Vitamin D and Stress Fractures in Sport: Preventive and Therapeutic Measures—A Narrative Review
Abstract
:1. Introduction
2. The Importance of 25(OH)D
3. The Importance of 25(OH)D in the Metabolism of Athletes
4. The Importance of 25(OH)D in Bone Metabolism
5. Consequences of a 25(OH)D Deficiency in Sport—Stress Fractures
6. Risk Factors or Risk Situations for a Stress Fracture
7. Symptoms of Stress Fractures
8. Diagnosis of a Stress Fracture
9. Stress Fractures and Type of Sport
10. Localization of Stress Fractures
11. Sex and Stress Fractures
12. Treatment of Stress Fractures
13. Prevention of Stress Fractures
14. 25(OH)D Supplementation as a Preventive Measure
15. Limitations of the Present Review
16. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bennell, K.; Matheson, G.; Meeuwisse, W.; Brukner, P. Risk factors for stress fractures. Sports Med. 1999, 28, 91–122. [Google Scholar] [CrossRef] [PubMed]
- Kiel, J.; Kaiser, K. Stress Reaction and Fractures; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Shapiro, M.; Zubkov, K.; Landau, R. Diagnosis of Stress fractures in military trainees: A large-scale cohort. BMJ Mil. Health 2020, 2020, 001406. [Google Scholar] [CrossRef]
- Wentz, L.; Liu, P.-Y.; Haymes, E.; Ilich, J.Z. Females have a greater incidence of stress fractures than males in both military and athletic populations: A systemic review. Mil. Med. 2011, 176, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Fredericson, M.; Jennings, F.; Beaulieu, C.; Matheson, G.O. Stress fractures in athletes. Top. Magn. Reson. Imaging 2006, 17, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Lawley, R.; Syrop, I.P.; Fredericson, M. Vitamin D for improved bone health and prevention of stress fractures: A review of the literature. Curr. Sports Med. Rep. 2020, 19, 202–208. [Google Scholar] [CrossRef]
- Davey, T.; Lanham-New, S.A.; Shaw, A.M.; Hale, B.; Cobley, R.; Berry, J.L.; Roch, M.; Allsopp, A.J.; Fallowfield, J.L. Low serum 25-hydroxyvitamin D is associated with increased risk of stress fracture during Royal Marine recruit training. Osteoporos. Int. 2015, 27, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Milgrom, C.; Giladi, M.; Stein, M.; Kashtan, H.; Margulies, J.; Chisin, R.; Steinberg, R.; Aharonson, Z. Stress fractures in military recruits. A prospective study showing an unusually high incidence. J. Bone Jt. Surg. Br. Vol. 1985, 732–735. [Google Scholar] [CrossRef]
- Ruohola, J.-P.; Laaksi, I.; Ylikomi, T.; Haataja, R.; Mattila, V.M.; Sahi, T.; Tuohimaa, P.; Pihlajamäki, H. Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. J. Bone Min. Res. 2006, 21, 1483–1488. [Google Scholar] [CrossRef]
- Richards, T.; Wright, C. British Army recruits with low serum vitamin D take longer to recover from stress fractures. J. R. Army Med. Corps 2018, 2018, 000983. [Google Scholar] [CrossRef]
- Moreira, C.A.; Bilezikian, J.P. Stress fractures: Concepts and therapeutics. J. Clin. Endocrinol. Metab. 2016, 102, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Watkins, C.M.; Lively, M.W. A review of vitamin D and its effects on athletes. Physician Sportsmed. 2012, 40, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.S.; Roth, M.; Kapil, N. Stress fractures: Diagnosis, treatment, and prevention. Am. Fam. Physician 2011, 83, 39–46. [Google Scholar]
- Knapik, J.J.; Reynolds, K.; Hoedebecke, K.L. Stress fractures: Etiology, epidemiology, diagnosis, treatment, and prevention. J. Spéc. Oper. Med. Peer Rev. J. SOF Med. Prof. 2017, 17, 120–130. [Google Scholar]
- Tenforde, A.S.; Sayres, L.C.; Sainani, K.L.; Fredericson, M. Association between serum 25(OH)D concentrations and bone stress fractures in Finnish young men. PmR 2010, 2, 945–949. [Google Scholar] [CrossRef]
- Sikora-Klak, J. The effect of abnormal vitamin D levels in athletes. Perm. J. 2018, 22, 17–216. [Google Scholar] [CrossRef] [Green Version]
- Neal, S.; Sykes, J.; Rigby, M.; Hess, B. A review and clinical summary of vitamin D in regard to bone health and athletic performance. Physician Sportsmed. 2015, 43, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Goolsby, M.A.; Boniquit, N. Bone health in athletes. Sports Health A Multidiscip. Approach 2017, 9, 108–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Książek, A.; Zagrodna, A.; Słowińska-Lisowska, M. Vitamin D, skeletal muscle function and athletic performance in athletes—A narrative review. Nutrients 2019, 11, 1800. [Google Scholar] [CrossRef] [Green Version]
- Moran, D.S.; McClung, J.P.; Kohen, T.; Lieberman, H.R. Vitamin D and physical performance. Sports Med. 2013, 43, 601–611. [Google Scholar] [CrossRef]
- Girgis, C.M.; Clifton-Bligh, R.J.; Turner, N.; Lau, S.L.; Gunton, J.E. Effects of vitamin D in skeletal muscle: Falls, strength, athletic performance and insulin sensitivity. Clin. Endocrinol. 2014, 80, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- Christakos, S.; Ajibade, D.V.; Dhawan, P.; Fechner, A.J.; Mady, L.J. Vitamin D: Metabolism. Rheum. Dis. Clin. N. Am. 2012, 38, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wilson-Barnes, S.L.; Hunt, J.E.A.; Lanham-New, S.A.; Manders, R.J.F. Effects of vitamin D on health outcomes and sporting performance: Implications for elite and recreational athletes. Nutr. Bull. 2020, 45, 11–24. [Google Scholar] [CrossRef]
- Jones, G. Metabolism and biomarkers of vitamin D. Scand. J. Clin. Lab. Investig. Suppl. 2012, 243, 7–13. [Google Scholar]
- Wang, T.-T.; Tavera-Mendoza, L.E.; Mader, S.; White, J.H.; Laperriere, D.; Libby, E.; MacLeod, N.B.; Nagai, Y.; Bourdeau, V.; Konstorum, A.; et al. Large-scale in silico and microarray-based identification of direct 1,25-Dihydroxyvitamin D3 target genes. Mol. Endocrinol. 2005, 19, 2685–2695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson-Meyer, D.E.; Willis, K.S.; Smith, D.T.; Broughton, K.S. Vitamin D status and biomarkers of inflammation in runners. Open Access J. Sports Med. 2012, 3, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Ρlvarez-Díaz, S.; Valle, N.; García, J.M.; Peña, C.; Freije, J.M.P.; Quesada, V.; Astudillo, A.; Bonilla, F.; López-Otín, C.; Muñoz, A. Cystatin D is a candidate tumor suppressor gene induced by vitamin D in human colon cancer cells. J. Clin. Investig. 2009, 119, 2343–2358. [Google Scholar] [CrossRef] [Green Version]
- Dhesi, J.K.; Jackson, S.H.D.; Bearne, L.M.; Moniz, C.; Hurley, M.V.; Swift, C.G.; Allain, T.J. Vitamin D supplementation improves neuromuscular function in older people who fall. Age Ageing 2004, 33, 589–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanga, S.R.; Good, M.; Howard, P.A.; Vacek, J.L. Role of vitamin D in cardiovascular health. Am. J. Cardiol. 2010, 106, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Sukumar, D.; Shapses, S.; Schneider, S. Vitamin D supplementation during short-term caloric restriction in healthy overweight/obese older women: Effect on glycemic indices and serum osteocalcin levels. Mol. Cell. Endocrinol. 2015, 410, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Schoenmakers, I.; Francis, R.M.; McColl, E.; Chadwick, T.; Goldberg, G.R.; Harle, C.; Yarnall, A.; Wilkinson, J.; Parker, J.; Prentice, A.; et al. Vitamin D supplementation in older people (VDOP): Study protocol for a randomised controlled intervention trial with monthly oral dosing with 12,000 IU, 24,000 IU or 48,000 IU of vitamin D3. Trials 2013, 14, 299. [Google Scholar] [CrossRef] [Green Version]
- Close, G.L.; Leckey, J.; Patterson, M.; Bradley, W.; Owens, D.J.; Fraser, W.D.; Morton, J.P. The effects of vitamin D3supplementation on serum total 25[OH]D concentration and physical performance: A randomised dose–response study. Br. J. Sports Med. 2013, 47, 692–696. [Google Scholar] [CrossRef] [PubMed]
- Walrand, S. Effect of vitamin D on skeletal muscle. Geriatr. Psychol. Neuropsychiatr. Viellissement 2016, 14, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Abrams, G.D.; Feldman, D.; Safran, M.R. Effects of vitamin D on skeletal muscle and athletic performance. J. Am. Acad. Orthop. Surg. 2018, 26, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Udowenko, M.; Trojian, T. Vitamin D: Extent of deficiency, effect on muscle function, bone health, performance, and injury prevention. Connect. Med. 2010, 74, 477–480. [Google Scholar]
- Bendik, I.; Friedel, A.; Roos, F.F.; Weber, P.; Eggersdorfer, M. Vitamin D: A critical and essential micronutrient for human health. Front. Physiol. 2014, 5, 248. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. Deficiency of sunlight and vitamin D. BMJ 2008, 336, 1318–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jastrzębska, M.; Kaczmarczyk, M.; Suárez, A.D.; Sánchez, G.F.L.; Jastrzębska, J.; Radziminski, L.; Jastrzebski, Z. Iron, hematological parameters and blood plasma lipid profile in vitamin D supplemented and non-supplemented young soccer players subjected to high-intensity interval training. J. Nutr. Sci. Vitam. 2017, 63, 357–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, R.J.; Close, G.L.; Farooq, A.; Riding, N.R.; Salah, O.; Hamilton, B.; Wilson, M.G. Severely vitamin D-deficient athletes present smaller hearts than sufficient athletes. Eur. J. Prev. Cardiol. 2015, 22, 535–542. [Google Scholar] [CrossRef]
- Farrell, S.W.; Cleaver, J.P.; Willis, B.L. Cardiorespiratory fitness, adiposity, and serum 25-dihydroxyvitamin D levels in men. Med. Sci. Sports Exerc. 2011, 43, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Ha, C.-D.; Cho, J.-K.; Lee, S.-H.; Kang, H.-S. Serum vitamin D, physical activity, and metabolic risk factors in Korean children. Med. Sci. Sports Exerc. 2013, 45, 102–108. [Google Scholar] [CrossRef]
- Jastrzebski, Z.; Kortas, J.; Kaczor, K.; Antosiewicz, J. Vitamin D supplementation causes a decrease in blood cholesterol in professional rowers. J. Nutr. Sci. Vitam. 2016, 62, 88–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrokhyar, F.; Tabasinejad, R.; Dao, D.; Peterson, D.; Ayeni, O.R.; Hadioonzadeh, R.; Bhandari, M. Prevalence of vitamin D inadequacy in athletes: A systematic-review and meta-analysis. Sports Med. 2014, 45, 365–378. [Google Scholar] [CrossRef]
- Backx, E.M.P.; Tieland, M.; Maase, K.; Kies, A.K.; Mensink, M.; Van Loon, L.J.; De Groot, L.C.P.G.M. The impact of 1-year vitamin D supplementation on vitamin D status in athletes: A dose–response study. Eur. J. Clin. Nutr. 2016, 70, 1009–1014. [Google Scholar] [CrossRef]
- Cassity, E.P.; Redzic, M.; Teager, C.R.; Thomas, D.T. The effect of body composition and BMI on 25(OH)D response in vitamin D-supplemented athletes. Eur. J. Sport Sci. 2015, 16, 773–779. [Google Scholar] [CrossRef] [Green Version]
- Härdi, I.; Reinhard, S.; Conzelmann, M.; Kressig, R.W.; Bridenbaugh, S.A. Vitamin-D-status bei mitarbeitenden eines universitären Schweizer Geriatriespitals. Praxis 2018, 107, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Tachi, Y.; Sakamoto, Y.; Iida, K.; Wang, P.-L. Relation of bone mass to vitamin D receptor gene polymorphism and lifestyle factors in Japanese female college students. J. Hard Tissue Biol. 2018, 27, 281–286. [Google Scholar] [CrossRef] [Green Version]
- Sari, D.K.; Tala, Z.Z.; Lestari, S.; Hutagalung, S.V.; A Ganie, R. Low 25(OH)D serum may not reflect at risk skeletal health but not with body mass index in women. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 180, p. 12281. [Google Scholar]
- Barcal, J.N.; Thomas, J.T.; Hollis, B.W.; Austin, K.J.; Alexander, B.M.; Larson-Meyer, D.E. Vitamin D and weight cycling: Impact on injury, illness, and inflammation in collegiate wrestlers. Nutrients 2016, 8, 775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heller, J.E.; Thomas, J.J.; Hollis, B.W.; Larson-Meyer, D.E. Relation between vitamin D status and body composition in collegiate athletes. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Rosimus, C. Case study: The effect of nutritional intervention on body composition and physical performance of a female squash player. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, J.S.; Peterson, B.J.; Wilson, P.B.; Rhodes, G.S.; Ingraham, S.J. Vitamin D status is associated with adiposity in male ice hockey players. Med. Sci. Sports Exerc. 2015, 47, 655–661. [Google Scholar] [CrossRef]
- Ha, C.-D.; Han, T.-K.; Lee, S.-H.; Cho, J.-K.; Kang, H.-S. Association between serum vitamin D status and metabolic syndrome in Korean young men. Med. Sci. Sports Exerc. 2014, 46, 513–519. [Google Scholar] [CrossRef]
- Angeline, M.E.; Gee, A.O.; Shindle, M.; Warren, R.F.; Rodeo, S.A. The effects of vitamin D deficiency in athletes. Am. J. Sports Med. 2013, 41, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, D.; Ubago-Guisado, E.; Barker, A.R.; Metcalf, B.S.; Fatouros, I.G.; Avloniti, A.; Knapp, K.M.; Moreno, L.A.; Williams, C.A.; Gracia-Marco, L. Determinants of bone outcomes in adolescent athletes at baseline. Med. Sci. Sports Exerc. 2017, 49, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Silk, L.N.; Greene, D.A.; Baker, M.K.; Jander, C.B. The effect of calcium and vitamin D supplementation on bone health of male Jockeys. J. Sci. Med. Sport 2017, 20, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Keay, N.; Francis, G.; Hind, K. Low energy availability assessed by a sport-specific questionnaire and clinical interview indicative of bone health, endocrine profile and cycling performance in competitive male cyclists. BMJ Open Sport Exerc. Med. 2018, 4, e000424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, R.J.; Farooq, A.; Cherif, A.; Hamilton, B.; Close, G.L.; Wilson, M.G. Why don’t serum vitamin D concentrations associate with BMD by DXA? A case of being ‘bound’ to the wrong assay? Implications for vitamin D screening. Br. J. Sports Med. 2017, 52, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Waldron-Lynch, F.; Murray, B.F.; Brady, J.J.; McKenna, M.J.; McGoldrick, A.; Warrington, G.; O’Loughlin, G.; Barragry, J.M. High bone turnover in Irish professional jockeys. Osteoporos. Int. 2009, 21, 521–525. [Google Scholar] [CrossRef]
- Lewis, R.M.; Redzic, M.; Thomas, D.T. The effects of season-long vitamin D supplementation on collegiate swimmers and divers. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Bügel, S. Vitamin K and bone health in adult humans. Vitam. Horm. 2008, 78, 393–416. [Google Scholar] [CrossRef]
- Kidd, P.M. Vitamins D and K as pleiotropic nutrients: Clinical importance to the skeletal and cardiovascular systems and preliminary evidence for synergy. Altern. Med. Rev. A J. Clin. 2010, 15, 199–222. [Google Scholar]
- Gundberg, C.M.; Lian, J.B.; Booth, S.L. Vitamin k-dependent carboxylation of osteocalcin: Friend or foe? Adv. Nutr. 2012, 3, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Mizuguchi, M.; Fujisawa, R.; Nara, M.; Nitta, K.; Kawano, K. Fourier-transform infrared spectroscopic study of ca2+-binding to osteocalcin. Calcif. Tissue Int. 2001, 69, 337–342. [Google Scholar] [CrossRef]
- Miller, T.L.; Best, T.M. Taking a holistic approach to managing difficult stress fractures. J. Orthop. Surg. Res. 2016, 11, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaFleur, M.; Serra, J.-M.; Nguyen, S.; Depiesse, F.; Edouard, P. Vitamine D et sports. J. De Traumatol. Du Sport 2016, 33, 110–113. [Google Scholar] [CrossRef]
- Shimasaki, Y.; Nagao, M.; Yoshimura, M.; Miyamori, T.; Aoba, Y.; Fukushi, N.; Saita, Y.; Ikeda, H.; Kim, S.-G.; Nozawa, M.; et al. Evaluating the risk of a fifth metatarsal stress fracture by measuring the serum 25-hydroxyvitamin D levels. Foot Ankle Int. 2016, 37, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Feskanich, D.; Weber, P.; Willett, W.C.; Rockett, H.; Booth, S.L.; Colditz, A.G. Vitamin K intake and hip fractures in women: A prospective study. Am. J. Clin. Nutr. 1999, 69, 74–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masterjohn, C. Vitamin D toxicity redefined: Vitamin K and the molecular mechanism. Med. Hypotheses 2007, 68, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- El Asmar, M.S.; Naoum, J.J.; Arbid, E.J. Vitamin k dependent proteins and the role of vitamin K2 in the modulation of vascular calcification: A review. Oman Med. J. 2014, 29, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.; Askew, C.; Mazoue, C.; Guy, J.; Torres-McGehee, T.M.; Iii, J.B.J. Vitamin D3 supplementation and stress fractures in high-risk collegiate athletes–A pilot study. Orthop. Res. Rev. 2020, 12, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, P.; Santos, A.C.; Casalta-Lopes, J.; Almeida, M.; Loureiro, J.; Ermida, V.; Caldas, J.; Fontes-Ribeiro, C. Prevalence of vitamin D deficiency amongst soccer athletes and effects of 8 weeks supplementation. J. Sports Med. Phys. Fit. 2019, 59, s0022–s4707. [Google Scholar] [CrossRef]
- Butscheidt, S.; Rolvien, T.; Ueblacker, P.; Amling, M.; Barvencik, F. Bedeutung von vitamin D im sport: Reduziert ein mangel die leistungsfähigkeit? Sportverletz. Sportschaden 2017, 31, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Grieshober, J.A.; Mehran, N.; Photopolous, C.; Fishman, M.; Lombardo, S.J.; Kharrazi, F.D. Vitamin D insufficiency among professional basketball players: A relationship to fracture risk and athletic performance. Orthop. J. Sports Med. 2018, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knechtle, B.; Nikolaidis, P.T.; Lutz, B.; Rosemann, T.; Baerlocher, C.B. Pathologic fracture of the thoracic spine in a male master ultra-marathoner due to the combination of a vertebral hemangioma and osteopenia. Medicina 2017, 53, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.-R.G.; Silva, H.-H. Comparison of body composition and nutrients’ deficiencies between Portuguese rink-hockey players. Eur. J. Nucl. Med. Mol. Imaging 2016, 176, 41–50. [Google Scholar] [CrossRef]
- Saxena, A.; Fullem, B.; Gerdesmeyer, L. Treatment of medial tibial stress syndrome with radial soundwave therapy in elite athletes: Current evidence, report on two cases, and proposed treatment regimen. J. Foot Ankle Surg. 2017, 56, 985–989. [Google Scholar] [CrossRef]
- Feldman, J.J.; Bowman, E.N.; Phillips, B.B.; Weinlein, J.C. Tibial stress fractures in athletes. Orthop. Clin. N. Am. 2016, 47, 733–741. [Google Scholar] [CrossRef]
- Brennan, M.; O’Shea, P.M.; O’Keeffe, S.T.; Mulkerrin, E.C. Spontaneous insufficiency fractures. J. Nutr. Health Aging 2019, 23, 758–760. [Google Scholar] [CrossRef]
- Lappe, J.; Cullen, D.; Haynatzki, G.; Recker, R.; Ahlf, R.; Thompson, K. Calcium and vitamin D supplementation decreases incidence of stress fractures in female navy recruits. J. Bone Min. Res. 2008, 23, 741–749. [Google Scholar] [CrossRef]
- Miller, J.R.; Dunn, K.W.; Ciliberti, L.J.; Patel, R.D.; Swanson, B.A. Association of vitamin D with stress fractures: A retrospective cohort study. J. Foot Ankle Surg. 2016, 55, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R.A.; Davey, T.; Allsopp, A.J.; Lanham-New, S.A.; Oduoza, U.; Cooper, J.A.; Montgomery, H.E.; Fallowfield, J.L. Low serum 25-hydroxyvitamin D status in the pathogenesis of stress fractures in military personnel: An evidenced link to support injury risk management. PLoS ONE 2020, 15, e0229638. [Google Scholar] [CrossRef]
- Griffin, K.L.; Knight, K.B.; Bass, M.A.; Valliant, M.W. Predisposing risk factors for stress fractures in collegiate cross-country runners. J. Strength Cond. Res. 2021, 35, 227–232. [Google Scholar] [CrossRef]
- Patel, D.R. Stress fractures: Diagnosis and management in the primary care setting. Pediatr. Clin. N. Am. 2010, 57, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Olesen, U.K.; Lauritzen, J.B. Stress fracture in female athlete runner carrying weights. Ugeskr. Laeger 2008, 170, 3138–3139. [Google Scholar]
- Lodge, C.J.; Sha, S.; Yousef, A.S.E.; MacEachern, C. Stress fractures in the young adult hip. Orthop. Trauma 2020, 34, 95–100. [Google Scholar] [CrossRef]
- Greaser, M.C. Foot and ankle stress fractures in athletes. Orthop. Clin. N. Am. 2016, 47, 809–822. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, J.; Sato, Y.; Takeda, T.; Matsumoto, H. Analysis of stress fractures in athletes based on our clinical experience. World J. Orthop. 2011, 2, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Harb, Z.; Malhi, A. Bilateral simultaneous avulsion fractures of the proximal tibia in a 14-year-old athlete with vitamin-D deficiency. Case Rep. Orthop. 2015, 2015, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Pepper, M.; Akuthota, V.; Mccarty, E.C. The pathophysiology of stress fractures. Clin. Sports Med. 2006, 25, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Philipson, M.R.; Parker, P.J. Stress fractures. Orthop. Trauma 2009, 23, 137–143. [Google Scholar] [CrossRef]
- Hoch, A.Z.; Pepper, M.; Akuthota, V. Stress fractures and knee injuries in runners. Phys. Med. Rehabil. Clin. N. Am. 2005, 16, 749–777. [Google Scholar] [CrossRef]
- Belkin, S.C. Stress fractures in athletes. Orthop. Clin. N. Am. 1980, 11, 735–742. [Google Scholar] [CrossRef]
- Devas, M.B. Stress fractures in athletes. Proc. R. Soc. Med. 1970, 19, 34–38. [Google Scholar]
- Tenforde, A.S.; Kraus, E.; Fredericson, M. Bone stress injuries in runners. Phys. Med. Rehabil. Clin. N. Am. 2016, 27, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Song, S.H.; Koo, J.H. Bone stress injuries in runners: A review for raising interest in stress fractures in Korea. J. Korean Med. Sci. 2020, 35, e38. [Google Scholar] [CrossRef]
- Hulme, A.; Nielsen, R.O.; Timpka, T.; Verhagen, E.; Finch, C. Risk and protective factors for middle-and long-distance running-related injury. Sports Med. 2017, 47, 869–886. [Google Scholar] [CrossRef] [PubMed]
- Markey, K.L. Stress fractures. Clin. Sports Med. 1987, 6, 405–425. [Google Scholar] [CrossRef]
- Hershman, E.B.; Mailly, T. Stress fractures. Clin. Sports Med. 1990, 9, 183–214. [Google Scholar] [CrossRef]
- Nattiv, A.; Armsey, T.D. Stress injury to bone in the female athlete. Clin. Sports Med. 1997, 16, 197–224. [Google Scholar] [CrossRef]
- Pegrum, J.; Dixit, V.; Padhiar, N.; Nugent, I. The pathophysiology, diagnosis, and management of foot stress fractures. Physician Sportsmed. 2014, 42, 87–99. [Google Scholar] [CrossRef]
- Neidel, P.; Wolfram, P.; Hotfiel, T.; Engelhardt, M.; Koch, R.; Lee, G.; Zwingenberger, S.; Lee, K. Cross-sectional investigation of stress fractures in German elite triathletes. Sports 2019, 7, 88. [Google Scholar] [CrossRef] [Green Version]
- Sterling, J.C.; Edelstein, D.W.; Calvo, R.D.; Webb, R. Stress fractures in the athlete. Sports Med. 1992, 14, 336–346. [Google Scholar] [CrossRef]
- Daffner, R.H.; Pavlov, H. Stress fractures: Current concepts. Am. J. Roentgenol. 1992, 159, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Daffner, R.H.; Martinez, S.; Gehweiler, J.A. Stress fractures in runners. JAMA 1982, 247, 1039–1041. [Google Scholar] [CrossRef]
- Warden, S.J.; Davis, I.S.; Fredericson, M. Management and prevention of bone stress injuries in long-distance runners. J. Orthop. Sports Phys. 2014, 44, 749–765. [Google Scholar] [CrossRef]
- Greaney, R.B.; Gerber, F.H.; Laughlin, R.L.; Kmet, J.P.; Metz, C.D.; Kilcheski, T.S.; Rao, B.R.; Silverman, E.D. Distribution and natural history of stress fractures in U.S. Marine recruits. Radiology 1983, 146, 339–346. [Google Scholar] [CrossRef]
- Roub, L.W.; Gumerman, L.W.; Hanley, E.N.; Clark, M.W.; Goodman, M.; Herbert, D.L. Bone stress: A radionuclide imaging perspective. Radiology 1979, 132, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.M.; Cameron, K.L.; Bojescul, J.A. Lower extremity stress fractures in the military. Clin. Sports Med. 2014, 33, 591–613. [Google Scholar] [CrossRef]
- Matheson, G.; Clement, D.; McKenzie, D.; Taunton, J.; Lloyd-Smith, D.; MacIntyre, J. Stress fractures in athletes. Am. J. Sports Med. 1987, 15, 46–58. [Google Scholar] [CrossRef]
- Floyd, W.N.; Butler, J.E.; Kim, E.E.; Clanton, T.; Pjura, G. Roentgenologic diagnosis of stress fractures and stress reactions. South Med. J. 1987, 80, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Lynch, T.S.; Patel, R.M.; Amin, N.H.; Parker, R.D. Stress fractures of the pelvis. In Stress Fractures in Athletes; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 101–110. [Google Scholar]
- Heincelman, C.; Brown, S.; England, E.; Mehta, K.; Wissman, R.D. Stress injury of the rib in a swimmer. Skelet. Radiol. 2014, 43, 1297–1299. [Google Scholar] [CrossRef]
- Maroon, J.C.; Mathyssek, C.M.; Bost, J.W.; Amos, A.; Winkelman, R.; Yates, A.P.; Duca, M.A.; Norwig, J.A. Vitamin D profile in national football league players. Am. J. Sports Med. 2015, 43, 1241–1245. [Google Scholar] [CrossRef]
- Rizzone, K.H.; Ackerman, K.E.; Roos, K.G.; Dompier, T.P.; Kerr, Z.Y. The epidemiology of stress fractures in collegiate student-athletes, 2004–2005 through 2013–2014 academic years. J. Athl. Train. 2017, 52, 966–975. [Google Scholar] [CrossRef] [Green Version]
- Scofield, K.L.; Hecht, S. Bone health in endurance athletes. Curr. Sports Med. Rep. 2012, 11, 328–334. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, L.K.; Hume, P.A.; Nolte, V. Rib Stress fractures among rowers. Sports Med. 2011, 41, 883–901. [Google Scholar] [CrossRef]
- Hossain, M.; Clutton, J.; Ridgewell, M.; Lyons, K.; Perera, A. Stress fractures of the foot. Clin. Sports Med. 2015, 34, 769–790. [Google Scholar] [CrossRef]
- DeFranco, M.J.; Recht, M.; Schils, J.; Parker, R.D. Stress fractures of the femur in athletes. Clin. Sports Med. 2006, 25, 89–103. [Google Scholar] [CrossRef]
- Yousaf, S.; Sugand, K.; Raza, M.; Ramesh, P. Simultaneous bilateral stress fractures in a homemaker. J. Am. Podiatr. Med. Assoc. 2014, 104, 518–521. [Google Scholar] [CrossRef]
- Narang, R.K.; Reid, I. Osteomalacia in subtropical Auckland. BMJ Case Rep. 2019, 12, e229657. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.; Bird, M.L.; Wild, E.; Brown, S.M.; Stewart, G.; Mulcahey, M.K. Part I: Epidemiology and risk factors for stress fractures in female athletes. Physician Sportsmed. 2020, 48, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Moghal, M.; Newton, J.L.; Jones, N.; Teh, J. Negative magnetic resonance imaging in three cases of anterior tibial cortex stress fractures. Skelet. Radiol. 2017, 46, 1775–1782. [Google Scholar] [CrossRef] [PubMed]
- Ficek, K.; Cyganik, P.; Rajca, J.; Racut, A.; Kiełtyka, A.; Grzywocz, J.; Hajduk, G. Stress fractures in uncommon location: Six case reports and review of the literature. World J. Clin. Cases 2020, 8, 4135–4150. [Google Scholar] [CrossRef] [PubMed]
- Okike, K.; Moritz, B.E. Minimally invasive screw fixation of inferior pubic ramus stress fracture nonunion in a runner. Jbjs Case Connect. 2016, 6, e26–e266. [Google Scholar] [CrossRef]
- Moo, I.H.; Lee, Y.H.D.; Lim, K.K.; Mehta, K.V. Bilateral femoral neck stress fractures in military recruits with unilateral hip pain. J. R. Army Med. Corps 2015, 162, 387–390. [Google Scholar] [CrossRef]
- Scully, W.F.; Rumley, M.J.C.; Caskey, P.M. Bilateral patellar stress fractures in a skeletally immature athlete. Jbjs Case Connect. 2019, 9, e0047. [Google Scholar] [CrossRef]
- Knechtle, B.; Wengler, E.; Nikolaidis, P.T. Bilateral patellar cyst: A case report with an Ironman triathlete. J. Sports Med. Phys. Fit. 2018, 58, 758–759. [Google Scholar]
- Godoy, I.R.B.; Malavolta, E.A.; Lundberg, J.S.; Da Silva, J.J.; Skaf, A. Humeral stress fracture in a female CrossFit athlete: A case report. BMC Musculoskelet. Disord. 2019, 20, 150. [Google Scholar] [CrossRef] [Green Version]
- Manocha, R.H.K.; Weidner, J. Ulnar stress reaction in an axillary crutch user. BMJ Case Rep. 2020, 13, e236219. [Google Scholar] [CrossRef]
- Vajapey, S.; Matic, G.; Hartz, C.; Miller, T.L. Sacral stress fractures: A rare but curable cause of back pain in athletes. Sports Health A Multidiscip. Approach 2019, 11, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Do, A.C.; Holtzman, G.; Ziegler, C.; Prather, H. Sacral pedicle stress fracture in an adolescent competitive basketball and track and field athlete with a prior femoral physeal injury: A case report. PmR 2019, 11, 657–660. [Google Scholar] [CrossRef]
- Chung, J.S.; Sabatino, M.J.; Fletcher, A.L.; Ellis, H.B. Concurrent bilateral anterior tibial stress fractures and vitamin D deficiency in an adolescent female athlete: Treatment with early surgical intervention. Front. Pediatr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Loh, W.J.; Hughes, L.; Chua, D.T.C.; Gani, L. A case report of mixed osteomalacia and low bone density from vitamin D deficiency as a cause of bilateral tibial stress fractures in a young male military recruit from Singapore. Case Rep. Endocrinol. 2020, 2020, 9519621. [Google Scholar] [CrossRef]
- Fukui, K.; Kaneuji, A.; Hirata, H.; Tsujioka, J.-I.; Shioya, A.; Yamada, S.; Kawahara, N. Bilateral spontaneous simultaneous femoral neck occult fracture in a middle-aged man due to osteoporosis and vitamin D deficiency osteomalacia: A case report and literature review. Int. J. Surg. Case Rep. 2019, 60, 358–362. [Google Scholar] [CrossRef]
- House, S.; Loud, K.; Shubkin, C. Female athlete triad for the primary care pediatrician. Curr. Opin. Pediatr. 2013, 25, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.D.; Varner, K.E. Stress fractures of the Tibia. In Stress Fractures in Athletes; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 137–147. [Google Scholar]
- Macknight, J.M. Osteopenia and osteoporosis in female athletes. Clin. Sports Med. 2017, 36, 687–702. [Google Scholar] [CrossRef]
- Bouvard, M.; Duclos, M. Stress fractures in the female athlete. J. Traumatol. Du Sport 2003, 20, 230–235. [Google Scholar]
- Miyamoto, T.; Oguma, Y.; Matsumoto, H.; Matsumoto, M.; Nakamura, M.; Sato, Y.; Kobayashi, T.; Ito, E.; Tani, M.; Miyamoto, K.; et al. Elevated creatine kinase and lactic acid dehydrogenase and decreased osteocalcin and uncarboxylated osteocalcin are associated with bone stress injuries in young female athletes. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Dao, D.; Sodhi, S.; Tabasinejad, R.; Peterson, D.; Ayeni, O.R.; Bhandari, M.; Farrokhyar, F. Serum 25-hydroxyvitamin D levels and stress fractures in military personnel. Am. J. Sports Med. 2015, 43, 2064–2072. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Tenforde, A.S.; Fredericson, M. Update on stress fractures in female athletes: Epidemiology, treatment, and prevention. Curr. Rev. Musculoskelet. Med. 2013, 6, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Greydanus, D.E.; Omar, H.; Pratt, H.D. The adolescent female athlete: Current concepts and conundrums. Pediatr. Clin. N. Am. 2010, 57, 697–718. [Google Scholar] [CrossRef]
- Kirchner, J.T.; Cohen, D. Medical problems of the athlete: The female athlete triad. Consultant 2002, 42, 1417–1427. [Google Scholar]
- Putukian, M. The female athlete triad. Curr. Opin. Orthop. 2001, 12, 132–141. [Google Scholar] [CrossRef]
- Roth, D.; Meyer Egli, C.; Kriemler, S.; Birkhauser, M.; Jaeger, P.; Imhof, U.; Mannhart, C.; Seiler, R.; Marti, B. Female athlete triad: Diagnosis, therapy and prevention of the syndrome of disordered eating, amenorrhea and osteoporosis. Schweiz. Z. Sport. Sport. 2000, 48, 119–132. [Google Scholar]
- McClung, J.P.; Gaffney-Stomberg, E.; Lee, J.J. Female athletes: A population at risk of vitamin and mineral deficiencies affecting health and performance. J. Trace Elem. Med. Biol. 2014, 28, 388–392. [Google Scholar] [CrossRef]
- Huhmann, K. Menses requires energy: A review of how disordered eating, excessive exercise, and high stress lead to menstrual irregularities. Clin. Ther. 2020, 42, 401–407. [Google Scholar] [CrossRef]
- Golden, N.H. A review of the female athlete triad (amenorrhea, osteoporosis and disordered eating). Int. J. Adolesc. Med. Health 2002, 14, 9–18. [Google Scholar] [CrossRef]
- Misra, M. Bone density in the adolescent athlete. Rev. Endocr. Metab. Disord. 2008, 9, 139–144. [Google Scholar] [CrossRef]
- Nichols, D.L.; Sanborn, C.F.; Essery, E.V. Bone density and young athletic women. Sports Med. 2007, 37, 1001–1014. [Google Scholar] [CrossRef]
- Lambrinoudaki, I.; Papadimitriou, D. Pathophysiology of bone loss in the female athlete. Ann. N. Y. Acad. Sci. 2010, 1205, 45–50. [Google Scholar] [CrossRef]
- Quintas, E.M.; Ortega, R.M.; López-Sobaler, A.M.; Garrido, G.; Requejo, A.M. Influence of dietetic and anthropometric factors and of the type of sport practised on bone density in different groups of women. Eur. J. Clin. Nutr. 2003, 57, S58–S62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mountjoy, M.; Sundgot-Borgen, J.; Ljungqvist, A.; Burke, L.; Carter, S.; Constantini, N.; Lebrun, C.; Meyer, N.; Sherman, R.; Steffen, K.; et al. The IOC consensus statement: Beyond the female athlete triad—relative energy deficiency in sport (RED-S). Br. J. Sports Med. 2014, 48, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Sundgot-Borgen, J.; Sherman, R.; Tenforde, A.S.; Torstveit, M.K.; Budgett, R.; Burke, L.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; et al. International olympic committee (Ioc) Consensus statement on relative energy deficiency in sport (Red-s): 2018 update. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, E.K.; Holtzman, B.; Cooper, K.M.; Flynn, E.F.; Bruinvels, G.; Tenforde, A.S.; Popp, K.L.; Simpkin, A.J.; Parziale, A.L. Low energy availability surrogates correlate with health and performance consequences of relative energy deficiency in sport. Br. J. Sports Med. 2019, 53, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Barrack, M. Recommendations for optimizing bone strength and reducing fracture risk in female athletes. In Nutrition and the Female Athlete: From Research to Practice; CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2013; pp. 229–246. [Google Scholar]
- Marwaha, R.K.; Puri, S.; Tandon, N.; Dhir, S.; Agarwal, N.; Bhadra, K.; Saini, N. Effects of sports training & nutrition on bone mineral density in young Indian healthy females. Indian J. Med. Res. 2011, 134, 307–313. [Google Scholar] [PubMed]
- Tervo, T.; Nordström, P.; Nordström, A. Effects of badminton and ice hockey on bone mass in young males: A 12-year follow-up. Bone 2010, 47, 666–672. [Google Scholar] [CrossRef]
- Ikedo, A.; Ishibashi, A.; Matsumiya, S.; Kaizaki, A.; Ebi, K.; Fujita, S. Comparison of site-specific bone mineral densities between endurance runners and sprinters in adolescent women. Nutrients 2016, 8, 781. [Google Scholar] [CrossRef] [Green Version]
- Prelack, K.; Dwyer, J.; Ziegler, P.; Kehayias, J.J. Bone mineral density in elite adolescent female figure skaters. J. Int. Soc. Sports Nutr. 2012, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanous, N.; Barb, D. Adult hypophosphatasia manifests in a marathon runner. BMJ Case Rep. 2020, 13, e234764. [Google Scholar] [CrossRef]
- Beck, B.R.; Daly, R.M.; Singh, M.A.F.; Taaffe, D.R. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J. Sci. Med. Sport 2017, 20, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Inklebarger, J.; Griffin, M.; Taylor, M.J.D.; Dembry, R.B. Femoral and tibial stress fractures associated with vitamin D insufficiency. J. R. Army Med. Corps 2013, 160, 61–63. [Google Scholar] [CrossRef]
- McCabe, M.P.; Smyth, M.P.; Richardson, D.R. Current concept review: Vitamin D and stress fractures. Foot Ankle Int. 2012, 33, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.; Woodward, A. Risk factors for injury during basic military training. J. Occup. Environ. Med. 1994, 36, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Zukas, R.; Sloat, N.; Wright, P. Are soft in-soles or orthotics better than no insoles to prevent stress fractures of the lower extremity in adults? J. Okla. State Med. Assoc. 2013, 106, 81–82. [Google Scholar]
- Hume, P.; Hopkins, W.; Rome, K.; Maulder, P.; Coyle, G.; Nigg, B. Effectiveness of foot orthoses for treatment and prevention of lower limb injuries. Sports Med. 2008, 38, 759–779. [Google Scholar] [CrossRef]
- Sivakumar, G.; Koziarz, A.; Farrokhyar, F. Vitamin D supplementation in military personnel: A systematic review of randomized controlled trials. Sports Health A Multidiscip. Approach 2019, 11, 425–431. [Google Scholar] [CrossRef]
- Gaffney-Stomberg, E.; Lutz, L.J.; Rood, J.C.; Cable, S.J.; Pasiakos, S.M.; Young, A.J.; McClung, J.P. Calcium and vitamin D supplementation maintains parathyroid hormone and improves bone density during initial military training: A randomized, double-blind, placebo controlled trial. Bone 2014, 68, 46–456. [Google Scholar] [CrossRef]
- Bennell, K.L.; Malcolm, S.A.; Thomas, S.A.; Reid, S.J.; Brukner, P.D.; Ebeling, P.R.; Wark, J.D. Risk factors for stress fractures in track and field athletes. Am. J. Sports Med. 1996, 24, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Beck, T.J.; Ruff, C.B.; Mourtada, F.A.; Shaffer, R.A.; Maxwell-Williams, K.; Kao, G.L.; Sartoris, D.J.; Brodine, S. Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. marine corps recruits. J. Bone Min. Res. 2009, 11, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Mallinson, R.J.; Southmayd, E.A.; De Souza, M.J. Geometric and “true” densitometric characteristics of bones in athletes with stress fracture and menstrual disturbances: A systematic review. Sports Med. 2019, 49, 1059–1078. [Google Scholar] [CrossRef]
- Gaffney-Stomberg, E.; Nakayama, A.T.; Guerriere, K.I.; Lutz, L.J.; Walker, L.A.; Staab, J.S.; Scott, J.M.; Gasier, H.G.; McClung, J.P. Calcium and vitamin D supplementation and bone health in Marine recruits: Effect of season. Bone 2019, 123, 224–233. [Google Scholar] [CrossRef]
- Friedl, K.E.; Evans, R.K.; Moran, D.S. Stress fracture and military medical readiness. Med. Sci. Sports Exerc. 2008, 40, S609–S622. [Google Scholar] [CrossRef]
- Shuler, F.D.; Wingate, M.K.; Moore, G.H.; Giangarra, C. Sports health benefits of vitamin D. Sports Health A Multidiscip. Approach 2012, 4, 496–501. [Google Scholar] [CrossRef] [Green Version]
- Lovell, G. Vitamin D status of females in an elite gymnastics program. Clin. J. Sport Med. 2008, 18, 159–161. [Google Scholar] [CrossRef] [Green Version]
- Tenforde, A.S.; Parziale, A.L.; Popp, K.L.; Ackerman, K.E. Low bone mineral density in male athletes is associated with bone stress injuries at anatomic sites with greater trabecular composition. Am. J. Sports Med. 2018, 46, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Shakked, R.J.; Walters, E.E.; O’Malley, M.J. Tarsal navicular stress fractures. Curr. Rev. Musculoskelet. Med. 2017, 10, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Burgi, A.A.; Gorham, E.D.; Garland, C.F.; Mohr, S.B.; Garland, F.C.; Zeng, K.; Thompson, K.; Lappe, J.M. High serum 25-hydroxyvitamin D is associated with a low incidence of stress fractures. J. Bone Min. Res. 2011, 26, 2371–2377. [Google Scholar] [CrossRef]
- Bezrati, I.; Hammami, R.; Ben Fradj, M.K.; Martone, D.; Padulo, J.; Feki, M.; Chaouachi, A.; Kaabachi, N. Association of plasma 25-hydroxyvitamin D with physical performance in physically active children. Appl. Physiol. Nutr. Metab. 2016, 41, 1124–1128. [Google Scholar] [CrossRef]
- Wentz, L.M.; Liu, P.-Y.; Ilich, J.Z.; Haymes, E.M. Female distance runners training in Southeastern United States have adequate vitamin D status. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 397–403. [Google Scholar] [CrossRef]
Inclusion Criteria | |
---|---|
1 | Studies investigating sport, exercise or physical training |
2 | Investigating the role of 25(OH)D or make reference to the supplementation, ingestion or use of 25(OH)D |
3 | Studies investigating bone health, stress fractures, with reference to prevention and/or rehabilitation |
4 | Study designs including RCTs, case-control, cross-sectional and, case series and reports |
5 | Human participants |
Exclusion Criteria | |
1 | Studies in non-athletic or non-physically active populations |
2 | Animal studies |
3 | Study designs including letters, editorials, conference proceedings, short surveys and author responses |
Intrinsic Factors | |
---|---|
Demographic characteristics | Female sex |
Age, with athletes over 40 and under 18 most at risk | |
Race (other than white) | |
Anatomic factors | High foot arches |
Uneven leg and/or foot alignment | |
Flat feet (pes planus) | |
Knock-knees | |
High quadriceps angles | |
Leg length discrepancies | |
Bonce characteristics | Geometry |
Low density | |
Uneven leg and/or foot alignment | |
Physical fitness | Lower aerobic fitness |
Lower muscle strength | |
Lower muscle endurance | |
Lower flexibility | |
Body composition | |
Body stature | |
Health risk behaviors | Sedentary lifestyle |
Tobacco use | |
History of injury, stress fracture | |
Low calcium intake | |
Low protein intake | |
High caffeine intake | |
Prolonged intake of certain medicaments or drugs | |
Extrinsic Factors | |
Type of activity/sport | Track and field |
Dance | |
Soccer | |
Basketball | |
Military basic training | |
Physical training | High amount of training |
High duration of training | |
High frequency of training | |
High intensity of training | |
Equipment | Shoes |
Boots | |
Insoles | |
Orthotic inserts | |
Environment | Road |
Trail | |
Track |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knechtle, B.; Jastrzębski, Z.; Hill, L.; Nikolaidis, P.T. Vitamin D and Stress Fractures in Sport: Preventive and Therapeutic Measures—A Narrative Review. Medicina 2021, 57, 223. https://doi.org/10.3390/medicina57030223
Knechtle B, Jastrzębski Z, Hill L, Nikolaidis PT. Vitamin D and Stress Fractures in Sport: Preventive and Therapeutic Measures—A Narrative Review. Medicina. 2021; 57(3):223. https://doi.org/10.3390/medicina57030223
Chicago/Turabian StyleKnechtle, Beat, Zbigniew Jastrzębski, Lee Hill, and Pantelis T. Nikolaidis. 2021. "Vitamin D and Stress Fractures in Sport: Preventive and Therapeutic Measures—A Narrative Review" Medicina 57, no. 3: 223. https://doi.org/10.3390/medicina57030223