Diaphragmatic Activation Correlated with Lumbar Multifidus Muscles and Thoracolumbar Fascia by B-Mode and M-Mode Ultrasonography in Subjects with and without Non-Specific Low Back Pain: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Statement
2.2. Sample Size
2.3. Participants
2.4. Measurement Instruments and Examiners
2.5. Measures
2.6. Statistical Analysis
3. Results
Participants Demographic
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balagué, F.; Mannion, A.F.; Pellisé, F.; Cedraschi, C. Non-specific low back pain. Lancet 2012, 379, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.W.; Eriksson, A.E.M.; Shirley, D.; Gandevia, S.C. Intra-abdominal pressure increases stiffness of the lumbar spine. J. Biomech. 2005, 38, 1873–1880. [Google Scholar] [CrossRef]
- Hodges, P.W.; Gandevia, S.C. Activation of the human diaphragm during a repetitive postural task. J. Physiol. 2000, 522, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.W.; Butler, J.E.; McKenzie, D.K.; Gandevia, S.C. Contraction of the human diaphragm during rapid postural adjustments. J. Physiol. 1997, 505, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.W.; Heijnen, I.; Gandevia, S.C. Postural activity of the diaphragm is reduced in humans when respiratory demand increases. J. Physiol. 2001, 537, 999–1008. [Google Scholar] [CrossRef]
- Vostatek, P.; Novák, D.; Rychnovský, T.; Rychnovská, Š. Diaphragm Postural Function Analysis Using Magnetic Resonance Imaging. PLoS ONE 2013, 8, e56724. Available online: https://pubmed.ncbi.nlm.nih.gov/23516397/ (accessed on 20 September 2022). [CrossRef]
- Roussel, N.; Nijs, J.; Truijen, S.; Vervecken, L.; Mottram, S.; Stassijns, G. Altered breathing patterns during lumbopelvic motor control tests in chronic low back pain: A case-control study. Eur. Spine J. 2009, 18, 1066–1073. [Google Scholar] [CrossRef]
- Calvo-Lobo, C.; Almazán-Polo, J.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Palomo-López, P.; Rodríguez-Sanz, D.; López-López, D. Ultrasonography comparison of diaphragm thickness and excursion between athletes with and without lumbopelvic pain. Phys. Ther. Sport 2019, 37, 128–137. [Google Scholar] [CrossRef]
- Mohan, V.; Paungmali, A.; Sitilerpisan, P.; Hashim, U.F.; Mazlan, M.B.; Nasuha, T.N. Respiratory characteristics of individuals with non-specific low back pain: A cross-sectional study. Nurs. Health Sci. 2018, 20, 224–230. [Google Scholar] [CrossRef]
- Kolář, P.; Šulc, J.; Kynčl, M.; Šanda, J.; Čakrt, O.; Andel, R.; Kumagai, K.; Kobesová, A. Postural function of the diaphragm in persons with and without chronic low back pain. J. Orthop. Sports Phys. Ther. 2012, 42, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.H.M.; McGill, S.M. Transmission of muscularly generated force and stiffness between layers of the rat abdominal wall. Spine 2009, 34, E70–E75. [Google Scholar] [CrossRef]
- Barker, P.J.; Urquhart, D.M.; Story, I.H.; Fahrer, M.; Briggs, C.A. The Middle Layer of Lumbar Fascia and Attachments to Lumbar Transverse Processes: Implications for Segmental Control and Fracture. Eur. Spine J. 2007, 16, 2232–2237. Available online: http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=17924150& (accessed on 1 June 2022). [CrossRef]
- Barker, P.J.; Briggs, C.A.; Bogeski, G. Tensile Transmission Across the Lumbar Fasciae in Unembalmed Cadavers: Effects of Tension to Various Muscular Attachments. Spine 2004, 29, 129–138. [Google Scholar] [CrossRef]
- Langevin, H.M.; Stevens-Tuttle, D.; Fox, J.R.; Badger, G.J.; Bouffard, N.A.; Krag, M.H.; Wu, J.; Henry, S.M. Ultrasound Evidence of Altered Lumbar Connective Tissue Structure in Human Subjects with Chronic Low Back Pain. BMC Musculoskelet. Disord. 2009, 10, 151. Available online: http://bmcmusculoskeletdisord.biomedcentral.com/articles/10.1186/1471-2474-10-151 (accessed on 1 June 2022). [CrossRef]
- Stokes, M.; Rankin, G.; Newham, D.J. Ultrasound Imaging of Lumbar Multifidus Muscle: Normal Reference Ranges for Measurements and Practical Guidance on the Technique. Man Ther. 2005, 10, 116–126. Available online: http://10.0.3.248/j.math.2004.08.013 (accessed on 1 June 2022). [CrossRef]
- Willard, F.H.; Vleeming, A.; Schuenke, M.D.; Danneels, L.; Schleip, R. The thoracolumbar fascia: Anatomy, function and clinical considerations. J. Anat. 2012, 221, 507–536. [Google Scholar] [CrossRef]
- Vleeming, A.; Schuenke, M.D.; Danneels, L.; Willard, F.H. The functional coupling of the deep abdominal and paraspinal muscles: The effects of simulated paraspinal muscle contraction on force transfer to the middle and posterior layer of the thoracolumbar fascia. J. Anat. 2014, 225, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Hides, J.; Gilmore, C.; Stanton, W.; Bohlscheid, E. Multifidus size and symmetry among chronic LBP and healthy asymptomatic subjects. Man Ther. 2008, 13, 43–49. Available online: http://10.0.3.248/j.math.2006.07.017 (accessed on 1 June 2022). [CrossRef] [PubMed]
- Hides, J.A.; Saide, M.; Stokes, M.J.; Jull, G.A.; Cooper, D.H. Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine 1994, 19, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Ricoy, J.; Rodríguez-Núñez, N.; Álvarez-Dobaño, J.M.; Toubes, M.E.; Riveiro, V.; Valdés, L. Diaphragmatic dysfunction. Pulmonology 2019, 25, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Fayssoil, A.; Behin, A.; Ogna, A.; Mompoint, D.; Amthor, H.; Clair, B.; Laforet, P.; Mansart, A.; Prigent, H.; Orlikowski, D.; et al. Diaphragm: Pathophysiology and Ultrasound Imaging in Neuromuscular Disorders. J. Neuromuscul. Dis. 2018, 5, 1–10. [Google Scholar] [CrossRef]
- Harper, C.J.; Shahgholi, L.; Cieslak, K.; Hellyer, N.J.; Strommen, J.A.; Boon, A.J. Variability in Diaphragm Motion During Normal Breathing, Assessed With B-Mode Ultrasound. J. Orthop. Sport Phys. Ther. 2013, 43, 927–931. Available online: http://www.ncbi.nlm.nih.gov/pubmed/24175600 (accessed on 1 June 2022). [CrossRef]
- Brown, C.; Tseng, S.-C.; Mitchell, K.; Roddey, T. Body Position Affects Ultrasonographic Measurement of Diaphragm Contractility. Cardiopulm Phys. Ther. J. 2018, 29, 1. [Google Scholar] [CrossRef]
- Fernández Carnero, S.; Arias Buria, J.; Cuenca Zaldivar, J.; Leal Quiñones, A.; Calvo-Lobo, C.; Martin Saborido, C. Rehabilitative Ultrasound Imaging Evaluation in Physiotherapy: Piloting a Systematic Review. Appl. Sci. 2019, 9, 181. [Google Scholar] [CrossRef]
- Teyhen, D.S.; Gill, N.W.; Whittaker, J.L.; Henry, S.M.; Hides, J.A.; Hodges, P. Rehabilitative Ultrasound Imaging of the Abdominal Muscles. J. Orthop. Sports Phys. Ther. 2007, 37, 450–466. Available online: http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=17877281& (accessed on 1 June 2022). [CrossRef]
- Kottner, J.; Audigé, L.; Brorson, S.; Donner, A.; Gajewski, B.J.; Hróbjartsson, A.; Roberts, C.; Shoukri, M.; Streiner, D.L. Guidelines for reporting reliability and agreement studies (GRRAS) were proposed. J. Clin Epidemiol. 2011, 64, 96–106. [Google Scholar] [CrossRef]
- Zou, G.Y. Sample size formulas for estimating intraclass correlation coefficients with precision and assurance. Stat. Med. 2012, 31, 3972–3981. [Google Scholar] [CrossRef]
- Downie, W.W.; Leatham, P.A.; Rhind, V.M.; Wright, V.; Branco, J.A.; Anderson, J.A. Studies with pain rating scales. Ann. Rheum. Dis. 1978, 37, 378–381. [Google Scholar] [CrossRef]
- Cohn, D.; Benditt, J.O.; Eveloff, S.; McCool, F.D. Diaphragm thickening during inspiration. J. Appl. Physiol. 1997, 83, 291–296. [Google Scholar] [CrossRef]
- Sarwal, A.; Walker, F.O.; Cartwright, M.S. Neuromuscular ultrasound for evaluation of the diaphragm. Muscle Nerve 2013, 47, 319–329. [Google Scholar] [CrossRef]
- Testa, A.; Soldati, G.; Giannuzzi, R.; Berardi, S.; Portale, G.; Gentiloni Silveri, N. Ultrasound M-Mode Assessment of Diaphragmatic Kinetics by Anterior Transverse Scanning in Healthy Subjects. Ultrasound Med. Biol. 2011, 37, 44–52. Available online: http://www.ncbi.nlm.nih.gov/pubmed/21144957 (accessed on 1 May 2019). [CrossRef] [PubMed]
- Larivière, C.; Gagnon, D.; De Oliveira, E.; Henry, S.M.; Mecheri, H.; Dumas, J.P. Ultrasound measures of the lumbar multifidus: Effect of task and transducer position on reliability. PM&R 2013, 5, 678–687. [Google Scholar]
- Worsley, P.R.; Smith, N.; Warner, M.B.; Stokes, M. Ultrasound transducer shape has no effect on measurements of lumbar multifidus muscle size. Man Ther. 2012, 17, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, N.; O’Sullivan, C.; Kelly, G. Multifidus Muscle Size and Percentage Thickness Changes among Patients with Unilateral Chronic Low Back Pain (CLBP) and Healthy Controls in Prone and Standing. Man Ther. 2014, 19, 433–439. Available online: http://10.0.3.248/j.math.2014.04.009 (accessed on 1 May 2019). [CrossRef]
- Langevin, H.M.; Fox, J.R.; Koptiuch, C.; Badger, G.J.; Greenan-Naumann, A.C.; Bouffard, N.A.; Konofagou, E.E.; Lee, W.-N.; Triano, J.J.; Henry, S.M. Reduced Thoracolumbar Fascia Shear Strain in Human Chronic Low Back Pain. BMC Musculoskelet. Disord. 2011, 12, 203. Available online: http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=21929806& (accessed on 1 June 2022). [CrossRef]
- Dontje, M.L.; Dall, P.M.; Skelton, D.A.; Gill, J.M.R.; Chastin, S.F.M. Reliability, Minimal Detectable Change and Responsiveness to Change: Indicators to Select the Best Method to Measure Sedentary Behaviour in Older Adults in Different Study Designs. PLoS ONE 2018, 13, e0195424. Available online: https://pubmed.ncbi.nlm.nih.gov/29649234/ (accessed on 1 June 2022). [CrossRef]
- Haaksma, M.E.; van Tienhoven, A.J.; Smit, J.M.; Heldeweg, M.L.A.; Lissenberg-Witte, B.I.; Wennen, M.; Jonkman, A.; Girbes, A.R.; Heunks, L.; Tuinman, P.R. Anatomical Variation in Diaphragm Thickness Assessed with Ultrasound in Healthy Volunteers. Ultrasound Med. Biol. 2022, 48, 1833–1839. [Google Scholar] [CrossRef]
- Kalın, B.S.; Gürsel, G. Does it make difference to measure diaphragm function with M mode (MM) or B mode (BM)? J. Clin. Monit. Comput. 2020, 34, 1247–1257. [Google Scholar] [CrossRef]
- Hides, J.A.; Richardson, C.A.; Jull, G.A. Magnetic Resonance Imaging and Ultrasonography of the Lumbar Multifidus Muscle. Spine 1995, 20, 54–58. [Google Scholar] [CrossRef]
- Fernández-Carnero, S.; Martin-Saborido, C.; Achalandabaso Ochoa-Ruiz de Mendoza, A.; Ferragut-Garcias, A.; Cuenca-Zaldivar, J.N.; Leal-Quiñones, A.; Calvo-Lobo, C.; Gallego-Izquierdo, T. The role of rehabilitative ultrasound imaging technique in the lumbopelvic region as a diagnosis and treatment tool in physiotherapy: Systematic review, meta-analysis and meta-regression. J. Clin. Med. 2021, 10, 5699. [Google Scholar] [CrossRef]
- Almazán-Polo, J.; López-López, D.; Romero-Morales, C.; Rodríguez-Sanz, D.; Becerro-De-bengoa-vallejo, R.; Losa-Iglesias, M.E.; Bravo-Aguilar, M.; Calvo-Lobo, C. Quantitative Ultrasound Imaging Differences in Multifidus and Thoracolumbar Fasciae between Athletes with and without Chronic Lumbopelvic Pain: A Case-Control Study. J. Clin. Med. 2020, 9, 2647. [Google Scholar] [CrossRef]
- Finta, R.; Nagy, E.; Bender, T. The effect of diaphragm training on lumbar stabilizer muscles: A new concept for improving segmental stability in the case of low back pain. J. Pain Res. 2018, 11, 3031. [Google Scholar] [CrossRef] [Green Version]
ICC 95%CI | Average Measurement | SEM 95%CI | MDC | |
---|---|---|---|---|
Observer 1: Diaphragm TV inspiration | 0.876 (0.813, 0.922) | 0.158 | 0.02 (0.017, 0.024) | 0.056 |
Observer 1: Diaphragm TV aspiration | 0.818 (0.731, 0.884) | 0.128 | 0.016 (0.014, 0.019) | 0.046 |
Observer 1: Diaphragm FV inspiration | 0.787 (0.688, 0.863) | 0.284 | 0.048 (0.041, 0.055) | 0.134 |
Observer 1: Diaphragm FV aspiration | 0.759 (0.651, 0.844) | 0.140 | 0.022 (0.018, 0.026) | 0.061 |
Observer 2: Diaphragm TV inspiration | 0.763 (0.656, 0.846) | 0.176 | 0.024 (0.02, 0.029) | 0.067 |
Observer 2: Diaphragm TV aspiration | 0.788 (0.689, 0.864) | 0.144 | 0.02 (0.016, 0.024) | 0.055 |
Observer 2: Diaphragm FV inspiration | 0.631 (0.489, 0.752) | 0.303 | 0.06 (0.053, 0.068) | 0.167 |
Observer 2: Diaphragm FV aspiration | 0.763 (0.657, 0.847) | 0.161 | 0.021 (0.018, 0.024) | 0.058 |
Variable | Case Group | Control Group | |
---|---|---|---|
n | 23 | 31 | |
Age | 25.13 ± 10.04 | 22.94 ± 5.23 | |
Sex, n(%) | Male | 10 (43.5) | 12 (38.7) |
Female | 13 (56.5) | 19 (61.3) | |
BMI | 22.11 ± 2.84 | 22.30 ± 2.00 | |
NRS Pain | 5.57 ± 1.53 | No data | |
Pain location, n(%) | Bilateral | 13 (56.5) | 0 (0.0) |
Right side | 6 (26.1) | 0 (0.0) | |
Left side | 4 (17.4) | 0 (0.0) |
Observer 1 | Observer 2 | |
---|---|---|
n | 52 | 52 |
Diaphragm TV inspiration measure 1 | 0.15 ± 0.05 | 0.17 ± 0.05 |
Diaphragm TV inspiration measure 2 | 0.16 ± 0.06 | 0.17 ± 0.05 |
Diaphragm TV inspiration measure 3 | 0.16 ± 0.06 | 0.18 ± 0.05 |
Diaphragm TV expiration measure 1 | 0.13 ± 0.04 | 0.14 ± 0.04 |
Diaphragm TV expiration measure 2 | 0.13 ± 0.04 | 0.14 ± 0.04 |
Diaphragm TV expiration measure 3 | 0.13 ± 0.04 | 0.15 ± 0.04 |
Diaphragm FV inspiration measure 1 | 0.28 ± 0.10 | 0.29 ± 0.09 |
Diaphragm FV inspiration measure 2 | 0.28 ± 0.11 | 0.31 ± 0.09 |
Diaphragm FV inspiration measure 3 | 0.28 ± 0.10 | 0.31 ± 0.11 |
Diaphragm FV expiration measure 1 | 0.14 ± 0.05 | 0.15 ± 0.04 |
Diaphragm FV expiration measure 2 | 0.14 ± 0.04 | 0.16 ± 0.04 |
Diaphragm FV expiration measure 3 | 0.14 ± 0.05 | 0.16 ± 0.04 |
Case Group | Control Group | p a | Difference (95%CI) | r (95%CI) | |
---|---|---|---|---|---|
n | 23 | 31 | |||
Thickness of the diaphragm in inspiration at tidal breathing | 0.17 ± 0.07 | 0.14 ± 0.04 | <0.001 | 0.02 (0, 0.05) | 0.26 (0.026, 0.477) |
Thickness of the diaphragm in expiration at tidal breathing | 0.14 ± 0.03 | 0.12 ± 0.04 | <0.001 | 0.02 (0, 0.04) | 0.242 (0.019, 0.535) |
Thickness of the diaphragm in inspiration at force breathing | 0.31 ± 0.11 | 0.26 ± 0.08 | <0.001 | 0.04 (−0.01, 0.09) | 0.207 (0.022, 0.454) |
Thickness of the diaphragm in expiration at force breathing | 0.14 ± 0.04 | 0.14 ± 0.04 | 1 | 0 (−0.02, 0.02) | 0.034 (0.007, 0.279) |
TF at tidal breathing | 0.28 ± 0.29 | 0.20 ± 0.08 | <0.001 | 0.024 (−0.031, 0.081) | 0.136 (0.004, 0.374) |
TF at force breathing | 1.23 ± 0.65 | 0.97 ± 0.55 | <0.001 | 0.236 (−0.047, 0.5) | 0.217 (0.02, 0.449) |
Diaphragmatic excursion at tidal breathing | 1.94 ± 1.05 | 1.78 ± 0.76 | 1 | 0.08 (−0.27, 0.42) | 0.072 (0.008, 0.36) |
Diaphragmatic excursion at force breathing | 4.50 ± 1.38 | 4.51 ± 1.09 | 1 | −0.092 (−0.75, 0.65) | 0.031 (0.002, 0.402) |
Thickness of the left lumbar multifidus at contraction | 2.99 ± 0.64 | 2.96 ± 0.74 | 1 | 0.02 (−0.37, 0.45) | 0.015 (0.002, 0.288) |
Thickness of the left lumbar multifidus at rest | 2.69 ± 0.53 | 2.59 ± 0.62 | 1 | 0.1 (−0.26, 0.42) | 0.082 (0.001, 0.359) |
Thickness of the right lumbar multifidus at contraction | 3.14 ± 0.64 | 3.03 ± 0.63 | 1 | 0.07 (−0.31, 0.54) | 0.051 (0.002, 0.356) |
Thickness of the right lumbar multifidus at rest | 2.73 ± 0.55 | 2.66 ± 0.52 | 1 | 0.05 (−0.29, 0.39) | 0.039 (0.003, 0.278) |
Thickness of the TLF | 0.18 ± 0.06 | 0.18 ± 0.06 | 1 | 0 (−0.04, 0.03) | 0.024 (0.008, 0.287) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez, A.M.; Fernández-Carnero, S.; Sicilia-Gomez-de-Parada, C.; Cuenca-Zaldívar, N.; Naranjo-Cinto, F.; Pecos-Martín, D.; Gallego-Izquierdo, T.; Nuñez-Nagy, S. Diaphragmatic Activation Correlated with Lumbar Multifidus Muscles and Thoracolumbar Fascia by B-Mode and M-Mode Ultrasonography in Subjects with and without Non-Specific Low Back Pain: A Pilot Study. Medicina 2023, 59, 315. https://doi.org/10.3390/medicina59020315
Perez AM, Fernández-Carnero S, Sicilia-Gomez-de-Parada C, Cuenca-Zaldívar N, Naranjo-Cinto F, Pecos-Martín D, Gallego-Izquierdo T, Nuñez-Nagy S. Diaphragmatic Activation Correlated with Lumbar Multifidus Muscles and Thoracolumbar Fascia by B-Mode and M-Mode Ultrasonography in Subjects with and without Non-Specific Low Back Pain: A Pilot Study. Medicina. 2023; 59(2):315. https://doi.org/10.3390/medicina59020315
Chicago/Turabian StylePerez, Alicia Martin, Samuel Fernández-Carnero, Cristina Sicilia-Gomez-de-Parada, Nicolas Cuenca-Zaldívar, Fermin Naranjo-Cinto, Daniel Pecos-Martín, Tomás Gallego-Izquierdo, and Susana Nuñez-Nagy. 2023. "Diaphragmatic Activation Correlated with Lumbar Multifidus Muscles and Thoracolumbar Fascia by B-Mode and M-Mode Ultrasonography in Subjects with and without Non-Specific Low Back Pain: A Pilot Study" Medicina 59, no. 2: 315. https://doi.org/10.3390/medicina59020315