Influence of Different Repair Acrylic Resin and Thermocycling on the Flexural Strength of Denture Base Resin
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Samples
2.2. Repair Procedures
2.3. Three-Point Flexural Test
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The Heat cured PMMA denture base repair with heat polymerized acrylic resin provided the highest fracture resistance and flexural strength.
- Light polymerized acrylic resin used for repairing PMMA denture base performed inferior to heat and auto polymerized acrylic resins both in maximum load and flexural strength.
- Auto-polymerized repair acrylic resins showed a moderately higher flexural strength than light polymerized acrylic resin but showed significantly lesser performance than the heat cure resins.
- Though heat cure repair acrylic resins, recorded the maximum flexural strength, the denture repair procedures are time-consuming, higher cost and require dental laboratory support. Hence, further researches to simplify the repair process is required.
Author Contributions
Funding
Conflicts of Interest
References
- Carlsson, G.E.; Omar, R. The future of complete dentures in oral rehabilitation. A critical review. J. Oral. Rehabil. 2010, 37, 143–156. [Google Scholar] [CrossRef]
- Alla, R.; Raghavendra, K.; Vyas, R.; Konakanchi, A. Conventional and contemporary polymers for the fabrication of denture prosthesis: part I–overview, composition and properties. Int. J. Appl. Dent. Sci. 2015, 1, 82. [Google Scholar]
- Takamiya, A.S.; Monteiro, D.R.; Marra, J.; Compagnoni, M.A.; Barbosa, D.B. Complete denture wearing and fractures among edentulous patients treated in university clinics. Gerodontology 2012, 29, e728–e734. [Google Scholar] [CrossRef]
- Chand, P.; Patel, C.B.S.; Singh, B.P.; Singh, R.D.; Singh, K. Mechanical properties of denture base resins: An evaluation. Indian J. Dent. Res. 2011, 22, 180. [Google Scholar] [PubMed]
- Faot, F.; Garcia, R.C.M.R.; Del Bel Cury, A.A. Fractographic analysis, accuracy of fit and impact strength of acrylic resin. Braz. Oral Res. 2008, 22, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Prombonas, A.E.; Vlissidis, D.S. Comparison of the midline stress fields in maxillary and mandibular complete dentures: A pilot study. J. Prosthet. Dent. 2006, 95, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Frascaria, M.; Pietropaoli, D.; Casinelli, M.; Cattaneo, R.; Ortu, E.; Monaco, A. Neutral zone recording in computer-guided implant prosthesis: A new digital neuromuscular approach. Clin. Exp. Dent. Res. 2019, 5, 670–676. [Google Scholar] [CrossRef]
- Falisi, G.; Bernardi, S.; Rastelli, C.; Pietropaoli, D.; De Angelis, F.; Frascaria, M.; C, D.I.P. “All on short” prosthetic-implant supported rehabilitations. ORAL Implantol. 2017, 10, 477–487. [Google Scholar] [CrossRef]
- Eklund, S.A.; Burt, B.A. Risk factors for total tooth loss in the United States; longitudinal analysis of national data. J. Public Health Dent. 1994, 54, 5–14. [Google Scholar] [CrossRef]
- Caplan, D.J.; Weintraub, J.A. The oral health burden in the United States: A summary of recent epidemiologic studies. J. Dent. Educ. 1993, 57, 853–862. [Google Scholar]
- Jeyapalan, V.; Krishnan, C.S. Partial Edentulism and its Correlation to Age, Gender, Socio-economic Status and Incidence of Various Kennedy’s Classes- A Literature Review. J. Clin. Diagn. Res. 2015, 9, Ze14–Ze17. [Google Scholar] [CrossRef] [PubMed]
- Kostoulas, I.; Kavoura, V.T.; Frangou, M.J.; Polyzois, G.L. Fracture force, deflection, and toughness of acrylic denture repairs involving glass fiber reinforcement. J. Prosthodont. 2008, 17, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.R., Jr.; Latta, M.A. Physical properties of four acrylic denture base resins. J. Contemp. Dent. Pract. 2005, 6, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Ng, E.; Tan, L.; Chew, B.; Thean, H. Shear bond strength of microwaveable acrylic resin for denture repair. J. Oral Rehabil. 2004, 31, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Lewinstein, I.; Zeltser, C.; Mayer, C.M.; Tal, Y. Transverse bond strength of repaired acrylic resin strips and temperature rise of dentures relined with VLC reline resin. J. Prosthet. Dent. 1995, 74, 392–399. [Google Scholar] [CrossRef]
- John, J.; Gangadhar, S.A.; Shah, I. Flexural strength of heat-polymerized polymethyl methacrylate denture resin reinforced with glass, aramid, or nylon fibers. J. Prosthet. Dent. 2001, 86, 424–427. [Google Scholar] [CrossRef]
- DeBoer, J.; Vermilyea, S.; Brady, R. The effect of carbon fiber orientation on the fatigue resistance and bending properties of two denture resins. J. Prosthet. Dent. 1984, 51, 119–121. [Google Scholar] [CrossRef]
- Murthy, H.M.; Shaik, S.; Sachdeva, H.; Khare, S.; Haralur, S.B.; Roopa, K. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin-An In Vitro Study. J. Int. Oral Health JIOH 2015, 7, 71. [Google Scholar]
- Kanie, T.; Fujii, K.; Arikawa, H.; Inoue, K. Flexural properties and impact strength of denture base polymer reinforced with woven glass fibers. Dent. Mater. 2000, 16, 150–158. [Google Scholar] [CrossRef]
- Nagai, E.; Otani, K.; Satoh, Y.; Suzuki, S. Repair of denture base resin using woven metal and glass fiber: effect of methylene chloride pretreatment. J. Prosthet. Dent. 2001, 85, 496–500. [Google Scholar] [CrossRef]
- Pereira Rde, R.; Delfino, C.S.; Butignon, L.E.; Vaz, M.A.; Arioli-Filho, J.N. Influence of surface treatments on the flexural strength of denture base repair. Gerodontology 2012, 29, e234–e238. [Google Scholar] [CrossRef] [PubMed]
- Vasthare, A.; Shetty, S.; Shenoy, K.K.; Shetty, M.S.; Parveen, K.A.; Shetty, R. Effect of different edge profile, surface treatment, and glass fiber reinforcement on the transverse strength of denture base resin repaired with autopolymerizing acrylic resin: An In vitro study. J. Interdis. Dent. 2017, 7, 31. [Google Scholar] [CrossRef]
- Harrison, W.M.; Stansbury, B.E. The effect of joint surface contours on the transverse strength of repaired acrylic resin. J. Prosthet. Dent. 1970, 23, 464–472. [Google Scholar] [CrossRef]
- Seó, R.S.; Neppelenbroek, K.H.; Filho, J.N. Factors affecting the strength of denture repairs. J. Prosthodont. 2007, 16, 302–310. [Google Scholar] [CrossRef]
- Ayaz, E.A.; Bağış, B.; Turgut, S. Effects of thermal cycling on surface roughness, hardness and flexural strength of polymethylmethacrylate and polyamide denture base resins. J. Appl. Biomater. Func. 2015, 13, 280–286. [Google Scholar] [CrossRef]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater 2006, 22, 211–222. [Google Scholar] [CrossRef]
- Mumcu, E.; Cilingir, A.; Gencel, B.; Sülün, T. Flexural properties of a light-cure and a self-cure denture base materials compared to conventional alternatives. J. Adv. Prosthodont. 2011, 3, 136–139. [Google Scholar] [CrossRef]
- Heidari, B.; Firouz, F.; Izadi, A.; Ahmadvand, S.; Radan, P. Flexural strength of cold and heat cure acrylic resins reinforced with different materials. J. Dent. 2015, 12, 316. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Vallittu, P.K.; Ruyter, I. Swelling of poly (methyl methacrylate) resin at the repair joint. Int. J. Prosthodont. 1997, 10, 254–258. [Google Scholar]
- Stipho, H.; Stipho, A. Effectiveness and durability of repaired acrylic resin joints. J. Prosthet. Dent. 1987, 58, 249–253. [Google Scholar] [CrossRef]
- Beyli, M.; Von Fraunhofer, J. Repair of fractured acrylic resin. J. Prosthet. Dent. 1980, 44, 497–503. [Google Scholar] [CrossRef]
- Sarac, Y.S.; Sarac, D.; Kulunk, T.; Kulunk, S. The effect of chemical surface treatments of different denture base resins on the shear bond strength of denture repair. J. Prosthet. Dent. 2005, 94, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Vallittu, P.K. The effect of surface treatment of denture acrylic resin on the residual monomer content and its release into water. Acta Odontol. Scand. 1996, 54, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Leong, A.; Grant, A. The transverse strength of repairs in polymethyl methacrylate. Aust. Dent. J. 1971, 16, 232–234. [Google Scholar] [CrossRef]
- Tan, H.-K.; Brudvik, J.S.; Nicholls, J.I.; Smith, D.E. Adaptation of a visible light-cured denture base material. J. Prosthet. Dent. 1989, 61, 326–331. [Google Scholar] [CrossRef]
- Faot, F.; Da Silva, W.J.; Da Rosa, R.S.; Del Bel Cury, A.A.; Garcia, R.C.M.R. Strength of denture base resins repaired with auto-and visible light-polymerized materials. J. Prosthodont. 2009, 18, 496–502. [Google Scholar] [CrossRef]
- Berge, M. Bending strength of intact and repaired denture base resins. Acta Odontol. Scand. 1983, 41, 187–191. [Google Scholar] [CrossRef]
- Siddesh, C.S.; Aras, M.A. In vitro evaluation of transverse strength of repaired heat cured denture base resins with and without surface chemical treatment. J. Indian Prosthodont. Soc. 2008, 8, 87–93. [Google Scholar]
- Agarwal, M.; Nayak, A.; Hallikerimath, R. A study to evaluate the transverse strength of repaired acrylic denture resins with conventional heat-cured, autopolymerizing and microwave-cured resins: an in vitro study. J. Indian Prosthodont. Soc. 2008, 8, 36. [Google Scholar] [CrossRef]
- Rached, R.N.; Powers, J.M.; Cury, A.A.D.B. Repair strength of autopolymerizing, microwave, and conventional heat-polymerized acrylic resins. J. Prosthet. Dent. 2004, 92, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Stanford, J.W.; Burns, C.L.; Paffenbarger, G.C. Self-curing resins for repairing dentures: Some physical properties. J. Am. Dent. Assoc. 1955, 51, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Al-Mulla, M.; Murphy, W.; Huggett, R.; Brooks, S. Effect of water and artificial saliva on mechanical properties of some denture-base materials. Dent. Mater. 1989, 5, 399–402. [Google Scholar] [CrossRef]
- Heath, J.; Boru, T.; Grant, A. The stability of temporary prosthetic base materials I: Introduction, angular changes and dimensional stability. J. Oral Rehabil. 1993, 20, 363–372. [Google Scholar] [CrossRef]
- Minami, H.; Suzuki, S.; Kurashige, H.; Minesaki, Y.; Tanaka, T. Flexural strengths of denture base resin repaired with autopolymerizing resin and reinforcements after thermocycle stressing. J. Prosthodont. 2005, 14, 12–18. [Google Scholar] [CrossRef]
- Hayakawa, I.; Nagao, M.; Matsumoto, T.; Masuhara, E. Properties of a new light-polymerized relining material. Int. J. Prosthodont. 1990, 3, 278–284. [Google Scholar]
- Ogle, R.; Sorensen, S.; Lewis, E. A new visible light-cured resin system applied to removable prosthodontics. J. Prosthet. Dent. 1986, 56, 497–506. [Google Scholar] [CrossRef]
- Cunningham, J. Shear bond strength of resin teeth to heat-cured and light-cured denture base resin. J. Oral Rehabil. 2000, 27, 312–316. [Google Scholar] [CrossRef]
- Dar-Odeh, N.; Harrison, A.; Abu-Hammad, O. An evaluation of self-cured and visible light-cured denture base materials when used as a denture base repair material. J. Oral Rehabil. 1997, 24, 755–760. [Google Scholar] [CrossRef]
- Polyzois, G.L.; Tarantili, P.A.; Frangou, M.J.; Andreopoulos, A.G. Fracture force, deflection at fracture, and toughness of repaired denture resin subjected to microwave polymerization or reinforced with wire or glass fiber. J. Prosthet. Dent. 2001, 86, 613–619. [Google Scholar] [CrossRef]
- Andreopoulos, A.G.; Polyzois, G.L. Repair of denture base resins using visible light-cured materials. J. Prosthet. Dent. 1994, 72, 462–468. [Google Scholar] [CrossRef]
- Jagger, D.; Alshumailin, Y.; Harrison, A.; Rees, J. The effect of the addition of poly (methyl methacrylate) fibres on the transverse strength of repaired heat-cured acrylic resin. J. Oral Rehabil. 2003, 30, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Vojdani, M.; Rezaei, S.; Zareeian, L. Effect of chemical surface treatments and repair material on transverse strength of repaired acrylic denture resin. Indian J. Dent. Res. 2008, 19, 2. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Kakigi, M.; Fujii, J.; Tsue, F.; Takahashi, Y. Effect of surface preparation using ethyl acetate on the shear bond strength of repair resin to denture base resin. J. Prosthodont. 2008, 17, 451–455. [Google Scholar] [CrossRef]
Group | N | Maximum Load | Flexure Strength |
---|---|---|---|
Mean (SD) | Mean (SD) | ||
Control | 10 | 173.60 (18.48) | 13.02 (1.29) |
Heat PMMA | 10 | 87.36 (4.82) | 6.55 (0.45) |
APMMA | 10 | 62.94 (1.83) | 4.72 (0.13) |
UDMA | 10 | 57.51 (2.23) | 4.06 (0.21) |
Test | Source | df | SS | MS | F | p |
---|---|---|---|---|---|---|
Maximum load | Between Groups | 3 | 86,700.453 | 28,900.15 | 309.48 | 0.000 * |
Within Groups | 36 | 3361.689 | 93.38 | |||
Total | 39 | 90,062.141 | ||||
Flexural strength | Between Groups | 3 | 501.932 | 167.31 | 343.74 | 0.000 * |
Within Groups | 36 | 17.522 | 0.48 | |||
Total | 39 | 519.454 |
Test | Group | Control | HPMMA | APMMA | UDMA |
---|---|---|---|---|---|
Maximum load | Control | - | 0.000 * | 0.000 * | 0.000 * |
HPMMA | 0.000 * | - | 0.000 * | 0.000 * | |
APMMA | 0.000 * | 0.000 * | - | 0.000 * | |
UDMA | 0.000 * | 0.000 * | 0.000 * | - | |
Flexural strength | Control | - | 0.000 * | 0.000 * | 0.000 * |
HPMMA | 0.000 * | - | 0.000 * | 0.000 * | |
APMMA | 0.000 * | 0.000 * | - | 0.000 * | |
UDMA | 0.000 * | 0.000 * | 0.000 * | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlQahtani, M.; Haralur, S.B. Influence of Different Repair Acrylic Resin and Thermocycling on the Flexural Strength of Denture Base Resin. Medicina 2020, 56, 50. https://doi.org/10.3390/medicina56020050
AlQahtani M, Haralur SB. Influence of Different Repair Acrylic Resin and Thermocycling on the Flexural Strength of Denture Base Resin. Medicina. 2020; 56(2):50. https://doi.org/10.3390/medicina56020050
Chicago/Turabian StyleAlQahtani, Mohammed, and Satheesh B. Haralur. 2020. "Influence of Different Repair Acrylic Resin and Thermocycling on the Flexural Strength of Denture Base Resin" Medicina 56, no. 2: 50. https://doi.org/10.3390/medicina56020050
APA StyleAlQahtani, M., & Haralur, S. B. (2020). Influence of Different Repair Acrylic Resin and Thermocycling on the Flexural Strength of Denture Base Resin. Medicina, 56(2), 50. https://doi.org/10.3390/medicina56020050