Biomarkers of Glyco-Metabolic Control in Hemodialysis Patients: Glycated Hemoglobin vs. Glycated Albumin
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, J.C.; Zhang, L.X. Prevalence and Disease Burden of Chronic Kidney Disease. Adv. Exp. Med. Biol 2019, 1165, 3–15. [Google Scholar] [CrossRef]
- Stompor, T.; Adamczak, M.; Masajtis-Zagajewska, A.; Mazanowska, O.; Maziarska, K.; Witkowska, A.; Wiecek, A. Diagnosis and treatment of type 2 diabetes mellitus in patients with chronic kidney disease and eGFR < 60 mL/min—A position statement of the Polish Society of Nephrology Working Group on Metabolic and Endocrine Disorders in Kidney Diseases. Endokrynol. Pol. 2020, 70, 3–14. [Google Scholar] [CrossRef]
- Noce, A.; Canale, M.P.; Capria, A.; Rovella, V.; Tesauro, M.; Splendiani, G.; Annicchiarico-Petruzzelli, M.; Manzuoli, M.; Simonetti, G.; Di Daniele, N. Coronary artery calcifications predict long term cardiovascular events in non diabetic Caucasian hemodialysis patients. Aging Albany N. Y. 2015, 7, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H. Kidney diseases and metabolic disorders—Basics and applications required for general physicians. Topics: VIII. Anemia and iron metabolism in chronic kidney disease. Nihon Naika Gakkai Zasshi 2015, 104, 960–966. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Papadopoulou-Marketou, N.; Paschou, S.A.; Marketos, N.; Adamidi, S.; Adamidis, S.; Kanaka-Gantenbein, C. Diabetic nephropathy in type 1 diabetes. Minerva Med. 2018, 109, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Cryer, M.J.; Horani, T.; DiPette, D.J. Diabetes and Hypertension: A Comparative Review of Current Guidelines. J. Clin. Hypertens. Greenwich 2016, 18, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Duru, O.K.; Middleton, T.; Tewari, M.K.; Norris, K. The Landscape of Diabetic Kidney Disease in the United States. Curr. Diab. Rep. 2018, 18, 14. [Google Scholar] [CrossRef]
- Kainz, A.; Hronsky, M.; Stel, V.S.; Jager, K.J.; Geroldinger, A.; Dunkler, D.; Heinze, G.; Tripepi, G.; Oberbauer, R. Prediction of prevalence of chronic kidney disease in diabetic patients in countries of the European Union up to 2025. Nephrol. Dial. Transplant. 2015, 30 (Suppl. 4), iv113–iv118. [Google Scholar] [CrossRef]
- Kong, A.P.; Xu, G.; Brown, N.; So, W.Y.; Ma, R.C.; Chan, J.C. Diabetes and its comorbidities—Where East meets West. Nat. Rev. Endocrinol. 2013, 9, 537–547. [Google Scholar] [CrossRef]
- Ielpo, B.; Pernaute, A.S.; Elia, S.; Buonomo, O.C.; Valladares, L.D.; Aguirre, E.P.; Petrella, G.; Garcia, A.T. Impact of number and site of lymph node invasion on survival of adenocarcinoma of esophagogastric junction. Interact. Cardiovasc. Thorac. Surg. 2010, 10, 704–708. [Google Scholar] [CrossRef]
- Bajaj, S.; Makkar, B.M.; Abichandani, V.K.; Talwalkar, P.G.; Saboo, B.; Srikanta, S.S.; Das, A.; Chandrasekaran, S.; Krishnan, P.V.; Shah, A.; et al. Management of anemia in patients with diabetic kidney disease: A consensus statement. Indian J. Endocrinol. Metab. 2016, 20, 268–281. [Google Scholar] [CrossRef]
- Di Daniele, N.; Di Renzo, L.; Noce, A.; Iacopino, L.; Ferraro, P.M.; Rizzo, M.; Sarlo, F.; Domino, E.; De Lorenzo, A. Effects of Italian Mediterranean organic diet vs. low-protein diet in nephropathic patients according to MTHFR genotypes. J. Nephrol. 2014, 27, 529–536. [Google Scholar] [CrossRef]
- Schinzari, F.; Iantorno, M.; Campia, U.; Mores, N.; Rovella, V.; Tesauro, M.; Di Daniele, N.; Cardillo, C. Vasodilator responses and endothelin-dependent vasoconstriction in metabolically healthy obesity and the metabolic syndrome. Am. J. Physiol. Metab. 2015, 309, E787–E792. [Google Scholar] [CrossRef]
- Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef]
- Fox, A.; Feng, W.; Asal, V. What is driving global obesity trends? Globalization or “modernization”? Global Health 2019, 15, 32. [Google Scholar] [CrossRef]
- Bocedi, A.; Noce, A.; Marrone, G.; Noce, G.; Cattani, G.; Gambardella, G.; Di Lauro, M.; Di Daniele, N.; Ricci, G. Glutathione Transferase P1-1 an Enzyme Useful in Biomedicine and as Biomarker in Clinical Practice and in Environmental Pollution. Nutrients 2019, 11, 1741. [Google Scholar] [CrossRef]
- Noce, A.; Ferrannini, M.; Fabrini, R.; Bocedi, A.; Dessi, M.; Galli, F.; Federici, G.; Palumbo, R.; Di Daniele, N.; Ricci, G. Erythrocyte glutathione transferase: A new biomarker for hemodialysis adequacy, overcoming the Kt/V(urea) dogma? Cell Death Dis. 2012, 3, e377. [Google Scholar] [CrossRef][Green Version]
- Krhac, M.; Lovrencic, M.V. Update on biomarkers of glycemic control. World J. Diabetes 2019, 10, 1–15. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2004, 27 (Suppl. 1), S5–S10. [Google Scholar] [CrossRef]
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark. Insights 2016, 11, 95–104. [Google Scholar] [CrossRef]
- Noce, A.; Fabrini, R.; Dessi, M.; Bocedi, A.; Santini, S.; Rovella, V.; Pastore, A.; Tesauro, M.; Bernardini, S.; Di Daniele, N.; et al. Erythrocyte glutathione transferase activity: A possible early biomarker for blood toxicity in uremic diabetic patients. Acta Diabetol. 2014, 51, 219–224. [Google Scholar] [CrossRef]
- Pieri, M.; Pignalosa, S.; Zenobi, R.; Calla, C.; Martino, F.G.; Menichella, G.; Mancina, F.; Moscato, U.; Nocca, G.; Khashoggi, H.; et al. Reference intervals for HbA1c partitioned for gender and age: A multicenter study. Acta Diabetol. 2016, 53, 1053–1056. [Google Scholar] [CrossRef] [PubMed]
- Ly, J.; Marticorena, R.; Donnelly, S. Red blood cell survival in chronic renal failure. Am. J. Kidney Dis. 2004, 44, 715–719. [Google Scholar] [CrossRef]
- Spencer, N.Y.; Stanton, R.C. Glucose 6-phosphate dehydrogenase and the kidney. Curr. Opin. Nephrol. Hypertens. 2017, 26, 43–49. [Google Scholar] [CrossRef]
- Ayesh Haj Yousef, M.H.; Bataineh, A.; Elamin, E.; Khader, Y.; Alawneh, K.; Rababah, M. Adequate hemodialysis improves anemia by enhancing glucose-6-phosphate dehydrogenase activity in patients with end-stage renal disease. BMC Nephrol. 2014, 15, 155. [Google Scholar] [CrossRef]
- Dessi, M.; Noce, A.; Bertucci, P.; Noce, G.; Rizza, S.; De Stefano, A.; Manca di Villahermosa, S.; Bernardini, S.; De Lorenzo, A.; Di Daniele, N. Plasma and erythrocyte membrane phospholipids and fatty acids in Italian general population and hemodialysis patients. Lipids Health Dis. 2014, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Canova, C. Anemia and erythropoietin treatment in chronic kidney diseases. Minerva. Urol. Nefrol. 2005, 57, 23–31. [Google Scholar]
- Lippi, G.; Targher, G. Glycated hemoglobin (HbA1c): Old dogmas, a new perspective? Clin. Chem. Lab. Med. 2010, 48, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Franchini, M.; Salvagno, G.L.; Montagnana, M.; Targher, G.; Guidi, G.C. Determinants of anaemia in the very elderly: A major contribution from impaired renal function? Blood Transfus. 2010, 8, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Gafter-Gvili, A.; Schechter, A.; Rozen-Zvi, B. Iron Deficiency Anemia in Chronic Kidney Disease. Acta Haematol. 2019, 142, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Johnson-Wimbley, T.D.; Graham, D.Y. Diagnosis and management of iron deficiency anemia in the 21st century. Therap. Adv. Gastroenterol. 2011, 4, 177–184. [Google Scholar] [CrossRef]
- St Louis, J.; Valdini, A. Abnormally Low Hemoglobin A1c as Harbinger of Hemoglobinopathy. J. Am. Board Fam. Med. 2019, 32, 923–924. [Google Scholar] [CrossRef] [PubMed]
- Loutradis, C.; Skodra, A.; Georgianos, P.; Tolika, P.; Alexandrou, D.; Avdelidou, A.; Sarafidis, P.A. Diabetes mellitus increases the prevalence of anemia in patients with chronic kidney disease: A nested case-control study. World J. Nephrol. 2016, 5, 358–366. [Google Scholar] [CrossRef]
- Tsai, S.F.; Tarng, D.C. Anemia in patients of diabetic kidney disease. J. Chin. Med. Assoc. 2019, 82, 752–755. [Google Scholar] [CrossRef] [PubMed]
- Gianchandani, R.Y.; Neupane, S.; Iyengar, J.J.; Heung, M. Pathophysiology and Management of Hypoglycemiain End-Stage Renal Disease Patients: A Review. Endocr. Pract. 2017, 23, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.C.; Tu, H.T.; Lin, C.H.; Chen, K.H.; Yeh, Y.H.; See, L.C. Temporal Trends of Severe Hypoglycemia and Subsequent Mortality in Patients with Advanced Diabetic Kidney Diseases Transitioning to Dialysis. J. Clin. Med. 2019, 8, 420. [Google Scholar] [CrossRef] [PubMed]
- Tesauro, M.; Nistico, S.; Noce, A.; Tarantino, A.; Marrone, G.; Costa, A.; Rovella, V.; Di Cola, G.; Campia, U.; Lauro, D.; et al. The possible role of glutathione-S-transferase activity in diabetic nephropathy. Int. J. Immunopathol. Pharmacol. 2015, 28, 129–133. [Google Scholar] [CrossRef]
- Pastore, A.; Noce, A.; Di Giovamberardino, G.; De Stefano, A.; Calla, C.; Zenobi, R.; Dessi, M.; Di Daniele, N. Homocysteine, cysteine, folate and vitamin B(1)(2) status in type 2 diabetic patients with chronic kidney disease. J. Nephrol. 2015, 28, 571–576. [Google Scholar] [CrossRef]
- Jager, K.J.; Lindholm, B.; Goldsmith, D.; Fliser, D.; Wiecek, A.; Suleymanlar, G.; Ortiz, A.; Massy, Z.; Martinez-Castelao, A.; Agarwal, R.; et al. Cardiovascular and non-cardiovascular mortality in dialysis patients: Where is the link? Kidney Int. Suppl. 2011, 1, 21–23. [Google Scholar] [CrossRef]
- Park, J.; Lertdumrongluk, P.; Molnar, M.Z.; Kovesdy, C.P.; Kalantar-Zadeh, K. Glycemic control in diabetic dialysis patients and the burnt-out diabetes phenomenon. Curr. Diab. Rep. 2012, 12, 432–439. [Google Scholar] [CrossRef]
- Tascona, D.J.; Morton, A.R.; Toffelmire, E.B.; Holland, D.C.; Iliescu, E.A. Adequacy of glycemic control in hemodialysis patients with diabetes. Diabetes Care 2006, 29, 2247–2251. [Google Scholar] [CrossRef]
- Bowry, S.K.; Gatti, E. Impact of hemodialysis therapy on anemia of chronic kidney disease: The potential mechanisms. Blood Purif. 2011, 32, 210–219. [Google Scholar] [CrossRef]
- Maruyama, Y.; Kanda, E.; Kikuchi, K.; Abe, M.; Masakane, I.; Yokoo, T.; Nitta, K. Association between anemia and mortality in hemodialysis patients is modified by the presence of diabetes. J. Nephrol. 2021. [Google Scholar] [CrossRef]
- Abe, M.; Kaizu, K.; Matsumoto, K. Evaluation of the hemodialysis-induced changes in plasma glucose and insulin concentrations in diabetic patients: Comparison between the hemodialysis and non-hemodialysis days. Ther. Apher. Dial. 2007, 11, 288–295. [Google Scholar] [CrossRef]
- Abe, M.; Kalantar-Zadeh, K. Haemodialysis-induced hypoglycaemia and glycaemic disarrays. Nat. Rev. Nephrol. 2015, 11, 302–313. [Google Scholar] [CrossRef]
- Roselli, M.; Guadagni, F.; Buonomo, O.; Belardi, A.; Ferroni, P.; Diodati, A.; Anselmi, D.; Cipriani, C.; Casciani, C.U.; Greiner, J.; et al. Tumor markers as targets for selective diagnostic and therapeutic procedures. Anticancer. Res. 1996, 16, 2187–2192. [Google Scholar]
- Guo, J.; Zheng, H.J.; Zhang, W.; Lou, W.; Xia, C.; Han, X.T.; Huang, W.J.; Zhang, F.; Wang, Y.; Liu, W.J. Accelerated Kidney Aging in Diabetes Mellitus. Oxid. Med. Cell Longev. 2020, 2020, 1234059. [Google Scholar] [CrossRef]
- Noce, A.; Rovella, V.; Marrone, G.; Cattani, G.; Zingaretti, V.; Limongi, D.; D’Agostini, C.; Sorge, R.; Casasco, M.; Di Daniele, N.; et al. Hemodialysis biomarkers: Total advanced glycation end products (AGEs) against oxidized human serum albumin (HSAox). Acta Diabetol. 2019, 56, 1323–1331. [Google Scholar] [CrossRef]
- Choi, H.S.; Han, K.D.; Oh, T.R.; Suh, S.H.; Kim, M.; Kim, C.S.; Bae, E.H.; Ma, S.K.; Kim, S.W. Trends in the incidence and prevalence of end-stage renal disease with hemodialysis in entire Korean population: A nationwide population-based study. Med. Baltim. 2021, 100, e25293. [Google Scholar] [CrossRef]
- Winocour, P.H. Diabetes and chronic kidney disease: An increasingly common multi-morbid disease in need of a paradigm shift in care. Diabet. Med. 2018, 35, 300–305. [Google Scholar] [CrossRef]
- Iseki, K. Gender differences in chronic kidney disease. Kidney Int. 2008, 74, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Noce, A.; Marrone, G.; Di Lauro, M.; Urciuoli, S.; Pietroboni Zaitseva, A.; Wilson Jones, G.; Di Daniele, N.; Romani, A. Cardiovascular Protection of Nephropathic Male Patients by Oral Food Supplements. Cardiovasc. Ther. 2020, 2020, 1807941. [Google Scholar] [CrossRef] [PubMed]
- Halbesma, N.; Brantsma, A.H.; Bakker, S.J.; Jansen, D.F.; Stolk, R.P.; de Zeeuw, D.; de Jong, P.E.; Gansevoort, R.T.; PREVEND Study Group. Gender differences in predictors of the decline of renal function in the general population. Kidney Int. 2008, 74, 505–512. [Google Scholar] [CrossRef]
- Mo, Y.; Ma, X.; Li, H.; Ran, X.; Yang, W.; Li, Q.; Peng, Y.; Li, Y.; Gao, X.; Luan, X.; et al. Relationship between glycated albumin and glycated hemoglobin according to glucose tolerance status: A multicenter study. Diabetes Res. Clin. Pract. 2016, 115, 17–23. [Google Scholar] [CrossRef]
- Hoshino, J.; Abe, M.; Hamano, T.; Hasegawa, T.; Wada, A.; Ubara, Y.; Takaichi, K.; Nakai, S.; Masakane, I.; Nitta, K. Glycated albumin and hemoglobin A1c levels and cause-specific mortality by patients’ conditions among hemodialysis patients with diabetes: A 3-year nationwide cohort study. BMJ Open Diabetes Res. Care 2020, 8, e001642. [Google Scholar] [CrossRef]
Total | Men | Women | |
---|---|---|---|
N (%) | 160 | 102 (63.8) | 58 (36.2) |
Age; mean ± SD, years | 64.1 ± 12.6 | 64 ± 13 | 64 ± 11 |
BMI; mean ± SD, kg/m2 | 24.8 ± 3.5 | 25 ± 3.5 | 24.4 ± 3.4 |
Diabetic uremic patients; N (%) | 60 (37.5) | 46 (77) | 14 (23) |
Non-diabetic uremic patients; N (%) | 98 (61.3) | 55 (56) | 43 (44) |
IGT; N (%) | 2 (1.2) | 1 (50) | 1 (50) |
Patient | Diabetic * | Non-Diabetic |
---|---|---|
Sex | M | M |
Age (years) | 75 | 72 |
Type of dialysis | Convective technique | Diffusive technique |
Type and dosage of EPO | Epoetin-α 4000 IU × 2/week | No therapy |
BMI (kg/m2) | 23.8 | 21.4 |
Patient | Diabetic | Non-Diabetic | Normal Range Values |
---|---|---|---|
Glycemia mg/dL (T0) | 99 | 137 | 80–100 mg/dL |
Glycemia mg/dL (T1) | 151 | 160 | |
Glycemia mg/dL (T2) | 161 | 120 | |
Glycemia mg/dL (T3) | 95 | 105 | |
Glycemia mg/dL (T4) | 80 | 126 | |
HbA1c mmol/mol/Hb g/dL (T0) | 34/10.5 | 33/10.7 | HbA1c: <38 mmol/mol (Normal) 39–47 mmol/mol (Pre-diabetes) >48 mmol/mol (Diabetes) |
HbA1c mmol/mol/Hb g/dL (T1) | 38/9.6 | 35/10.6 | |
HbA1c mmol/mol/Hb g/dL (T2) | 36/9.8 | 35/10.8 | |
HbA1c mmol/mol/Hb g/dL (T3) | 30/10.2 | 35/11.0 | |
HbA1c mmol/mol/Hb g/dL (T4) | 35/11.1 | 36/11.3 | |
GA %/A g/dL (T0) | 14.3/4.5 | 17.2/5.8 | GA ≤ 15% |
GA %/A g/dL (T1) | 16.5/4.8 | 16.0/5.7 | |
GA %/A g/dL (T2) | 16.3/5.0 | 16.4/5.8 | |
GA %/A g/dL (T3) | 14.6/5.0 | 16.4/5.3 | |
GA %/A g/dL (T4) | 14.9/5.1 | 15.4/5.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martino, F.G.; Vitillo, M.; Pieri, M.; Marrone, G.; Gangeri, F.; Ansali, F.; Dessì, M.; Bernardini, S.; Di Daniele, N.; Noce, A. Biomarkers of Glyco-Metabolic Control in Hemodialysis Patients: Glycated Hemoglobin vs. Glycated Albumin. Medicina 2021, 57, 712. https://doi.org/10.3390/medicina57070712
Martino FG, Vitillo M, Pieri M, Marrone G, Gangeri F, Ansali F, Dessì M, Bernardini S, Di Daniele N, Noce A. Biomarkers of Glyco-Metabolic Control in Hemodialysis Patients: Glycated Hemoglobin vs. Glycated Albumin. Medicina. 2021; 57(7):712. https://doi.org/10.3390/medicina57070712
Chicago/Turabian StyleMartino, Francesca Gabriela, Marina Vitillo, Massimo Pieri, Giulia Marrone, Fabio Gangeri, Ferruccio Ansali, Mariarita Dessì, Sergio Bernardini, Nicola Di Daniele, and Annalisa Noce. 2021. "Biomarkers of Glyco-Metabolic Control in Hemodialysis Patients: Glycated Hemoglobin vs. Glycated Albumin" Medicina 57, no. 7: 712. https://doi.org/10.3390/medicina57070712
APA StyleMartino, F. G., Vitillo, M., Pieri, M., Marrone, G., Gangeri, F., Ansali, F., Dessì, M., Bernardini, S., Di Daniele, N., & Noce, A. (2021). Biomarkers of Glyco-Metabolic Control in Hemodialysis Patients: Glycated Hemoglobin vs. Glycated Albumin. Medicina, 57(7), 712. https://doi.org/10.3390/medicina57070712