Orthostatic Hypotension in Asymptomatic Patients with Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
- Stage I—measure of BP in a lying position, after a minimum of 3–5 min rest,
- Stage II—measure of BP in a standing position after 2–3 min,
- Stage III, i.e., a repeated measure after assuming a lying position, was not performed.
3. Results
- OH presence (0—absence, 1—presence).
- CHF presence (0—absence, 1—presence),
- β-blocker treatment (0—absence, 1—presence),
- systolic BP in the standing position (quantitative variable),
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The consensus committee of the American Autonomic Society and the American Academy of Neurology. Consensus statement on the definition of orthostatic hypotension, pure autonomic failure, and multiple system atrophy. Neurology 1996, 46, 1470. [Google Scholar] [CrossRef]
- Low, P.A.; Benrud-Larson, L.M.; Sletten, D.M.; Opfer-Gehrking, T.L.; Weigand, S.D.; O’Brien, P.C.; Suarez, G.A.; Dyck, P.J. Autonomic symptoms and diabetic neuropathy: A population-based study. Diabetes Care 2004, 27, 2942–2947. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ali, N.S.; Waqas, N.; Bhan, C.; Iftikhar, W.; Sapna, F.; Jitidhar, F.; Cheema, A.M.; Ahmad, M.Q.; Nasir, U.; et al. Management of orthostatic hypotension: A literature review. Cureus 2018, 10, e3166. [Google Scholar] [CrossRef] [PubMed]
- Masuo, K.; Mikami, H.; Ogihara, T.; Tuck, M.L. Changes in frequency of orthostatic hypotension in elderly hypertensive patients under medications. Am. J. Hypertens. 1996, 9, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Vinik, A.I.; Maser, R.E.; Mitchell, B.D.; Freeman, R. Diabetic autonomic neuropathy. Diabetes Care 2003, 26, 1553–1579. [Google Scholar] [CrossRef] [PubMed]
- McCarty, N.; Silverman, B. Cardiovascular autonomic neuropathy. Proc. (Bayl. Univ. Med. Cent.) 2016, 29, 157–159. [Google Scholar]
- Krishnan, A.V.; Kiernan, M.C. Uremic neuropathy: Clinical features and new pathophysiological insights. Muscle Nerve 2007, 35, 273–290. [Google Scholar] [CrossRef] [PubMed]
- Bouhanick, B.; Meliani, S.; Doucet, J.; Bauduceau, B.; Verny, C.; Chamontin, B.; Le Floch, J.P.; Gerodiab Study Group. Orthostatic hypotension is associated with more severe hypertension in elderly autonomous diabetic patients from the French Gerodiab study at inclusion. Ann. Cardiol. Angeiol. (Paris) 2014, 63, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, L.; Kruzliak, P.; Komornikova, A.; Celecova, Z.; Krahulec, B.; Balaz, D.; Sabaka, P.; Caprnda, M.; Kucera, M.; Rodrigo, L.; et al. Ortostatic hypotension in diabetic patients-10-year follow-up study. J. Diabetes Complicat. 2016, 30, 67–71. [Google Scholar] [CrossRef]
- Zifko, U.; Auinger, M.; Albrecht, G.; Kästenbauer, T.; Lahrmann, H.; Grisold, W.; Wanke, T. Phrenic neuropathy in chronic renal failure. Thorax 1995, 50, 793–794. [Google Scholar] [PubMed]
- Rubinger, D.; Backenroth, R.; Sapoznikov, D. Sympathetic nervous system function and dysfunction in chronic hemodialysis patients. Semin. Dial. 2013, 26, 333–343. [Google Scholar] [CrossRef]
- Januszko-Giergielewicz, B.; Dębska-Ślizień, A.; Górny, J.; Kozak, J.; Oniszczuk, K.; Gromadziński, L.; Dorniak, K.; Dudziak, M.; Malinowski, P.; Rutkowski, B. Dobutamine stress echocardiography in the diagnosis of asymptomatic ischemic heart disease in patients with chronic kidney disease-review of literature and single-center experience. Transplant. Proc. 2015, 47, 295–303. [Google Scholar] [CrossRef]
- Krishnan, A.V.; Phoon, R.K.; Pussell, B.A.; Charlesworth, J.A.; Bostock, H.; Kiernan, M.C. Neuropathy, axonal Na+/K+ pump function and activity-dependent excitability changes in end-stage kidney disease. Clin. Neurophysiol. 2006, 117, 992–999. [Google Scholar] [CrossRef]
- Tamulėnaitė, E.; Žvirblytė, R.; Ereminienė, R.; Žiginskienė, E.; Ereminienė, E. Changes of left and right ventricle mechanics and function in patients with end-stage renal disease undergoing haemodialysis. Medicina (Kaunas) 2018, 54, 87. [Google Scholar] [CrossRef]
- Gerdts, E.; Okin, P.M.; Boman, K.; Wachtell, K.; Nieminen, M.S.; Dahlöf, B.; Devereux, R.B. Association of heart failure hospitalizations with combined electrocardiography and echocardiography criteria for left ventricular hypertrophy. Am. J. Hypertens. 2012, 25, 678–683. [Google Scholar] [CrossRef]
- Gromadziński, L.; Pruszczyk, P. Echocardiographic changes in patients with stage 3-5 chronic kidney disease and left ventricular diastolic dysfunction. Cardiorenal Med. 2014, 4, 234–243. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Appleton, C.P.; Gillebert, T.C.; Marino, P.N.; Oh, J.K.; Smiseth, O.A.; Waggoner, A.D.; Flachskampf, F.A.; Pellikka, P.A.; Evangelista, A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur. J. Echocardiogr. 2009, 22, 107–133. [Google Scholar] [CrossRef]
- Davies, S.J.; Phillips, L.; Naish, P.F.; Russell, G.I. Quantifying comorbidity in peritoneal dialysis patients and its relationship to other predictors of survival. Nephrol. Dial. Transplant. 2002, 17, 1085–1092. [Google Scholar] [CrossRef] [Green Version]
- Vinik, A.I.; Ziegler, D. Diabetic cardiovascular autonomic neuropathy. Circulation 2007, 115, 387–397. [Google Scholar] [CrossRef]
- Astrup, A.S.; Tarnow, L.; Rossing, P.; Hansen, B.V.; Hilsted, J.; Parving, H.H. Cardiac autonomic neuropathy predicts cardiovascular morbidity and mortality in type 1 diabetic patients with diabetic nephropathy. Diabetes Care 2006, 29, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Di Carli, M.F.; Bianco-Batlles, D.; Landa, M.E.; Kazmers, A.; Groehn, H.; Muzik, O.; Grunberger, G. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999, 100, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Kurpesa, M. Przydatność monitorowania EKG metodą Holtera do oceny ryzyka pacjentów z chorobami układu krążenia [Usefulness of Holter monitoring for risk assessment in patients with cardiovacular diseases]. Choroby Serca Naczyń 2005, 2, 149–156. [Google Scholar]
- Dheenan, S.; Henrich, W.L. Preventing dialysis hypotension: A comparison of usual protective maneuvers. Kidney Int. 2001, 59, 1175–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasselaar, J.J.; Huisman, R.M.; de Jong, P.E.; Franssen, C.F. Measurement of relative blood volume changes during haemodialysis: Merits and limitations. Nephrol. Dial. Transplant. 2005, 20, 2043–2049. [Google Scholar] [CrossRef]
- Insel, P.A. Adrenergic receptors—Evolving concepts and clinical implications. N. Engl. J. Med. 1996, 334, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Polak, G.; Manitius, J. Autonomiczny układ nerwowy a nadciśnienie tętnicze i nerki [Autonomic nervous system and hypertension and kidney]. Nefrol. Dial. Pol. 1999, 3, 271–275. [Google Scholar]
- Grassi, G. Role of the sympathetic nervous system in human hypertension. J. Hypertens. 1998, 16, 1979–1987. [Google Scholar] [CrossRef]
- Esler, M.; Kaye, D. Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J. Cardiovasc. Pharmacol. 2000, 35, S1–S7. [Google Scholar] [CrossRef]
- Kawasaki, T.; Azuma, A.; Asada, S.; Hadase, M.; Kamitani, T.; Kawasaki, S.; Kuribayashi, T.; Sugihara, H. Heart rate turbulence and clinical prognosis in hypertrophic cardiomyopathy and myocardial infarction. Circ. J. 2003, 67, 601–604. [Google Scholar] [CrossRef]
- Koyama, J.; Watanabe, J.; Yamada, A.; Koseki, Y.; Konno, Y.; Toda, S.; Shinozaki, T.; Miura, M.; Fukuchi, M.; Ninomiya, M.; et al. Evaluation of heart-rate turbulence as a new prognostic marker in patients with chronic heart failure. Circ. J. 2002, 66, 902–907. [Google Scholar] [CrossRef]
- Ciccarelli, L.L.; Ford, C.M. Autonomic neuropathy in a diabetic patient with renal failure. Anesthesiology 1986, 64, 283–287. [Google Scholar] [CrossRef]
- Valbusa, F.; Labat, C.; Salvi, P.; Vivian, M.E.; Hanon, O.; Benetos, A.; PARTAGE investigators. Orthostatic hypotension in very old individuals living in nursing homes: The PARTAGE study. J. Hypertens. 2012, 30, 53–60. [Google Scholar] [CrossRef]
- Verwoert, G.C.; Mattace-Raso, F.U.; Hofman, A.; Heeringa, J.; Stricker, B.H.; Breteler, M.M.; Witteman, J.C. Orthostatic hypotension and risk of cardiovascular disease in elderly people: The Rotterdam study. J. Am. Geriatr. Soc. 2008, 56, 1816–1820. [Google Scholar] [CrossRef]
- Orth, S.R.; Amman, K.; Strojek, K.; Ritz, E. Sympathetic overactivity and arterial hypertension in renal failure. Nephrol. Dial. Transplant. 2001, 16, 67–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamrefors, V.; Härstedt, M.; Holmberg, A.; Rogmark, C.; Sutton, R.; Melander, O.; Fedorowski, A. Orthostatic hypotension and elevated resting heart rate predict low-energy fractures in the population: The Malmö Preventive Project. PLoS ONE 2016, 11, e0154249. [Google Scholar] [CrossRef] [PubMed]
- Juraschek, S.P.; Appel, L.J.; Miller, E.R., 3rd; Mukamal, K.J.; Lipsitz, L.A. Hypertension treatment effects on orthostatic hypotension and its relationship with cardiovascular disease. Hypertension 2018, 72, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Petković, N.; Ristić, S.; Marinković, J.; Marić, R.; Kovačević, M.; Djukanović, L. Differences in risk factors and prevalence of vascular calcification between pre-dialysis and hemodialysis balkan nephropathy patients. Medicina (Kaunas) 2018, 54, 4. [Google Scholar] [CrossRef] [PubMed]
- Townsend, R.R.; Chang, T.I.; Cohen, D.L.; Cushman, W.C.; Evans, G.W.; Glasser, S.P.; Haley, W.E.; Olney, C.; Oparil, S.; Pinto, R.D.; et al. Orthostatic changes in systolic blood pressure among SPRINT participants at baseline. J. Am. Soc. Hypertens. 2016, 10, 847–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Total n = 67 | CKD+ Group n = 45 | CKD– Group n = 22 | p | ||
---|---|---|---|---|---|---|
OH+ n = 17 | OH– n = 28 | OH+ n = 8 | OH– n = 14 | |||
Age, years a,b | 65.06 ± 13.33 | 69.12 ± 13.12 | 65.68 ± 12.19 | 60.50 ± 14.99 | 61.50 ± 14.54 | 0.537 f |
Systolic BP—lying position, mm Hg a,b | 141.90 ± 21.89 | 143.94 ± 23.59 | 142.11 ± 16.56 | 152.50 ± 38.82 | 132.93 ± 14.34 | 0.134 g |
Systolic BP—standing position, mm Hg a,b | 138.88 ± 22.68 | 121.29 ± 16.92 | 148.18 ± 21.79 | 136.25 ± 23.26 | 143.14 ± 19.20 | 0.073 f |
Diastolic BP—lying position, mm Hg c,d | 80 (80,90) | 80 (73,90) | 80 (78,90) | 90 (80,95) | 80 (80,85) | 0.706 g |
Diastolic BP—standing position, mm Hg c,d | 80 (73,90) | 70 (60,80) | 88.5 (80,100) | 80 (60,90) | 85 (80,90) | 0.413 f |
Sex F, n (%) e | 37 (55.22) | 9 (52.94) | 14 (50.00) | 8 (100.00) | 6 (42.86) | 0.033 h |
AH, n (%) e | 48 (71.64) | 16 (94.12) | 21 (75.00) | 5 (62.50) | 6 (42.86) | 0.018 h |
Diabetes, n (%) e | 16 (23.88) | 6 (35.29) | 8 (28.57) | 2 (25.00) | 0 (0) | 0.072 h |
Parameter | Total n = 67 | CKD+ Group n = 45 | CKD– Group n = 22 | p |
---|---|---|---|---|
Creatinine, mg/dL a,b | 1.41 (0.92, 1.94) | 1.66 (1.41, 2.32) | 0.81 (0.77, 0.92) | <0.001 e |
eGFR, mL/min/1.73 m2 a,b | 44 (29, 71) | 36 (21, 44) | 78 (71, 83) | <0.001 e |
Urea, mg/dL a,b | 51 (34, 74) | 61 (50, 85) | 30,5 (25, 34) | <0.001 e |
Triglycerides, mg/dL a,b | 133 (100, 188) | 134 (104, 174) | 135.5 (89, 212) | 0.502 f |
CRP, mg/dL a,b | 3 (1.65, 5.2) | 3 (2, 6) | 2 (1, 3) | 0.026 e |
P, mg/dL a,b | 3.6 (3.19, 4.35) | 3.7 (3.11, 4.93) | 3.55 (3.28, 3.86) | 0.741 e |
PTH, pg/mL a,b | 55.25 (37.9,105.4) | 77.2 (46.7,153.3) | 41.85 (33.6, 50.8) | <0.001 e |
Ca × P ratio a,b | 32.81 (28.67, 41.61) | 32.90 (28.83, 43.91) | 32.34 (28.7, 39.18) | 0.772 e |
NT-proBNP, pg/mL a,b | 191.3 (95.1, 379.45) | 225.5 (99.1, 447.8) | 139.65 (58.2, 205.95) | 0.007 e |
Uric acid, mg/dL a,b | 6.19 (5.05, 7.2) | 6.43 (5.77, 7.27) | 4.72 (3.64, 6.66) | 0.006 e |
Urea protein to creatinine ratio, mg/dL a,b | 0.12 (0.06, 0.28) | 0.21 (0.08, 0.66) | 0.07 (0.052, 0.17) | 0.002 e |
Hb, g/dL c,d | 13.08 ± 1.70 | 12.70 ± 1.77 | 13.88 ± 1.24 | 0.007 g |
Albumin, g/L c,d | 3.82 ± 0.44 | 3.78 ± 0.46 | 3.92 ± 0.40 | 0.237 g |
Total cholesterol, mg/DL c,d | 215.21 ± 48.76 | 213.52 ± 54.75 | 218.59 ± 34.67 | 0.694 g |
HDL-cholesterol, mg/dL c,d | 44.6 ± 10.29 | 43.76 ± 9.89 | 46.32 ± 11.12 | 0.354 g |
LDL-cholesterol, mg/dL c,d | 97.73 ± 25.66 | 96.38 ± 26.79 | 100.18 ± 23.86 | 0.580 g |
Ca, mg/dL c,d | 9.19 ± 0.92 | 9.19 ± 1.01 | 9.18 ± 0.74 | 0.994 e |
Parameter | Total n = 67 | CKD+ n = 45 | CKD– n = 22 | pe |
---|---|---|---|---|
IVSd a,b | 1.1 (1, 1.3) | 1.1 (1, 1.3) | 1 (0.9, 1.2) | 0.032 |
LVIDd a,b | 4.6 (4.3, 4.85) | 4.65 (4.4, 4.8) | 4.4 (4.2, 5.1) | 0.734 |
LVPWd a,b | 1.1 (1, 1.2) | 1.1 (1, 1.2) | 1 (0.9, 1.2) | 0.152 |
%FS a,b | 30 (27, 34.5) | 30 (27, 33) | 31 (27, 37) | 0.302 |
LVs Mass IND(ASE) a,b | 92.64 (80.6, 108.51) | 97.2 (83, 111.1) | 86.33 (75, 103.56) | 0.160 |
Ao Diam a,b | 3.4 (3.2, 3.6) | 3.4 (3.2, 3.5) | 3.4 (3.3, 3.6) | 0.828 |
MV E Vel a,b | 0.63 (0.55, 0.74) | 0.6 (0.51, 0.71) | 0.68 (0.63, 0.76) | 0.031 |
MV E/A Ratio a,b | 0.83 (0.67, 1.02) | 0.71 (0.63, 0.95) | 0.96 (0.82, 1.2) | 0.005 |
EF(Teich) c,d | 58.35 ± 6.92 | 57.64 ± 6.09 | 59.76 ± 8.32 | 0.300 |
LA Diam c,d | 4.0 ± 0.52 | 4.06 ± 0.54 | 3.88 ± 0.47 | 0.203 |
RVIDd c,d | 2.68 ± 0.29 | 2.7 ± 0.26 | 2.64 ± 0.34 | 0.464 |
MV A Vel c,d | 0.78 ± 0.17 | 0.8 ± 0.17 | 0.73 ± 0.17 | 0.064 |
Drug | Total n = 64 | eGFR 0–29 n = 17 | eGFR 30–60 n = 27 | eGFR > 60 n = 20 | pa | |||
---|---|---|---|---|---|---|---|---|
OH+ n = 6 | OH– n = 11 | OH+ n = 10 | OH– n = 17 | OH+ n = 7 | OH– n = 13 | |||
β-blockers, n (%) | 24 (35.82) | 4 (66.67) | 4 (36.36) | 7 (70.00) | 3 (17.65) | 3 (42.86) | 3 (23.08) | 0.040 |
ACE-I, n (%) | 34 (50.75) | 4 (66.67) | 4 (36.36) | 8 (80.00) | 10 (58.82) | 4 (57.14) | 4 (30.77) | 0.246 |
AT1-blockers, n (%) | 7 (10.45) | 1 (16.67) | 1 (9.09) | 1 (10.00) | 2 (11.76) | 0 (0.00) | 2 (15.38) | 0.100 |
Diuretics, n (%) | 40 (59.70) | 5 (83.33) | 9 (81.82) | 8 (80.00) | 13 (76.47) | 2 (28.57) | 3 (23.08) | 0.550 |
Ca-blockers, n (%) | 25 (37.31) | 4 (66.67) | 6 (54.55) | 4 (40.00) | 7 (41.18) | 0 (0.00) | 4 (30.77) | 0.171 |
Statins, n (%) | 26 (38.81) | 2 (33.33) | 5 (45.45) | 6 (60.00) | 8 (47.06) | 2 (28.57) | 3 (23.08) | 0.630 |
Drug | Total n = 44 | OH+ n = 16 | OH– n = 28 | pa |
---|---|---|---|---|
β-blockers, n (%) | 18 (49.91) | 11 (68.75) | 7 (25.00) | 0.005 |
β-blockers +AH, n (%) | 17 (38.64) | 11 (68.75) | 6 (21.43) | 0.002 |
β-blockers +AH + diuretics, n (%) | 16 (36.36) | 10 (62.50) | 6 (21.43) | 0.007 |
Drug | Total n = 64 | OH+ Group n = 23 | OH– Group n = 41 | p |
---|---|---|---|---|
β-blockers + CHF, n (%) | 15 (23.44) | 10 (43.48) | 5 (12.20) | 0.012 a |
β-blockers + CHF + eGFR ≤ 60 mL/min/1.73 m2, n (%) | 10 (15.63) | 8 (34.78) | 2 (4.88) | 0.005 a |
β-blockers + CHF + AH, n (%) | 15 (23.44) | 10 (43.48) | 5 (12.20) | 0.012 a |
β-blockers + CHF + comorbidity >1, n (%) | 15 (23.44) | 10 (43.48) | 5 (12.20) | 0.012 a |
β-blockers + CHF + diuretics, n (%) | 12 (18.75) | 8 (34.78) | 4 (9.76) | 0.033 a |
β-blockers + eGFR ≤ 60 mL/min/1.73 m2 + ACE-I, n (%) | 12 (18.75) | 8 (34.78) | 4 (9.76) | 0.033 a |
β-blockers + AH, n (%) | 23 (35.94) | 14 (60.87) | 9 (21.95) | 0.002 b |
Drug | Total n = 30 | OH+ Group n = 8 | OH– Group n = 22 | pa |
---|---|---|---|---|
Comorbidity > 1 + ACE-I + eGFR ≤ 60 mL/min/1.73 m2, n (%) | 10 (33.33) | 6 (75.00) | 4 (18.18) | 0.013 |
ACE-I + eGFR ≤ 60 mL/min/1.73 m2, n (%) | 14 (46.67) | 7 (87.50) | 7 (31.82) | 0.022 |
Parameter | Odds Ratio | 95% CI | p |
---|---|---|---|
CHF | 15.31 | 1.44–162.44 | 0.020 |
β-blocker therapy | 13.86 | 1.54–124.4 | 0.015 |
BP–standing position | 0.91 | 0.84–0.97 | 0.003 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Januszko-Giergielewicz, B.; Gromadziński, L.; Dudziak, M.; Dębska-Ślizień, A. Orthostatic Hypotension in Asymptomatic Patients with Chronic Kidney Disease. Medicina 2019, 55, 113. https://doi.org/10.3390/medicina55040113
Januszko-Giergielewicz B, Gromadziński L, Dudziak M, Dębska-Ślizień A. Orthostatic Hypotension in Asymptomatic Patients with Chronic Kidney Disease. Medicina. 2019; 55(4):113. https://doi.org/10.3390/medicina55040113
Chicago/Turabian StyleJanuszko-Giergielewicz, Beata, Leszek Gromadziński, Maria Dudziak, and Alicja Dębska-Ślizień. 2019. "Orthostatic Hypotension in Asymptomatic Patients with Chronic Kidney Disease" Medicina 55, no. 4: 113. https://doi.org/10.3390/medicina55040113