Effects of Pressure Control Device (SensAwake™) on Obstructive Sleep Apnea (OSA) Patients Who Remove the Mask for Unknown Reasons during Automatic Continuous Positive Airway Pressure (Auto-CPAP) Therapy: A Prospective Randomized Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G.N. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet 2005, 365, 1046–1053. [Google Scholar] [CrossRef]
- Young, T.; Finn, L.; Peppard, P.E.; Szklo-Coxe, M.; Austin, D.; Nieto, F.J.; Stubbs, R.; Hla, K.M. Sleep disordered breathing and mortality: Eighteen-year follow-up of the Wisconsin sleep cohort. Sleep 2008, 31, 1071–1078. [Google Scholar] [PubMed]
- Barnes, M.; Houston, D.; Worsnop, C.J.; Neill, A.M.; Mykytyn, I.J.; Kay, A.; Trinder, J.; Saunders, N.A.; Douglas McEvoy, R.; Pierce, R.J. A randomized controlled trial of continuous positive airway pressure in mild obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2002, 165, 773–780. [Google Scholar] [CrossRef]
- Iftikhar, I.H.; Valentine, C.W.; Bittencourt, L.R.; Cohen, D.L.; Fedson, A.C.; Gislason, T.; Penzel, T.; Phillips, C.L.; Yu-sheng, L.; Pack, A.I.; et al. Effects of continuous positive airway pressure on blood pressure in patients with resistant hypertension and obstructive sleep apnea: A meta-analysis. J. Hypertens 2014, 32, 2341–2350; discussion 2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, T.E.; Maislin, G.; Dinges, D.F.; Bloxham, T.; George, C.F.; Greenberg, H.; Kader, G.; Mahowald, M.; Younger, J.; Pack, A.I. Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. Sleep 2007, 30, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Baltzan, M.A.; Elkholi, O.; Wolkove, N. Evidence of interrelated side effects with reduced compliance in patients treated with nasal continuous positive airway pressure. Sleep Med. 2009, 10, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Lasters, F.; Mallegho, C.; Boudewyns, A.; Vanderveken, O.; Cox, T.; Ketelslagers, K.; Verbraecken, J. Nasal symptoms in patients with obstructive sleep apnea and their impact on therapeutic compliance with continuous positive airway pressure. Acta Clin. Belg. 2014, 69, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.F.; Love, L.; Burt, H.; Fleetham, J.A. A randomized trial of auto-titrating CPAP and fixed CPAP in the treatment of obstructive sleep apnea-hypopnea. Respir. Med. 2004, 98, 330–333. [Google Scholar] [CrossRef] [Green Version]
- Ip, S.; D’Ambrosio, C.; Patel, K.; Obadan, N.; Kitsios, G.D.; Chung, M.; Balk, E.M. Auto-titrating versus fixed continuous positive airway pressure for the treatment of obstructive sleep apnea: A systematic review with meta-analyses. Syst Rev. 2012, 1, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballard, R.D.; Gay, P.C.; Strollo, P.J. Interventions to improve compliance in sleep apnea patients previously non-compliant with continuous positive airway pressure. J. Clin. Sleep Med. 2007, 3, 706–712. [Google Scholar] [CrossRef] [Green Version]
- Antonescu-Turcu, A.; Parthasarathy, S. CPAP and bi-level PAP therapy: New and established roles. Respir. Care 2010, 55, 1216–1229. [Google Scholar]
- Carlucci, A.; Ceriana, P.; Mancini, M.; Cirio, S.; Pierucci, P.; D’Artavilla Lupo, N.; Gadaleta, F.; Morrone, E.; Fanfulla, F. Efficacy of Bilevel-auto Treatment in Patients with Obstructive Sleep Apnea Not Responsive to or Intolerant of Continuous Positive Airway Pressure Ventilation. J. Clin. Sleep Med. 2015, 11, 981–985. [Google Scholar] [CrossRef] [Green Version]
- Aloia, M.S.; Stanchina, M.; Arnedt, J.T.; Malhotra, A.; Millman, R.P. Treatment adherence and outcomes in flexible vs standard continuous positive airway pressure therapy. Chest 2005, 127, 2085–2093. [Google Scholar] [CrossRef] [Green Version]
- Smith, I.; Lasserson, T.J. Pressure modification for improving usage of continuous positive airway pressure machines in adults with obstructive sleep apnoea. Cochrane Database Syst. Rev. 2009, 4, CD003531. [Google Scholar] [CrossRef]
- Chihara, Y.; Tsuboi, T.; Hitomi, T.; Azuma, M.; Murase, K.; Toyama, Y.; Harada, Y.; Aihara, K.; Tanizawa, K.; Handa, T.; et al. Flexible positive airway pressure improves treatment adherence compared with auto-adjusting PAP. Sleep 2013, 36, 229–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donovan, L.M.; Boeder, S.; Malhotra, A.; Patel, S.R. New developments in the use of positive airway pressure for obstructive sleep apnea. J. Thorac. Dis. 2015, 7, 1323–1342. [Google Scholar] [CrossRef]
- Ayappa, I.; Norman, R.G.; Whiting, D.; Tsai, A.H.; Anderson, F.; Donnely, E.; Silberstein, D.J.; Rapoport, D.M. Irregular respiration as a marker of wakefulness during titration of CPAP. Sleep 2009, 32, 99–104. [Google Scholar]
- Killick, R.; Marshall, N.S. The Impact of Device Modifications and Pressure Delivery on Adherence. Sleep Med. Clin. 2021, 16, 75–84. [Google Scholar] [CrossRef]
- Dungan, G.C., 2nd; Marshall, N.S.; Hoyos, C.M.; Yee, B.J.; Grunstein, R.R. A randomized crossover trial of the effect of a novel method of pressure control (SensAwake) in automatic continuous positive airway pressure therapy to treat sleep disordered breathing. J. Clin. Sleep Med. 2011, 7, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Pepin, J.L.; Gagnadoux, F.; Foote, A.; Vicars, R.; Ogra, B.; Viot-Blanc, V.; Benmerad, M.; D’Ortho, M.P.; Tamisier, R. Combination of obstructive sleep apnoea and insomnia treated by continuous positive airway pressure with the SensAwake pressure relief technology to assist sleep: A randomised cross-over trial protocol. BMJ Open 2017, 7, e015836. [Google Scholar] [CrossRef] [Green Version]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [Green Version]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Stewart, M.G.; Witsell, D.L.; Smith, T.L.; Weaver, E.M.; Yueh, B.; Hannley, M.T. Development and validation of the Nasal Obstruction Symptom Evaluation (NOSE) scale. Otolaryngol. Head Neck Surg. 2004, 130, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Hollandt, J.H.; Mahlerwein, M. Nasal breathing and continuous positive airway pressure (CPAP) in patients with obstructive sleep apnea (OSA). Sleep Breath 2003, 7, 87–94. [Google Scholar] [CrossRef]
- Netzer, N.C.; Stoohs, R.A.; Netzer, C.M.; Clark, K.; Strohl, K.P. Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann. Intern. Med. 1999, 131, 485–491. [Google Scholar] [CrossRef]
- Gliklich, R.E.; Wang, P.C. Validation of the snore outcomes survey for patients with sleep-disordered breathing. Arch. Otolaryngol. Head Neck Surg 2002, 128, 819–824. [Google Scholar] [CrossRef] [Green Version]
- Samsoon, G.L.; Young, J.R. Difficult tracheal intubation: A retrospective study. Anaesthesia 1987, 42, 487–490. [Google Scholar] [CrossRef]
- Dalewski, B.; Kamińska, A.; Syrico, A.; Kałdunska, A.; Pałka, Ł.; Sobolewska, E. The Usefulness of Modified Mallampati Score and CT Upper Airway Volume Measurements in Diagnosing OSA among Patients with Breathing-Related Sleep Disorders. Appl. Sci. 2021, 11, 3764. [Google Scholar] [CrossRef]
- Bogan, R.K.; Wells, C. A Randomized Crossover Trial of a Pressure Relief Technology (SensAwake) in Continuous Positive Airway Pressure to Treat Obstructive Sleep Apnea. Sleep Disord. 2017, 2017, 3978073. [Google Scholar] [CrossRef]
Arm 1 (n = 12) SA ON First | Arm 2 (n = 13) SA OFF First | p Value | |
---|---|---|---|
General data | |||
Gender: Female (%) | 0 (0.0) | 3 (23.1) | 0.220 |
Age | 47.6 ± 10.9 | 41.5 ± 12.0 | 0.207 |
BMI | 31.8 ± 4.3 | 32.9 ± 6.9 | 0.642 |
NC | 42.3 ± 2.1 | 41.0 ± 2.2 | 0.167 |
Polysomnography | |||
AHI | 55.3 ± 30.8 | 54.0 ± 35.3 | 0.923 |
Sleep efficiency (%) | 82.0 ± 8.9 | 73.0 ± 21.3 | 0.183 |
Total sleep time (min) | 301.0 ± 34.2 | 276.2 ± 79.2 | 0.347 |
Deep sleep—Stage 3 (%) | 6.1 ± 10.4 | 4.4 ± 5.6 | 0.624 |
CPAP device recorded data | |||
Average used time (min) | 187.4 ± 104.6 | 227.9 ± 104.1 | 0.342 |
Compliance (%) | 31.9 ± 31.9 | 46.2 ± 30.6 | 0.266 |
Residual AHI | 2.9 ± 1.3 | 4.4 ± 2.8 | 0.101 |
Self-administered questionnaire | |||
PSQI | 7.4 ± 2.3 | 10.0 ± 3.8 | 0.053 |
ESS | 13.3 ± 5.5 | 13.1 ± 6.7 | 0.918 |
NOSE | 13.5 ± 6.8 | 15.6 ± 8.4 | 0.498 |
SA ON | SA OFF | p Value | |
---|---|---|---|
CPAP device recorded data | |||
Average SA detections (/h) | 1.9 (1.5–2.6) | N/A | - |
Pressure | 6.0 (5.0–8.5) | 6.5 (5.0–9.0) | 0.063 |
90% pressure | 8.0 (6.3–10.0) | 8.5 (6.8–10.5) | 0.004 * |
Leak | 31.0 (27.5–54.5) | 43.0 (26.0–54.5) | 0.367 |
90% leak | 57.0 (35.5–79.0) | 49.0 (34.0–80.0) | 0.626 |
Residual AHI | 3.9 (3.3–6.3) | 3.8 (2.4–6.5) | 0.017 * |
Average use (min) | 236.0 (111.0–293.0) | 193.0 (124.0–285.5) | 0.904 |
Days used (%) | 93.0 (74.0–100.0) | 92.0 (79.5–100.0) | 0.681 |
Compliance (%) | 36.0 (4.0–81.0) | 31.0 (9.5–69.0) | 0.972 |
Self-administered questionnaire | |||
PSQI | 8.0 (6.0–10.8) | 8.0 (5.5–11.0) | 0.924 |
ESS | 12.0 (7.5–16.0) | 12.0 (5.0–18.0) | 0.121 |
NOSE | 12.0 (7.5–23.5) | 12.0 (8.5–18.5) | 0.245 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-L.; Chuang, L.-P.; Lin, S.-W.; Huang, H.-Y.; Liu, G.-H.; Hsu, H.-F.; Chen, N.-H. Effects of Pressure Control Device (SensAwake™) on Obstructive Sleep Apnea (OSA) Patients Who Remove the Mask for Unknown Reasons during Automatic Continuous Positive Airway Pressure (Auto-CPAP) Therapy: A Prospective Randomized Crossover Trial. Medicina 2021, 57, 915. https://doi.org/10.3390/medicina57090915
Chen Y-L, Chuang L-P, Lin S-W, Huang H-Y, Liu G-H, Hsu H-F, Chen N-H. Effects of Pressure Control Device (SensAwake™) on Obstructive Sleep Apnea (OSA) Patients Who Remove the Mask for Unknown Reasons during Automatic Continuous Positive Airway Pressure (Auto-CPAP) Therapy: A Prospective Randomized Crossover Trial. Medicina. 2021; 57(9):915. https://doi.org/10.3390/medicina57090915
Chicago/Turabian StyleChen, Yen-Lung, Li-Pang Chuang, Shih-Wei Lin, Hung-Yu Huang, Geng-Hao Liu, Hung-Fu Hsu, and Ning-Hung Chen. 2021. "Effects of Pressure Control Device (SensAwake™) on Obstructive Sleep Apnea (OSA) Patients Who Remove the Mask for Unknown Reasons during Automatic Continuous Positive Airway Pressure (Auto-CPAP) Therapy: A Prospective Randomized Crossover Trial" Medicina 57, no. 9: 915. https://doi.org/10.3390/medicina57090915
APA StyleChen, Y.-L., Chuang, L.-P., Lin, S.-W., Huang, H.-Y., Liu, G.-H., Hsu, H.-F., & Chen, N.-H. (2021). Effects of Pressure Control Device (SensAwake™) on Obstructive Sleep Apnea (OSA) Patients Who Remove the Mask for Unknown Reasons during Automatic Continuous Positive Airway Pressure (Auto-CPAP) Therapy: A Prospective Randomized Crossover Trial. Medicina, 57(9), 915. https://doi.org/10.3390/medicina57090915