Neonatal Outcomes and Long-Term Follow-Up of Children Born from Frozen Embryo, a Narrative Review of Latest Research Findings
Abstract
1. Introduction
2. Neonatal Outcomes
2.1. Differences in Neonatal Outcomes between Freezing Methods
2.2. The Role of Confounding Factors
2.3. Congenital Malformations and Long-Term Outcome in Children
3. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- La Rosa, V.L.; Valenti, G.; Sapia, F.; Gullo, G.; Rapisarda, M.C.R. Psychological impact of gynecological diseases: The importance of a multidisciplinary approach. Ital. J. Gynaecol. Obstet. 2018, 30, 2. [Google Scholar] [CrossRef]
- Gerrits, T.; Van Rooij, F.; Esho, T.; Ndegwa, W.; Goossens, J.; Bilajbegovic, A.; Jansen, A.; Kioko, B.; Koppen, L.; Migiro, S.K.; et al. Infertility in the Global South: Raising Awareness and Generating Insights for Policy and Practice. Facts Views Vis. ObGyn 2017, 9, 39–44. [Google Scholar] [PubMed]
- Sun, H.; Gong, T.-T.; Jiang, Y.-T.; Zhang, S.; Zhao, Y.-H.; Wu, Q.-J. Global, Regional, and National Prevalence and Disability-Adjusted Life-Years for Infertility in 195 Countries and Territories, 1990–2017: Results from a Global Burden of Disease Study, 2017. Aging 2019, 11, 10952–10991. [Google Scholar] [CrossRef] [PubMed]
- Vergallo, G.M.; Marinelli, E.; di Luca, N.M.; Zaami, S. Gamete Donation: Are Children Entitled to Know Their Genetic Origins? A Comparison of Opposing Views. The Italian State of Affairs. Eur. J. Health Law 2018, 25, 322–337. [Google Scholar] [CrossRef]
- Zegers-Hochschild, F.; Crosby, J.A.; Salas, S.P. Medical and ethical basis for embryo cryopreservation. Rev. Med. Chile 2014, 142, 896–902. [Google Scholar] [CrossRef]
- Zaami, S. Assisted Heterologous Fertilization and the Right of Donorconceived Children to Know Their Biological Origins. La Clin. Ter. 2018, 169, e39–e43. [Google Scholar] [CrossRef]
- Milman, L.W.; Senapati, S.; Sammel, M.D.; Cameron, K.D.; Gracia, C. Assessing Reproductive Choices of Women and the Likelihood of Oocyte Cryopreservation in the Era of Elective Oocyte Freezing. Fertil. Steril. 2017, 107, 1214–1222.e3. [Google Scholar] [CrossRef]
- Zaami, S.; Busardò, F.P. Elective Egg Freezing: Can You Really Turn Back the Clock? Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 3537–3538. [Google Scholar]
- Papatheodorou, A.; Vanderzwalmen, P.; Panagiotidis, Y.; Petousis, S.; Gullo, G.; Kasapi, E.; Goudakou, M.; Prapas, N.; Zikopoulos, K.; Georgiou, I.; et al. How Does Closed System Vitrification of Human Oocytes Affect the Clinical Outcome? A Prospective, Observational, Cohort, Noninferiority Trial in an Oocyte Donation Program. Fertil. Steril. 2016, 106, 1348–1355. [Google Scholar] [CrossRef]
- Gullo, G.; Petousis, S.; Papatheodorou, A.; Panagiotidis, Y.; Margioula-Siarkou, C.; Prapas, N.; D’Anna, R.; Perino, A.; Cucinella, G.; Prapas, Y. Closed vs. Open Oocyte Vitrification Methods Are Equally Effective for Blastocyst Embryo Transfers: Prospective Study from a Sibling Oocyte Donation Program. Gynecol. Obstet. Investig. 2020, 85, 206–212. [Google Scholar] [CrossRef]
- Terho, A.M.; Pelkonen, S.; Opdahl, S.; Romundstad, L.B.; Bergh, C.; Wennerholm, U.B.; Henningsen, A.A.; Pinborg, A.; Gissler, M.; Tiitinen, A. High Birth Weight and Large-for-Gestational-Age in Singletons Born after Frozen Compared to Fresh Embryo Transfer, by Gestational Week: A Nordic Register Study from the CoNARTaS Group. Hum. Reprod. 2021, 36, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Zaat, T.; Zagers, M.; Mol, F.; Goddijn, M.; van Wely, M.; Mastenbroek, S. Fresh versus Frozen Embryo Transfers in Assisted Reproduction. Cochrane Database Syst. Rev. 2021, 2, CD011184. [Google Scholar] [CrossRef] [PubMed]
- Acet, F.; Hortu, I.; Sahin, G.; Goker, E.N.T.; Tavmergen, E. Is Frozen Embryo Transfer Better than Fresh Embryo Transfer in Women Undergoing Intracytoplasmic Sperm Injection over the Age of Thirty-Five? A Single Referral Centre Experience. J. Obstet. Gynaecol. 2022, 42, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Pirtea, P.; de Ziegler, D.; Ayoubi, J.M. Children Born from Frozen Embryo Transfers: Is There a Difference? Fertil. Steril. 2020, 114, 502–503. [Google Scholar] [CrossRef] [PubMed]
- Vuong, L.N.; Ly, T.T.; Nguyen, N.A.; Nguyen, L.M.T.; Le, X.T.H.; Le, T.K.; Le, K.T.Q.; Le, T.V.; Nguyen, M.H.N.; Dang, V.Q.; et al. Development of Children Born from Freeze-Only versus Fresh Embryo Transfer: Follow-up of a Randomized Controlled Trial. Fertil. Steril. 2020, 114, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Orvieto, R.; Kirshenbaum, M.; Gleicher, N. Is Embryo Cryopreservation Causing Macrosomia-and What Else? Front. Endocrinol. 2020, 11, 19. [Google Scholar] [CrossRef]
- Chen, L.; Ni, X.; Xu, Z.; Fang, J.; Zhang, N.; Li, D. Effect of Frozen and Fresh Embryo Transfers on the Birthweight of Live-Born Twins. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 246, 50–54. [Google Scholar] [CrossRef]
- Djuwantono, T.; Aviani, J.K.; Permadi, W.; Achmad, T.H.; Halim, D. Risk of Neurodevelopmental Disorders in Children Born from Different ART Treatments: A Systematic Review and Meta-Analysis. J. Neurodev. Disord. 2020, 12, 33. [Google Scholar] [CrossRef]
- Elias, F.T.S.; Weber-Adrian, D.; Pudwell, J.; Carter, J.; Walker, M.; Gaudet, L.; Smith, G.; Velez, M.P. Neonatal Outcomes in Singleton Pregnancies Conceived by Fresh or Frozen Embryo Transfer Compared to Spontaneous Conceptions: A Systematic Review and Meta-Analysis. Arch. Gynecol. Obstet. 2020, 302, 31–45. [Google Scholar] [CrossRef]
- Ernstad, E.G.; Spangmose, A.L.; Opdahl, S.; Henningsen, A.-K.A.; Romundstad, L.B.; Tiitinen, A.; Gissler, M.; Wennerholm, U.-B.; Pinborg, A.; Bergh, C.; et al. Perinatal and Maternal Outcome after Vitrification of Blastocysts: A Nordic Study in Singletons from the CoNARTaS Group. Hum. Reprod. 2019, 34, 2282–2289. [Google Scholar] [CrossRef]
- Ernstad, E.G.; Wennerholm, U.-B.; Khatibi, A.; Petzold, M.; Bergh, C. Neonatal and Maternal Outcome after Frozen Embryo Transfer: Increased Risks in Programmed Cycles. Am. J. Obstet. Gynecol. 2019, 221, 126.e1–126.e18. [Google Scholar] [CrossRef]
- Ainsworth, A.J.; Wyatt, M.A.; Shenoy, C.C.; Hathcock, M.; Coddington, C.C. Fresh versus Frozen Embryo Transfer Has No Effect on Childhood Weight. Fertil. Steril. 2019, 112, 684–690.e1. [Google Scholar] [CrossRef] [PubMed]
- Maris, E.; Ferrieres-Hoa, A.; Gala, A.; Coffy, A.; Vintejoux, E.; Ranisavljevic, N.; Hamamah, S. Comparison of birth weights of children born after slow frozen embryo replacement versus fresh embryo transfer. Gynecol. Obstet. Fertil. Senol. 2019, 47, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.S.; Dukhovny, D.; Gopal, D.; Cabral, H.; Diop, H.; Coddington, C.C.; Stern, J.E. Health Outcomes for Massachusetts Infants after Fresh versus Frozen Embryo Transfer. Fertil. Steril. 2019, 112, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, A.; Pandey, S.; Raja, E.A.; Shetty, A.; Hamilton, M.; Bhattacharya, S. Is Frozen Embryo Transfer Better for Mothers and Babies? Can Cumulative Meta-Analysis Provide a Definitive Answer? Hum. Reprod. Update 2018, 24, 35–58. [Google Scholar] [CrossRef]
- Berntsen, S.; Pinborg, A. Large for Gestational Age and Macrosomia in Singletons Born after Frozen/Thawed Embryo Transfer (FET) in Assisted Reproductive Technology (ART). Birth Defects Res. 2018, 110, 630–643. [Google Scholar] [CrossRef]
- Sha, T.; Yin, X.; Cheng, W.; Massey, I.Y. Pregnancy-Related Complications and Perinatal Outcomes Resulting from Transfer of Cryopreserved versus Fresh Embryos In Vitro Fertilization: A Meta-Analysis. Fertil. Steril. 2018, 109, 330–342.e9. [Google Scholar] [CrossRef]
- Zhang, J.; Du, M.; Li, Z.; Wang, L.; Hu, J.; Zhao, B.; Feng, Y.; Chen, X.; Sun, L. Fresh versus Frozen Embryo Transfer for Full-Term Singleton Birth: A Retrospective Cohort Study. J. Ovarian Res. 2018, 11, 59. [Google Scholar] [CrossRef]
- Wong, K.M.; van Wely, M.; Mol, F.; Repping, S.; Mastenbroek, S. Fresh versus Frozen Embryo Transfers in Assisted Reproduction. Cochrane Database Syst. Rev. 2017, 3, CD011184. [Google Scholar] [CrossRef]
- Vidal, M.; Vellvé, K.; González-Comadran, M.; Robles, A.; Prat, M.; Torné, M.; Carreras, R.; Checa, M.A. Perinatal Outcomes in Children Born after Fresh or Frozen Embryo Transfer: A Catalan Cohort Study Based on 14,262 Newborns. Fertil. Steril. 2017, 107, 940–947. [Google Scholar] [CrossRef]
- Chen, Z.-J.; Shi, Y.; Sun, Y.; Zhang, B.; Liang, X.; Cao, Y.; Yang, J.; Liu, J.; Wei, D.; Weng, N.; et al. Fresh versus Frozen Embryos for Infertility in the Polycystic Ovary Syndrome. N. Engl. J. Med. 2016, 375, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Belva, F.; Bonduelle, M.; Roelants, M.; Verheyen, G.; Van Landuyt, L. Neonatal Health Including Congenital Malformation Risk of 1072 Children Born after Vitrified Embryo Transfer. Hum. Reprod. 2016, 31, 1610–1620. [Google Scholar] [CrossRef] [PubMed]
- Pinborg, A.; Henningsen, A.A.; Loft, A.; Malchau, S.S.; Forman, J.; Andersen, A.N. Large Baby Syndrome in Singletons Born after Frozen Embryo Transfer (FET): Is It Due to Maternal Factors or the Cryotechnique? Hum. Reprod. 2014, 29, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Y.A.; Ledger, W.; Edgar, D.H.; Sullivan, E.A. Clinical Outcomes Following Cryopreservation of Blastocysts by Vitrification or Slow Freezing: A Population-Based Cohort Study. Hum. Reprod. 2014, 29, 2794–2801. [Google Scholar] [CrossRef] [PubMed]
- Wennerholm, U.-B.; Henningsen, A.-K.A.; Romundstad, L.B.; Bergh, C.; Pinborg, A.; Skjaerven, R.; Forman, J.; Gissler, M.; Nygren, K.G.; Tiitinen, A. Perinatal Outcomes of Children Born after Frozen-Thawed Embryo Transfer: A Nordic Cohort Study from the CoNARTaS Group. Hum. Reprod. 2013, 28, 2545–2553. [Google Scholar] [CrossRef]
- Liu, S.Y.; Teng, B.; Fu, J.; Li, X.; Zheng, Y.; Sun, X.X. Obstetric and Neonatal Outcomes after Transfer of Vitrified Early Cleavage Embryos. Hum. Reprod. 2013, 28, 2093–2100. [Google Scholar] [CrossRef]
- Check, J.H.; Summers-Chase, D.; Yuan, W.; Horwath, D.; Garberi-Levito, M.C. Pregnancy Rates Following the Exclusive Transfer of Twice Frozen Twice Thawed Embryos Using a Modified Slow Cool Cryopreservation Technique. Clin. Exp. Obstet. Gynecol. 2013, 40, 20–21. [Google Scholar] [CrossRef]
- Check, J.H.; Katsoff, B.; Wilson, C.; Choe, J.K.; Brasile, D. Pregnancy Outcome Following Fresh vs Frozen Embryo Transfer into Gestational Carriers Using a Simplified Slow Freeze Protocol. Clin. Exp. Obstet. Gynecol. 2012, 39, 23–24. [Google Scholar]
- Wennerholm, U.-B.; Söderström-Anttila, V.; Bergh, C.; Aittomäki, K.; Hazekamp, J.; Nygren, K.-G.; Selbing, A.; Loft, A. Children Born after Cryopreservation of Embryos or Oocytes: A Systematic Review of Outcome Data. Hum. Reprod. 2009, 24, 2158–2172. [Google Scholar] [CrossRef]
- Wennerholm, W.B. Cryopreservation of Embryos and Oocytes: Obstetric Outcome and Health in Children. Hum. Reprod. 2000, 15 (Suppl. 5), 18–25. [Google Scholar] [CrossRef][Green Version]
- Wennerholm, U.B.; Albertsson-Wikland, K.; Bergh, C.; Hamberger, L.; Niklasson, A.; Nilsson, L.; Thiringer, K.; Wennergren, M.; Wikland, M.; Borres, M.P. Postnatal Growth and Health in Children Born after Cryopreservation as Embryos. Lancet 1998, 351, 1085–1090. [Google Scholar] [CrossRef]
- Wennerholm, U.B.; Hamberger, L.; Nilsson, L.; Wennergren, M.; Wikland, M.; Bergh, C. Obstetric and Perinatal Outcome of Children Conceived from Cryopreserved Embryos. Hum. Reprod. 1997, 12, 1819–1825. [Google Scholar] [CrossRef] [PubMed]
- Gullo, G.; Carlomagno, G.; Unfer, V.; D’Anna, R. Myo-Inositol: From Induction of Ovulation to Menopausal Disorder Management. Minerva Ginecol 2015, 67, 485–486. [Google Scholar] [PubMed]
- Espinola, M.S.B.; Laganà, A.S.; Bilotta, G.; Gullo, G.; Aragona, C.; Unfer, V. D-Chiro-Inositol Induces Ovulation in Non-Polycystic Ovary Syndrome (PCOS), Non-Insulin-Resistant Young Women, Likely by Modulating Aromatase Expression: A Report of 2 Cases. Am. J. Case Rep. 2021, 22, e932722. [Google Scholar] [CrossRef]
- D’Anna, R.; Corrado, F.; Loddo, S.; Gullo, G.; Giunta, L.; Di Benedetto, A. Myoinositol plus α-Lactalbumin Supplementation, Insulin Resistance and Birth Outcomes in Women with Gestational Diabetes Mellitus: A Randomized, Controlled Study. Sci. Rep. 2021, 11, 8866. [Google Scholar] [CrossRef]
- D’Anna, R.; Santamaria, A.; Giorgianni, G.; Vaiarelli, A.; Gullo, G.; Di Bari, F.; Benvenga, S. Myo-Inositol and Melatonin in the Menopausal Transition. Gynecol. Endocrinol. 2017, 33, 279–282. [Google Scholar] [CrossRef]
- Alviggi, C.; Conforti, A.; Carbone, I.F.; Borrelli, R.; de Placido, G.; Guerriero, S. Influence of Cryopreservation on Perinatal Outcome after Blastocyst- vs. Cleavage-Stage Embryo Transfer: Systematic Review and Meta-Analysis. Ultrasound Obstet. Gynecol. 2018, 51, 54–63. [Google Scholar] [CrossRef]
- Lin, L.-T.; Sapia, F.; La Rosa, V. Correlation between Maternal Gingivitis/Periodontitis and Preterm Delivery: Fact or Fancy? Ital. J. Gynaecol. Obstet. 2018, 30, 7–12. [Google Scholar] [CrossRef]
- Wang, J.X.; Norman, R.J.; Wilcox, A.J. Incidence of Spontaneous Abortion among Pregnancies Produced by Assisted Reproductive Technology. Hum. Reprod. 2004, 19, 272–277. [Google Scholar] [CrossRef]
Frozen and Vitrified Embryos vs. Fresh Embryos | ||||
---|---|---|---|---|
Authors (et al.) | Type of Study | Year | Neonatal Outcomes | Child Growth and/or Development |
Terho et al. [11] | Retrospective cohort | 2021 | More LGA newborns and higher birth weight both in boys and girls | Not evaluated |
Zaat et al. [12] | Review | 2021 | More LGA newborns and higher birth weight | Not evaluated |
Acet et al. [13] | Retrospective cohort | 2021 | Higher pregnancy rate and live birth rate | Not evaluated |
Pirtea et al. [14] | Review | 2020 | More LGA and fewer SGA newborns; less premature and more postdate births | Not evaluated |
Vuong et al. [15] | RCT | 2020 | Not evaluated | Better ASQ-3 score and motor skills scores |
Orvieto et al. [16] | Review | 2020 | Higher live birth rate; fewer premature and LBW babies; more LGA newborns | Not evaluated |
Chen et al. [17] | Retrospective cohort | 2020 | Higher birthweight in live- born twins | Not evaluated |
Djuwantono et al. [18] | Review | 2020 | Not evaluated | Not higher risk of neurodevelopmental disorders |
Elias et al. [19] | Review and meta-analysis | 2020 | More LGA newborns; fewer SGA and LBW newborns | Not evaluated |
Ginström Ernstad et al. [20] | Cohort | 2019 | More LGA and macrosomic newborns | Not evaluated |
Ginström Ernstad et al. [21] | Retrospective cohort | 2019 | More LGA and macrosomic newborns; fewer premature and LBW newborns | Not evaluated |
Ainsworth et al. [22] | Cohort | 2019 | Higher birth length, weight, and head circumference | No significant differences in age/sex specific weight and BMI |
Maris et al. [23] | Retrospective cohort | 2019 | Higher birth weight (even after adjustment) | Not evaluated |
Hwang et al. [24] | Retrospective cohort | 2019 | More LGA newborns and higher birth weight; fewer SGA newborns | Increased odds of infectious disease, respiratory, and neurologic abnormalities. |
Maheshwari et al. [25] | Review | 2018 | Higher BW, fewer SGA and preterm babies; not differences in perinatal deaths | No significant differences in congenital malformations |
Bernsten et al. [26] | Review | 2018 | More LGA and macrosomic newborns; fewer premature and LBW newborns | Not evaluated |
Sha et al. [27] | Review | 2018 | Fewer LBW, SGA newborns and perinatal deaths | Not evaluated |
Zhang et al. [28] | Retrospective cohort | 2018 | More LGA and macrosomic newborns; fewer premature and LBW newborns | No significant differences in congenital malformations |
Wong et al. [29] | Review | 2017 | Similar cumulative live birth rates | Not evaluated |
Vidal et al. [30] | Cohort | 2017 | Fewer premature and LBW newborns | Not evaluated |
Chen et al. [31] | RCT | 2016 | Higher live birth rate; no differences in neonatal complications | Not evaluated |
Belva et al. [32] | Cohort | 2016 | Higher BW and fewer SGA newborns; no differences in preterm births and perinatal death rate; similar neonatal outcomes if considered twins | No significant differences in congenital malformations both in twins and singletons |
Pinborg et al. [33] | Cohort | 2014 | More LGA newborns | Not evaluated |
Li et al. [34] | Cohort | 2014 | Fewer preterm and LBW newborns | Not evaluated |
Wennerhom et al. [35] | Retrospective cohort | 2013 | More LGA, macrosomic newborns, postdate births and perinatal deaths; fewer premature and LBW newborns | Not evaluated |
Liu et al. [36] | Cohort | 2013 | Higher birthweight, fewer LBW newborns; no differences in preterm and perinatal death | Not evaluated |
Check et al. [37] | Retrospective cohort | 2013 | Higher live-delivered pregnancy rate | Not evaluated |
Check et al. [38] | Retrospective cohort | 2012 | Higher live-delivered pregnancy rate | Not evaluated |
Wennerhom et al. [39] | Review | 2009 | Fewer preterm and LBW newborns | No significant differences in congenital malformations |
Wennerhom [40] | Review | 2000 | Not significant differences in perinatal outcome | No significant differences in congenital malformations nor child development |
Wennerhom et al. [41] | Retrospective cohort | 1998 | Not evaluated | No significant differences in growth and chronic diseases |
Wennerhom et al. [42] | Retrospective cohort | 1997 | Similar perinatal risk | Not evaluated |
Compared Neonatal Outcomes between Freezing Methods | ||
---|---|---|
Frozen Embryo > Fresh Embryo | Frozen Embryo = Fresh Embryo | Frozen Embryo < Fresh Embryo |
Live births | Perinatal Deaths | LBW newborns |
Obtained pregnancies | SGA newborns | |
Macrosomic newborns | Premature Births | |
LGA newborns | ||
Postdate births |
Compared Long Term Follow-Up in Children between Freezing Methods | ||
---|---|---|
Frozen Embryo > Fresh Embryo | Frozen Embryo = Fresh Embryo | Frozen Embryo < Fresh Embryo |
Problem solving scores | Congenital malformations rate | |
Fine motricity scores | ND prevalence | |
Age- and sex-specific BMI and weight | ||
Growth and chronic diseases |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gullo, G.; Scaglione, M.; Cucinella, G.; Chiantera, V.; Perino, A.; Greco, M.E.; Laganà, A.S.; Marinelli, E.; Basile, G.; Zaami, S. Neonatal Outcomes and Long-Term Follow-Up of Children Born from Frozen Embryo, a Narrative Review of Latest Research Findings. Medicina 2022, 58, 1218. https://doi.org/10.3390/medicina58091218
Gullo G, Scaglione M, Cucinella G, Chiantera V, Perino A, Greco ME, Laganà AS, Marinelli E, Basile G, Zaami S. Neonatal Outcomes and Long-Term Follow-Up of Children Born from Frozen Embryo, a Narrative Review of Latest Research Findings. Medicina. 2022; 58(9):1218. https://doi.org/10.3390/medicina58091218
Chicago/Turabian StyleGullo, Giuseppe, Marco Scaglione, Gaspare Cucinella, Vito Chiantera, Antonino Perino, Maria Elisabetta Greco, Antonio Simone Laganà, Enrico Marinelli, Giuseppe Basile, and Simona Zaami. 2022. "Neonatal Outcomes and Long-Term Follow-Up of Children Born from Frozen Embryo, a Narrative Review of Latest Research Findings" Medicina 58, no. 9: 1218. https://doi.org/10.3390/medicina58091218
APA StyleGullo, G., Scaglione, M., Cucinella, G., Chiantera, V., Perino, A., Greco, M. E., Laganà, A. S., Marinelli, E., Basile, G., & Zaami, S. (2022). Neonatal Outcomes and Long-Term Follow-Up of Children Born from Frozen Embryo, a Narrative Review of Latest Research Findings. Medicina, 58(9), 1218. https://doi.org/10.3390/medicina58091218