# Development of a Knee Joint CT-FEM Model in Load Response of the Stance Phase During Walking Using Muscle Exertion, Motion Analysis, and Ground Reaction Force Data

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Participant

#### 2.2. Gait Analysis

#### 2.2.1. Motion Analysis

#### 2.2.2. Electromyography (EMG)

#### 2.3. Outline of the Model and Calculation Method

#### 2.3.1. CT Value (HU: Hounsfield Unit) Density Conversion Formula

^{3}] = (CT value × a) + b,

#### 2.3.2. Young’s Modulus

#### 2.3.3. Young’s Modulus Conversion Formula

#### 2.3.4. Poisson’s Ratio

_{1}is the transverse elastic strain and ε

_{2}is the longitudinal elastic strain.

#### 2.4. Modeling Construction and Procedure

#### 2.4.1. Determination of Material Properties

#### 2.4.2. Determination of Walking Posture

#### 2.4.3. Determination of Load and Restraint Conditions

## 3. Results

^{2}, the average contact pressure 2.50549 N/mm

^{2}, and the maximum contact pressure 8.95098 N/mm

^{2}.

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Ackroyd, R.T. Finite Element Methods for Particle Transport; Research Studies Press: Taunton, Somerset, UK, 1997; pp. 8–12. [Google Scholar]
- Jiang, B. The Least-Squares Finite Element Method; Springer: New York, NY, USA, 1998; pp. 3–10. [Google Scholar]
- Bessho, M.; Ohnishi, I.; Matsumoto, T.; Ohashi, S.; Matsuyama, J.; Tobita, K.; Kaneko, M.; Nakamura, K. Prediction of proximal femur strength using a CT-based nonlinear finite element method: Differences in predicted fracture load and site with changing load and boundary conditions. Bone
**2009**, 45, 226–231. [Google Scholar] [CrossRef] [PubMed] - Brune, A.; Stiesch, M.; Eisenburger, M.; Greuling, A. The effect of different occlusal contact situations on peri-implant bone stress—A contact finite element analysis of indirect axial loading. Mater. Sci. Eng. C Mater. Biol. Appl.
**2019**, 99, 367–373. [Google Scholar] [CrossRef] [PubMed] - Hingsammer, L.; Pommer, B.; Hunger, S.; Stehrer, R.; Watzek, G.; Insua, A. Influence of implant length and associated parameters upon biomechanical forces in finite element analyses: A systematic review. Implant Dent.
**2019**, 28, 296–305. [Google Scholar] [CrossRef] [PubMed] - Zysset, P.K.; Dall’ara, E.; Varga, P.; Pahr, D.H. Finite element analysis for prediction of bone strength. Bonekey Rep.
**2013**, 2, 386. [Google Scholar] [CrossRef] [Green Version] - Li, H.; Wanq, Z. Intervertebral disc biomechanical analysis using the finite element modeling based on medical images. Comput. Med. Imaging Graph.
**2006**, 30, 363–370. [Google Scholar] [CrossRef] - Erdem, I.; Truumees, E.; van der Meulen, M.C. Simulation of the behaviour of the L1 vertebra for different material properties and loading conditions. Comput. Methods Biomech. Biomed. Eng.
**2013**, 16, 736–746. [Google Scholar] [CrossRef] - Halonen, K.S.; Mononen, M.E.; Jurvelin, J.S.; Töyräs, J.; Klodowski, A.; Kulmala, J.P.; Korhonen, R.K. Importance of patella, quadriceps forces, and depthwise cartilage structure on knee joint motion and cartilage response during gait. J. Biomech. Eng.
**2016**, 138, 071002. [Google Scholar] [CrossRef] - Miura, M.; Nakamura, J.; Matsuura, Y.; Wako, Y.; Suzuki, T.; Hagiwara, S.; Orita, S.; Inage, K.; Kawarai, Y.; Sugano, M.; et al. Prediction of fracture load and stiffness of the proximal femur by CT-based specimen specific finite element analysis: Cadaveric validation study. BMC Musculoskelet. Disord.
**2017**, 18, 536. [Google Scholar] [CrossRef] - Allaire, B.T.; Lu, D.; Johannesdottir, F.; Kopperdahl, D.; Keaveny, T.M.; Jarraya, M.; Guermazi, A.; Bredella, M.A.; Samelson, E.J.; Kiel, D.P.; et al. Prediction of incident vertebral fracture using CT-based finite element analysis. Osteoporos. Int.
**2019**, 30, 323–331. [Google Scholar] [CrossRef] - Kawabata, Y.; Matsuo, K.; Nezu, Y.; Kamiishi, T.; Inaba, Y.; Saito, T. The risk assessment of pathological fracture in the proximal femur using a CT-based finite element method. J. Orthop. Sci.
**2017**, 22, 931–937. [Google Scholar] [CrossRef] - Henak, C.R.; Ellis, B.J.; Harris, M.D.; Anderson, A.E.; Peters, C.L.; Weiss, J.A. Role of the acetabular labrum in load support across the hip joint. J. Biomech.
**2011**, 44, 2201–2206. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Fuchs, S.; Kullmer, G.; Richard, H.A. Designing the construction of an FE model exemplified by the knee joint. Biomed. Tech.
**1997**, 42, 347–351. [Google Scholar] [CrossRef] [PubMed] - Chantarapanich, N.; Nanakorn, P.; Chernchujit, B.; Sitthiseripratip, K. A finite element study of stress distributions in normal and osteoarthritic knee joints. J. Med. Assoc. Thail.
**2009**, 92, 97–103. [Google Scholar] - Bae, J.Y.; Park, K.S.; Seon, J.K.; Kwak, D.S.; Jeon, L.; Song, E.K. Biomechanical analysis of the effects of medial meniscectomy on degenerative osteoarthritis. Med. Biol. Eng. Comput.
**2012**, 50, 53–60. [Google Scholar] [CrossRef] [PubMed] - Jeon, I.; Bae, J.Y.; Park, J.H.; Yoon, T.R.; Todo, M.; Mawatari, M.; Hotokebuchi, T. The biomechanical effect of the collar of a femoral stem on total hip arthroplasty. Comput. Methods Biomech. Biomed. Eng.
**2011**, 14, 103–112. [Google Scholar] [CrossRef] - Osano, K.; Nagamine, R.; Todo, M.; Kawasaki, M. The effect of malrotation of tibial component of total knee arthroplasty on tibial insert during high flexion using a finite element analysis. Sci. World J.
**2014**, 2014, 695028. [Google Scholar] [CrossRef] - Anuar, M.A.; Todo, M.; Nagamine, R.; Hirokawa, S. Dynamic finite element analysis of mobile bearing type knee prosthesis under deep flexional motion. Sci. World J.
**2014**, 2014, 586921. [Google Scholar] - Marouane, H.; Shirazi-Adl, A.; Hashemi, J. Quantification of the role of tibial posterior slope in knee joint mechanics and ACL force in simulated gait. J. Biomech.
**2015**, 48, 1899–1905. [Google Scholar] [CrossRef] - Bendjaballah, M.Z.; Shirazi-Adl, A.; Zukor, D.J. Biomechanics of the human knee joint in compression: Reconstruction, mesh generation and finite element analysis. Knee
**1995**, 2, 69–79. [Google Scholar] [CrossRef] - Shirazi, R.; Shirazi-Adl, A.; Hurtig, M. Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J. Biomech.
**2008**, 41, 3340–3348. [Google Scholar] [CrossRef] - Adouni, M.; Shirazi-Adl, A. Consideration of equilibrium equations at the hip joint alongside those at the knee and ankle joints has mixed effects on knee joint response during gait. J. Biomech.
**2003**, 46, 619–624. [Google Scholar] [CrossRef] [PubMed] - Tammy, L.; Donahue, H.; Hull, M.L.; Rashid, M.M.; Jacobs, C.R. A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact. J. Biomech. Eng.
**2002**, 124, 273–280. [Google Scholar] - Ferrari, A.; Benedetti, M.G.; Pavan, E.; Frigo, C.; Bettinelli, D.; Rabuffetti, M.; Crenna, P.; Leardini, A. Quantitative comparison of five current protocols in gait analysis. Gait Posture
**2008**, 28, 207–216. [Google Scholar] [CrossRef] - Grood, E.S.; Suntay, W.J. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng.
**1983**, 105, 136–144. [Google Scholar] [CrossRef] [PubMed] - Perry, J.; Burnfield, J. Gait Analysis: Normal and Pathological Function; SLACK Incorporated: Thorofare, NJ, USA, 1992; pp. 89–108. [Google Scholar]
- Research Center of Computational Mechanics. Research Center of Computation Mechanics: User’s Manual for Mechanical Finder Ver.10.0; RCCM: Tokyo, Japan, 2018; pp. 170–174. [Google Scholar]
- Keyak, J.H.; Rossi, S.A.; Jones, K.A.; Skinner, H.B. Prediction of femoral fracture load using automated finite element modelling. J. Biomech.
**1998**, 31, 125–133. [Google Scholar] [CrossRef] - Keyak, J.H.; Sigurdsson, S.; Karlsdottir, G.; Oskaradottir, D.; Siqmarsdottir, A.; Zhao, S.; Kornak, J.; Harris, T.B.; Siqurdsson, G.; Jonsson, B.Y.; et al. Male-female differences in the association between incident hip fracture and proximal femoral strength: A finite element analysis study. Bone
**2011**, 48, 1239–1245. [Google Scholar] [CrossRef] [Green Version] - Imai, K.; Ohnishi, I.; Yamamoto, S.; Nakamura, K. In vivo assessment of lumbar vertebral strength in elderly women using computed tomography-based nonlinear finite element model. Spine
**2008**, 33, 27–32. [Google Scholar] [CrossRef] - Tawara, D.; Sakamoto, J.; Oda, J. Finite Element Analysis Considering Material Inhomogeneousness of Bone Using “ADVENTURE System”. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf.
**2005**, 48, 292–298. [Google Scholar] [CrossRef] [Green Version] - Silva, M.J.; Keaveny, T.M.; Hayes, W.C. Load sharing between the shell and centrum in the lumbar vertebral body. Spine
**1997**, 22, 140–150. [Google Scholar] [CrossRef] - Takano, H.; Yonezawa, I.; Todo, M. Biomechanical study of vertebral compression fracture using finite element analysis. J. Appl. Math. Phys.
**2017**, 5, 953–965. [Google Scholar] [CrossRef] [Green Version] - Matsuura, Y.; Giambini, H.; Ogawa, Y.; Fanq, Z.; Thoreson, A.R.; Yaszemski, M.J.; Lu, L.; An, K.N. Specimen-specific nonlinear finite element modeling to predict vertebrae fracture loads after vertebroplasty. Spine (Phila Pa 1976)
**2014**, 39, E1291–E1296. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Hayashi, S. Quantitative analysis of lateral force of floor reactions in normal and above-knee prosthetic gait. Nihon Seikeigeka Gakkai Zasshi
**1983**, 57, 1911–1921. [Google Scholar] [PubMed] - Maly, M.R.; Acker, S.M.; Totterman, S.; Tamez-Pena, J.; Stratford, P.W.; Callaqhan, J.P.; Adachi, J.D.; Beattie, K.A. Knee adduction moment relates to medial femoral and tibial cartilage morphology in clinical knee osteoarthritis. J. Biomech.
**2015**, 48, 3495–3501. [Google Scholar] [CrossRef] [PubMed] - Zevenbergen, L.; Smith, C.R.; Van Rossom, S.; Thelen, D.G.; Famaey, N.; Vander Sloten, J.; Jonkers, I. Cartilage defect location and stiffness predispose the tibiofemoral joint to aberrant loading conditions during stance phase of gait. PLoS ONE
**2018**, 13, e0205842. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Lenhart, R.L.; Kaiser, J.; Smith, C.R.; Thelen, D.G. Prediction and validation of load-dependent behavior of the tibiofemoral and patellofemoral joints during movement. Ann. Biomed. Eng.
**2015**, 43, 2675–2685. [Google Scholar] [CrossRef] [Green Version] - Halonen, K.S.; Mononen, M.E.; Jurvelin, J.S.; Töyräs, J.; Salo, J.; Korhonen, R.K. Deformation of articular cartilage during static loading of a knee joint--experimental and finite element analysis. J. Biomech.
**2014**, 47, 2467–2474. [Google Scholar] [CrossRef] - Oatis, C.A. Kinesiology: The Mechanics & Pathomechanics of Human Movement; LWW: Philadelphia, PA, USA, 2004; pp. 861–863. [Google Scholar]
- Levangie, P.K.; Norkin, C.C. Joint Structure and Function: A Comprehensive Analysis, 4th ed.; F.A. Davis: Philadelphia, PA, USA, 2005; pp. 395–397. [Google Scholar]
- Derrick, T.R.; Edwards, W.B.; Fellin, R.E.; Seay, J.F. An integrative modeling approach for the efficient estimation of cross sectional tibial stresses during locomotion. J. Biomech.
**2016**, 49, 429–435. [Google Scholar] [CrossRef]

**Figure 1.**A finite element model of the right knee of a walking posture in the load response (LR) phase in a healthy person. On the left is a front view and on the right is a side view. Bone elements are yellow, truss elements are pink, the meniscus is light blue, and articular cartilage is green. Articular cartilage was set on the femur, tibia, and patella.

**Figure 2.**The setting of load and restraint condition in the right knee model. The femoral side was restrained and the quadriceps muscle was forced displacement (↑). The muscle was input in each direction, the lower end of the lower leg was vertical, and the load obtained in the gait analysis was input.

**Figure 3.**Image (

**a**) shows the joint reaction force on the femoral joint surface, and (

**b**) shows the joint reaction force on the tibial joint surface. Arrows in the figure indicate the magnitude and direction of the reaction force.

**Figure 4.**Image (

**a**) shows the equivalent stress diagram on the femoral joint surface, and (

**b**) shows the equivalent stress diagram on the tibial joint surface. The left side of the figure is the medial side. The range of stress values is 0–5 MPa; it was displayed in blue, green, yellow, and red in the low- to high-stress side.

**Figure 5.**Simulated muscle activation patterns of the RF (

**a**), VM (

**b**), VL (

**c**), BF (

**d**), and ST (

**e**) muscles, and the measured EMG activity of RF (

**f**), VM (

**g**), VL (

**h**), BF (

**i**), and ST (

**j**).

Anatomy Element | Young’s Modulus (MPa) | Poisson’s Ratio |
---|---|---|

Femur, tibia, fibula, patella | Keyak’s conversion formula | 0.4 |

Cartilage | 20 (100 only on the fibula) | 0.4 |

Meniscal | 20 | 0.4 |

Ligament | 0.1 | 0.4 |

The angle between the leg bone and the floor (deg.) | ||

Inversion direction 11.5 | Bending direction 13.3 | Inward direction 7.7 |

The angle between the femur and tibia (deg.) | ||

Inversion direction 12.21 | Bending direction 14.62 | Inward direction −3.28 |

Anatomical Element | Strain Range | Tension (N) |
---|---|---|

Cruciate ligament, collateral ligament | ε < 0.0 0.0 < ε | 0.0 1000ε |

Patellar ligament, quadriceps tendon | ε < 0.0 0.0 < ε < 0.005 0.005 < ε | 0.0 172754ε 863.77 |

**Table 4.**The traction force of the muscle (calculated value) and floor reaction force (measured value).

Floor reaction force (N) | |

Inward direction | 26.08 |

Forward direction | −112.00 |

Upward direction | 808.95 |

Muscle traction (N) | |

Quadriceps | 863.77 |

Biceps femoris | 266.26 |

Semimembranosus | 99.99 |

Semitendinosus + gracilis | 61.11 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Watanabe, K.; Mutsuzaki, H.; Fukaya, T.; Aoyama, T.; Nakajima, S.; Sekine, N.; Mori, K.
Development of a Knee Joint CT-FEM Model in Load Response of the Stance Phase During Walking Using Muscle Exertion, Motion Analysis, and Ground Reaction Force Data. *Medicina* **2020**, *56*, 56.
https://doi.org/10.3390/medicina56020056

**AMA Style**

Watanabe K, Mutsuzaki H, Fukaya T, Aoyama T, Nakajima S, Sekine N, Mori K.
Development of a Knee Joint CT-FEM Model in Load Response of the Stance Phase During Walking Using Muscle Exertion, Motion Analysis, and Ground Reaction Force Data. *Medicina*. 2020; 56(2):56.
https://doi.org/10.3390/medicina56020056

**Chicago/Turabian Style**

Watanabe, Kunihiro, Hirotaka Mutsuzaki, Takashi Fukaya, Toshiyuki Aoyama, Syuichi Nakajima, Norio Sekine, and Koichi Mori.
2020. "Development of a Knee Joint CT-FEM Model in Load Response of the Stance Phase During Walking Using Muscle Exertion, Motion Analysis, and Ground Reaction Force Data" *Medicina* 56, no. 2: 56.
https://doi.org/10.3390/medicina56020056