galatius, S.; Alber, H.; Conen, D.; Pfisterer, M.; et al. Impact of stent diameter and length on in-stent restenosis after DES vs BMS implantation in patients needing large coronary stents-A clinical and health-economic evaluation. Cardiovasc. Ther. 2017, 35, 19–25. [Google Scholar] [CrossRef]
ISR − (n = 573) | ISR + (n = 236) | p-Value | |
---|---|---|---|
Age | 61.3 ± 11.1 | 60.2 ± 10.4 | 0.195 |
Sex, Male n (%) | 408 (71.2) | 164 (69.5) | 0.343 |
Smoking, n (%) | 137 (23.9) | 68 (28.8) | 0.086 |
Diabetes mellitus, n (%) | 148 (25.8) | 86 (36.4) | 0.002 |
Uncontrolled hyperglycemia, n (%) | 49 (33.1) | 38 (44.2) | 0.061 |
Hypertension, n (%) | 237 (41.4) | 96 (40.7) | 0.461 |
Body mass index (kg/m2) | 23.2 ± 2.7 | 23.0 ± 2.6 | 0.422 |
Types of stent | |||
Bare metal | 373 (65.1) | 167 (70.8) | 0.070 |
Drug-eluting | 200 (34.9) | 69 (29.2) | |
Technical features of stents | |||
Diameter (mm) | 3.27 ± 0.50 | 3.14 ± 0.48 | 0.001 |
Length (mm) | 18.1 ± 5.8 | 19.0 ± 6.1 | 0.071 |
Number of stent | 1.0 (1.0–1.0) | 1.0 (1.0–1.0) | 0.572 |
Target coronary artery | |||
LMCA | 0 (0.0) | 1 (0.4) | 0.096 |
LAD artery | 291 (50.8) | 105 (44.5) | |
CX artery | 108 (18.8) | 42 (17.8) | |
RCA | 174 (30.4) | 88 (37.3) | |
Period between 2 coronary angiographies, days | 550 (502–690) | 535 (501–678) | 0.757 |
ISR − (n = 573) | ISR + (n = 236) | p-Value | |
---|---|---|---|
White blood cell count (µ/µL) | 10,398 ± 3898 | 10,652 ± 3480 | 0.385 |
Lymphocyte count (µ/µL) | 2179 ± 872 | 2036 ± 730 | 0.026 |
Neutrophil count (µ/µL) | 7178 ± 3677 | 7486 ± 3201 | 0.262 |
Hemoglobin (g/dL) | 14 ± 1.7 | 13.8 ± 1.8 | 0.089 |
Platelet count (×103/µL) | 231.7 ± 80.6 | 243.7 ± 79.1 | 0.053 |
Creatinine (mg/dL) | 0.92 (0.81–1.08) | 0.91 (0.79–1.14) | 0.131 |
Uric acid (mg/dL) | 5.7 ± 1.1 | 5.7 ± 1.1 | 0.741 |
Albumin (g/dL) | 4.1 ± 0.3 | 3.9 ± 0.3 | <0.001 |
HbA1c (%) | 6.6 ± 1.2 | 6.7 ± 1.4 | 0.063 |
Total cholesterol (mg/dL) | 167.5 ± 33.9 | 174.3 ± 38.3 | 0.013 |
High-density lipoprotein (mg/dL) | 42.9 ± 10.9 | 34.5 ± 10.9 | <0.001 |
Low-density lipoprotein (mg/dL) | 110.9 ± 34.4 | 108.9 ± 36.8 | 0.548 |
PNI | 52.3 ± 5.8 | 49.5 ± 5.1 | <0.001 |
CONUT score | 1.0 (0.0–2.0) | 1.0 (0.0–2.0) | 0.759 |
Normal | 357 (62.3) | 134 (56.8) | 0.129 |
Mild | 207 (36.1) | 94 (39.8) | |
Moderate–severe | 9 (1.6) | 8 (3.4) |
Univariate | Multivariate | |
---|---|---|
Dependent: Restenosis | HR (95% CI, p-Value) | HR (95% CI, p-Value) |
Smoking | 1.268 (0.956–1.681, p = 0.110) | |
Hemoglobin | 0.901 (0.838–0.968, p = 0.004) | 0.971 (0.898–1.050, p = 0.466) |
Creatinine | 1.586 (0.911–2.760, p = 0.103) | |
HbA1c | 1.043 (0.947–1.149, p = 0.389) | |
Drug-eluting stent | 0.724 (0.543–0.964, p = 0.027) | 0.622 (0.452–0.855, p = 0.003) |
Stent length | 1.022 (1.000–1.043, p = 0.045) | 1.025 (1.003–1.048, p = 0.028) |
Stent diameter | 0.710 (0.534–0.944, p = 0.019) | 0.744 (0.545–1.016, p = 0.063) |
Diabetes mellitus | 1.487 (1.138–1.942, p = 0.004) | 1.408 (1.068–1.858, p = 0.015) |
PNI | 0.863 (0.830–0.896, p < 0.001) | 0.932 (0.909–0.956, p < 0.001) |
Low-density lipoprotein | 1.002 (0.997–1.007, p = 0.401) | |
High-density lipoprotein | 0.947 (0.934–0.960, p < 0.001) | 0.953 (0.941–0.966, p < 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balun, A.; Akgümüş, A.; Özbek, K.; Güven Çetin, Z. Prognostic Nutritional Index as a Novel Predictor of In-Stent Restenosis: A Retrospective Study. Medicina 2023, 59, 663. https://doi.org/10.3390/medicina59040663
Balun A, Akgümüş A, Özbek K, Güven Çetin Z. Prognostic Nutritional Index as a Novel Predictor of In-Stent Restenosis: A Retrospective Study. Medicina. 2023; 59(4):663. https://doi.org/10.3390/medicina59040663
Chicago/Turabian StyleBalun, Ahmet, Alkame Akgümüş, Kerem Özbek, and Zehra Güven Çetin. 2023. "Prognostic Nutritional Index as a Novel Predictor of In-Stent Restenosis: A Retrospective Study" Medicina 59, no. 4: 663. https://doi.org/10.3390/medicina59040663
APA StyleBalun, A., Akgümüş, A., Özbek, K., & Güven Çetin, Z. (2023). Prognostic Nutritional Index as a Novel Predictor of In-Stent Restenosis: A Retrospective Study. Medicina, 59(4), 663. https://doi.org/10.3390/medicina59040663