Lipid Hormones at the Intersection of Metabolic Imbalances and Endocrine Disorders
Abstract
1. Introduction
2. Metabolic Impact of Glucocorticoids
2.1. The Effects of Glucocorticoid Hormones on Adipose Tissue
2.2. The Effects of Glucocorticoid Hormones on Muscles
2.3. The Effects of Glucocorticoid Hormones on Liver
2.4. The Effects of Glucocorticoid Hormones on the Pancreas
2.5. Some Practical Applications Based on the Link Between Glucocorticoids and Insulin Resistance
3. Sexual Hormones and Metabolic Impact
3.1. PCOS and MASLD
3.2. Estrogen Deficiency and MAFLD in Menopause
3.3. Therapeutic Strategies Targeting Insulin Resistance and Hepatic Steatosis in PCOS
4. Thyroid Hormones and Metabolic Impact
4.1. Thyroid Hormones and Lipid Metabolism
4.2. TH Dysfunction, Insulin Resistance, and MAFLD
4.3. MAFLD and Hypothyroidism: An Overlooked Endocrine Link
4.4. Therapeutic Strategies Targeting THR
5. Hormonal Crosstalk, Inflammation, and Immune Modulation
6. Future Directions: Human-Relevant Models and Precision Medicine
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015, 33, 673–689. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gofton, C.; Upendran, Y.; Zheng, M.H.; George, J. MAFLD: How is it different from NAFLD? Clin. Mol. Hepatol. 2023, 29 (Suppl. S1), S17–S31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, V.W.-S.; Dufour, J.-F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Song, S.J.; Lai, J.C.-T.; Wong, G.L.-H.; Wong, V.W.-S.; Yip, T.C.-F. Can we use old NAFLD data under the new MASLD definition? J. Hepatol. 2023, 80, e54–e56. [Google Scholar] [CrossRef] [PubMed]
- Von-Hafe, M.; Borges-Canha, M.; Vale, C.; Leite, A.; Neves, J.S.; Carvalho, D.; Leite-Moreira, A. Nonalcoholic Fatty Liver Disease and Endocrine Axes—A Scoping Review. Metabolites 2022, 12, 298. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, A.L.; Tavaglione, F.; Romeo, S.; Charlton, M. Endocrine aspects of metabolic dysfunction-associated steatotic liver disease (MASLD): Beyond insulin resistance. J. Hepatol. 2023, 79, 1524–1541. [Google Scholar] [CrossRef] [PubMed]
- Sargis, R.M.; Johnson, D.N.; Choudhury, R.A.; Brady, M.J. Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation. Obesity 2010, 18, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Richard, A.J.; White, U.; Elks, C.M.; Stephens, J.M. Adipose Tissue: Physiology to Metabolic Dysfunction; MDText.com, Inc.: South Dartmouth, MA, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK555602/ (accessed on 20 March 2025).
- Geer, E.B.; Islam, J.; Buettner, C. Mechanisms of glucocorticoid-induced insulin resistance: Focus on adipose tissue function and lipid metabolism. Endocrinol. Metab. Clin. N. Am. 2014, 43, 75–102. [Google Scholar] [CrossRef] [PubMed]
- Khamoshina, M.B.; Artemenko, Y.S.; Bayramova, A.A.; Ryabova, V.A.; Orazov, M.R. Polycystic ovary syndrome and obesity: A modern paradigm. Rudn. J. Med. 2022, 26, 382–395. [Google Scholar] [CrossRef]
- Yuan, S.; Ebrahimi, F.; Bergman, D.; Vujković, M.; Scorletti, E.; Ruan, X.; Chen, J.; Hagström, H.; Ludvigsson, J.F. Thyroid dysfunction in MASLD: Results of a nationwide study. JHEP Rep. 2025, 7, 101369. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mifsud, K.R.; Reul, J.M.H.M. Acute stress enhances heterodimerization and binding of corticosteroid receptors at glucocorticoid target genes in the hippocampus. Proc. Natl. Acad. Sci. USA 2016, 113, 11336–11341. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.; Park, M.K. Glucocorticoid-Induced Diabetes Mellitus: An Important but Overlooked Problem. Endocrinol. Metab. 2017, 32, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Targher, G. Role of Glucocorticoids in Metabolic Dysfunction-Associated Steatotic Liver Disease. Curr. Obes. Rep. 2024, 13, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Suh, S. Glucocorticoid-Induced Hyperglycemia: A Neglected Problem. Endocrinol. Metab. 2024, 39, 222–238. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Zhao, D.; Ryu, S.; Guallar, E.; Cho, J.; Lazo, M.; Shin, H.; Chang, Y.; Sung, E. Perceived stress and non-alcoholic fatty liver disease in apparently healthy men and women. Sci. Rep. 2020, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Peckett, A.J.; Wright, D.C.; Riddell, M.C. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 2011, 60, 1500–1510. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obesity. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef] [PubMed]
- Rutters, F.; Nieuwenhuizen, A.G.; Lemmens, S.G.; Born, J.M.; Westerterp-Plantenga, M.S. HPA axis functioning in relation to body fat distribution. Clin. Endocrinol. 2010, 72, 738–743. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, R.; Vicennati, V.; Cacciari, M.; Pagotto, U. The hypothalamic-pituitary-adrenal axis activity in obesity and the metabolic syndrome. Ann. N. Y. Acad. Sci. 2006, 1083, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Samuel, V.T.; Shulman, G.I. Mechanisms for insulin resistance: Common threads and missing links. Cell 2012, 148, 852–871. [Google Scholar] [CrossRef] [PubMed]
- Boden, G. Interaction between free fatty acids and glucose metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Pramyothin, P.; Karastergiou, K.; Fried, S.K. Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim. Biophys. Acta 2014, 1842, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Rebuffè-Scrive, M.; Walsh, U.A.; McEwen, B.; Rodin, J. Effect of chronic stress and exogenous glucocorticoids on regional fat distribution and metabolism. Physiol. Behav. 1992, 52, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, M.; Burén, J.; Ruge, T.; Myrnäs, T.; Eriksson, J.W. Glucocorticoids down-regulate glucose uptake capacity and insulin-signaling proteins in omental but not subcutaneous human adipocytes. J. Clin. Endocrinol. Metab. 2004, 89, 2989–2997. [Google Scholar] [CrossRef] [PubMed]
- Guo, G.; Wang, W.; Tu, M.; Zhao, B.; Han, J.; Li, J.; Pan, Y.; Zhou, J.; Ma, W.; Liu, Y.; et al. Deciphering adipose development: Function, differentiation and regulation. Dev. Dyn. 2024, 253, 956–997. [Google Scholar] [CrossRef] [PubMed]
- Zechner, R.; Kienesberger, P.C.; Haemmerle, G.; Zimmermann, R.; Lass, A. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J. Lipid Res. 2009, 50, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Johnson, A.; Taylor, M. Glucocorticoid-induced regulation of lipid metabolism. J. Endocrinol. Metab. 2010, 125, 455–462. [Google Scholar]
- Masuzaki, H.; Paterson, J.; Shinyama, H.; Morton, N.M.; Mullins, J.J.; Seckl, J.R.; Flier, J.S. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001, 294, 2166–2170. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, R.; Ambrosi, B.; Armanini, D.; Cavagnini, F.; Uberti, E.D.; Del Rio, G.; de Pergola, G.; Maccario, M.; Mantero, F.; Marugo, M.; et al. Cortisol and ACTH response to oral dexamethasone in obesity and effects of sex, body fat distribution, and dexamethasone concentrations: A dose–response study. J. Clin. Endocrinol. Metab. 2002, 87, 166–175. [Google Scholar] [CrossRef]
- Misra, M.; Bredella, M.A.; Tsai, P.; Mendes, N.; Miller, K.K.; Klibanski, A. Lower growth hormone and higher cortisol are associated with greater visceral adiposity in overweight girls. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E385–E392. [Google Scholar] [CrossRef] [PubMed]
- Laferrère, B.; Caixas, A.; Fried, S.K.; Bashore, C.; Kim, J.; Pi-Sunyer, F.X. A pulse of insulin and dexamethasone stimulates serum leptin in fasting human subjects. Eur. J. Endocrinol. 2002, 146, 839–845. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dallman, M.F.; la Fleur, S.E.; Pecoraro, N.C.; Gomez, F.; Houshyar, H.; Akana, S.F. Glucocorticoids—Food intake, abdominal obesity, and wealthy nations in 2004. Endocrinology 2004, 145, 2633–2638. [Google Scholar] [CrossRef] [PubMed]
- Bavaresco, A.; Mazzeo, P.; Lazzara, M.; Barbot, M. Adipose tissue in cortisol excess: What Cushing’s syndrome can teach us? Biochem. Pharmacol. 2024, 223, 116137. [Google Scholar] [CrossRef] [PubMed]
- Selek, A.; Sozen, M.; Cayir, B.F.; Tarkun, I.; Cetinarslan, B.; Canturk, Z.; Gezer, E.; Koksalan, D. The Effect of Chronic Glucocorticoid Exposure on Brown Adipose Tissue in Cushing’s Disease. Med. Bull. Haseki. 2021, 59, 133–138. [Google Scholar] [CrossRef]
- Setola, E.; Losa, M.; Lanzi, R.; Lucotti, P.; Monti, L.D.; Castrignanò, T.; Galluccio, E.; Giovanelli, M.; Piatti, P. Increased insulin-stimulated endothelin-1 release is a distinct vascular phenotype distinguishing Cushing’s disease from metabolic syndrome. Clin. Endocrinol. 2007, 66, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Boden, G. Obesity and free fatty acids. Endocrinol. Metab. Clin. N. Am. 2008, 37, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Haber, R.S.; Weinstein, S.P. Role of glucose transporters in glucocorticoid-induced insulin resistance. GLUT4 isoform in rat skeletal muscle is not decreased by dexamethasone. Diabetes 1992, 41, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Schernthaner-Reiter, M.H.; Wolf, P.; Vila, G.; Luger, A. The interaction of insulin and pituitary hormone syndromes. Front. Endocrinol. 2021, 12, 626427. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, L.; Rajpal, A.; Ismail-Beigi, F. Glucocorticoid-induced fatty liver disease. Diabetes Metab. Syndr. Obes. 2020, 13, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Rodrigues, B. Glucocorticoids produce whole body insulin resistance with changes in cardiac metabolism. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E654–E667. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, J.P.; Cusi, K. Role of insulin resistance in the development of nonalcoholic fatty liver disease in people with type 2 diabetes: From bench to patient care. Diabetes Spectr. 2024, 37, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, J.W.; Walker, E.A.; Bujalska, I.J.; Draper, N.; Lavery, G.G.; Cooper, M.S.; Hewison, M.; Stewart, P.M. 11β-Hydroxysteroid dehydrogenase type 1: A tissue-specific amplifier of glucocorticoid action. Endocr. Rev. 2004, 25, 831–866. [Google Scholar] [CrossRef] [PubMed]
- Miceli, D.D.; Abiuso, A.M.B.; Vidal, P.N.; Gallelli, M.F.; Pignataro, O.P.; Castillo, V.A. Overexpression of 11β-hydroxysteroid dehydrogenase 1 in visceral adipose tissue and underexpression of endothelial nitric oxide synthase in the adrenal cortex of dogs with hyperadrenocorticism. Open Vet. J. 2018, 8, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sheng, J.; Wang, J.; Gao, H.; Yu, J.; Ding, G.; Ding, N.; He, W.; Zha, J. Selective inhibition of 11β-hydroxysteroid dehydrogenase type 1 attenuates high-fat diet-induced hepatic steatosis in mice. Drug Des. Dev. Ther. 2021, 15, 2309–2324. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Rabbitt, E.; Brady, T.; Brown, C.; Guest, P.; Bujalska, I.J.; Doig, C.; Newsome, P.N.; Hubscher, S.; Elias, E.; et al. A switch in hepatic cortisol metabolism across the spectrum of non alcoholic fatty liver disease. PLoS ONE 2012, 7, e29531. [Google Scholar] [CrossRef] [PubMed]
- Suwała, S.; Junik, R. Metabolic-associated fatty liver disease and the role of hormones in its aetiopathogenesis. Endokrynol. Pol. 2024, 75, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Gong, M.; Zhu, X.; Yang, Y.L.; Li, L.R.; Meng, H.; Wang, Y. Correlation between liver fibrosis in non-alcoholic fatty liver disease and insulin resistance indicators: A cross-sectional study from NHANES 2017–2020. Front. Endocrinol. 2025, 16, 1514093. [Google Scholar] [CrossRef] [PubMed]
- Scheja, L.; Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 2019, 15, 507. [Google Scholar] [CrossRef] [PubMed]
- Todisco, S.; Santarsiero, A.; Convertini, P.; De Stefano, G.; Gilio, M.; Iacobazzi, V.; Infantino, V. PPAR Alpha as a metabolic modulator of the liver: Role in the pathogenesis of nonalcoholic steatohepatitis (NASH). Biology 2022, 11, 792. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fang, X.; Shuang, F.; Chen, G. Dexamethasone potentiates the insulin-induced Srebp-1c expression in primary rat hepatocytes. Food Sci. Human Wellness 2023, 12, 1519–1525. [Google Scholar] [CrossRef]
- Protzek, A.O.; Rezende, L.F.; Costa-Júnior, J.M.; Ferreira, S.M.; Cappelli, A.P.G.; de Paula, F.M.M.; de Souza, J.C.; Kurauti, M.A.; Carneiro, E.M.; Rafacho, A.; et al. Hyperinsulinemia caused by dexamethasone treatment is associated with reduced insulin clearance and lower hepatic activity of insulin-degrading enzyme. J. Steroid Biochem. Mol. Biol. 2016, 155 Pt A, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cui, A.; Fan, H.; Zhang, Y.; Zhang, Y.; Niu, D.; Liu, S.; Liu, Q.; Ma, W.; Shen, Z.; Shen, L.; et al. Dexamethasone-induced Krüppel-like factor 9 expression promotes hepatic gluconeogenesis and hyperglycemia. J. Clin. Investig. 2019, 129, 2266–2278. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Song, Z.; Wang, X.; Jiao, H.; Lin, H. Dexamethasone-induced hepatic lipogenesis is insulin dependent in chickens (Gallus gallus domesticus). Stress 2011, 14, 273–2181. [Google Scholar] [CrossRef] [PubMed]
- Gurzov, E.N.; Eizirik, D.L. Bcl-2 proteins in diabetes: Mitochondrial pathways of β-cell death and dysfunction. Trends Cell Biol. 2011, 21, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.; Bermudez, V.; Palmar, J.; Martínez, M.S.; Olivar, L.C.; Nava, M.; Tomey, D.; Rojas, M.; Salazar, J.; Garicano, C.; et al. Pancreatic beta cell death: Novel potential mechanisms in diabetes therapy. J. Diabetes Res. 2018, 2018, 9601801. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, H. Oxidative stress in pancreatic beta cell regeneration. Oxid. Med. Cell Longev. 2017, 2017, 1930261. [Google Scholar] [CrossRef] [PubMed]
- Suksri, K.; Semprasert, N.; Junking, M.; Kutpruek, S.; Limjindaporn, T.; Yenchitsomanus, P.-T.; Kooptiwut, S. Dexamethasone induces pancreatic β-cell apoptosis through upregulation of TRAIL death receptor. J. Mol. Endocrinol. 2021, 67, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Esguerra, J.L.S.; Ofori, J.K.; Nagao, M.; Shuto, Y.; Karagiannopoulos, A.; Fadista, J.; Sugihara, H.; Groop, L.; Eliasson, L. Glucocorticoid induces human beta cell dysfunction by involving riborepressor GAS5 LincRNA. Mol. Metab. 2020, 32, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.H.; Nayak, I.M.; Huilgol, S.V.; Yendigeri, S.M.; Narendar, K.; Rajasekhar, C.H. Dose dependent hepatic and endothelial changes in rats treated with dexamethasone. J. Clin. Diagn. Res. 2015, 9, FF08–FF10. [Google Scholar] [CrossRef] [PubMed]
- Amer, A.E.; Ghoneim, H.A.; Abdelaziz, R.R.; Shehatou, G.S.G.; Suddek, G.M. Establishment of dexamethasone model as a model for metabolic-associated hepatic injury in male Wistar rats. Delta Univ. Sci. J. 2024, 7, 114–125. [Google Scholar] [CrossRef]
- Shalam, M.; Harish, M.S.; Farhana, S.A. Prevention of dexamethasone- and fructose-induced insulin resistance in rats by SH-01D, a herbal preparation. Indian J. Pharmacol. 2006, 38, 419–422. [Google Scholar] [CrossRef]
- Mahmoud, M.F.; Ali, N.; Mostafa, I.; Hasan, R.A.; Sobeh, M. Coriander oil reverses dexamethasone-induced insulin resistance in rats. Antioxidants 2022, 11, 441. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.C.; Mraitis, A.G.; Belanoff, J.K. Biochemical and radiological changes in liver steatosis following mifepristone treatment in patients with hypercortisolism. AACE Clin. Case Rep. 2022, 8, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Bagnato, C.B.; Bianco, A.; Bonfiglio, C.; Franco, I.; Verrelli, N.; Carella, N.; Shahini, E.; Zappimbulso, M.; Giannuzzi, V.; Pesole, P.L.; et al. Healthy lifestyle changes improve cortisol levels and liver steatosis in MASLD patients: Results from a randomized clinical trial. Nutrients 2024, 16, 4225. [Google Scholar] [CrossRef] [PubMed]
- Agbaje, A.O.; Saner, C.; Zhang, J.; Henderson, M.; Tuomainen, T.P. DXA-based fat mass with risk of worsening insulin resistance in adolescents: A 9-year temporal and mediation study. J. Clin. Endocrinol. Metab. 2024, 109, e1708–e1719. [Google Scholar] [CrossRef] [PubMed]
- Rigal, S.; Casas, B.; Kanebratt, K.P.; Wennberg Huldt, C.; Magnusson, L.U.; Müllers, E.; Karlsson, F.; Clausen, M.; Hansson, S.F.; Leonard, L.; et al. Normoglycemia and physiological cortisone level maintain glucose homeostasis in a pancreas-liver microphysiological system. Commun. Biol. 2024, 7, 877. [Google Scholar] [CrossRef] [PubMed]
- Radner, G. Polycystic Ovary Syndrome (PCOS); Gynakol Prax: Munich, Germany, 2023; p. 50. [Google Scholar]
- Spremović Rađenović, S.; Pupovac, M.; Andjić, M.; Bila, J.; Srećković, S.; Gudović, A.; Dragaš, B.; Radunović, N. Prevalence, risk factors, and pathophysiology of nonalcoholic fatty liver disease (NAFLD) in women with polycystic ovary syndrome (PCOS). Biomedicines 2022, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; He, B. Current perspectives on nonalcoholic fatty liver disease in women with polycystic ovary syndrome. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 1281–1291. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.; Qiao, J.; Pang, Y. Central regulation of PCOS: Abnormal neuronal-reproductive-metabolic circuits in PCOS pathophysiology. Front. Endocrinol. 2021, 12, 667422. [Google Scholar] [CrossRef] [PubMed]
- Harada, M. Pathophysiology of polycystic ovary syndrome revisited: Current understanding and perspectives regarding future research. Reprod. Med. Biol. 2022, 21, e12487. [Google Scholar] [CrossRef] [PubMed]
- Kanbour, S.A.; Dobs, A.S. Hyperandrogenism in women with polycystic ovarian syndrome: Pathophysiology and controversies. Androgens 2022, 3, 22–30. [Google Scholar] [CrossRef]
- Orrego, A. Updated approach to the pathophysiology, classification and genetics of polycystic ovarian syndrome. Rev. Colomb. Endocrinol. Diabetes Metab. 2019, 6, 101–106. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, J.; Zhang, F.; Zhang, S.; Chen, X.; Liang, W.; Xie, Q. Resistance to insulin and elevated level of androgen: A major cause of polycystic ovary syndrome. Front. Endocrinol. 2021, 12, 741764. [Google Scholar] [CrossRef] [PubMed]
- Petta, S.; Ciresi, A.; Bianco, J.; Geraci, V.; Boemi, R.; Galvano, L.; Magliozzo, F.; Merlino, G.; Craxì, A.; Giordano, C. Insulin resistance and hyperandrogenism drive steatosis and fibrosis risk in young females with PCOS. PLoS ONE 2017, 12, e0186136. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, H.; Ipandi, I.; Nugraha, J.; Sa’adi, A. Correlation between serum dehydroepiandrosterone sulfate and LDL cholesterol in patients with polycystic ovarian syndrome. Indones. J. Clin. Pathol. Med. Lab. 2020, 27, 37–41. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, W.; Zhao, J.; Jiao, P.; Zeng, L.; Zhang, H.; Zhao, Y.; Shi, L.; Hu, H.; Luo, L.; et al. Relationship between body composition, insulin resistance, and hormonal profiles in women with polycystic ovary syndrome. Front. Endocrinol. 2023, 13, 1085656. [Google Scholar] [CrossRef] [PubMed]
- Pratama, G.; Wiweko, B.; Asmarinah; Widyahening, I.S.; Andraini, T.; Bayuaji, H.; Hestiantoro, A. Body composition parameters, adiponectin, leptin and adiponectin/leptin ratio are correlated with LH/FSH ratio in women with PCOS but not in women without PCOS. Indones. J. Obstet. Gynecol. 2024, 12, 36–45. [Google Scholar] [CrossRef]
- Recuero, A.M.; Gomes, L.G.; Maciel, G.A.R.; de Mello Malta, F.; Salles, A.P.M.; Vezozzo, D.C.P.; Baracat, E.C.; Pinho, J.R.R.; Carrilho, F.J.; Stefano, J.T.; et al. NAFLD in Polycystic Ovary Syndrome: Association with PNPLA3 and Metabolic Features. Biomedicines 2022, 10, 2719. [Google Scholar] [CrossRef] [PubMed]
- Livzan, M.A.; Syrovenko, M.I.; Krolevets, T.S. Non-alcoholic fatty liver disease and women’s health. Russ. Med. Rev. 2023, 7, 310–317. [Google Scholar] [CrossRef]
- Eng, P.C.; Forlano, R.; Tan, T.; Manousou, P.; Dhillo, W.S.; Izzi-Engbeaya, C. Non-alcoholic fatty liver disease in women—Current knowledge and emerging concepts. JHEP Rep. 2023, 5, 100835. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, J.M.; Pighon, A. NAFLD, Estrogens, and Physical Exercise: The Animal Model. J. Nutr. Metab. 2012, 2012, 914938. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- DiStefano, J.K. NAFLD and NASH in Postmenopausal Women: Implications for Diagnosis and Treatment. Endocrinology 2020, 161, bqaa134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, C.; Shi, J.; Shang, D.; Guo, M.; Zhou, C.; Zhao, W. Protective effect of phytoestrogens on nonalcoholic fatty liver disease in postmenopausal women. Front. Pharmacol. 2023, 14, 1237845. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Goulis, D.G. Menopause and metabolic dysfunction-associated steatotic liver disease. Maturitas 2024, 186, 108024. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Lee, Y.J.; Kwon, Y.J.; Lee, J.W. Age at menopause and risk of metabolic dysfunction-associated fatty liver disease: A 14-year cohort study. Dig. Liver Dis. 2024, 56, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
- Florentino, G.; Cotrim, H.P.; Florentino, A.; Padilha, C.; Medeiros-Neto, M.; Bragagnoli, G.; Schwingel, P. Hormone replacement therapy in menopausal women: Risk factor or protection to nonalcoholic fatty liver disease? Ann. Hepatol. 2019, 18, 822–827. [Google Scholar] [CrossRef]
- Martin-Grau, M.; Monleon, D. Sex dimorphism and metabolic profiles in management of metabolic-associated fatty liver disease. World J. Clin. Cases 2023, 11, 1236–1244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bica, C.; Sandu, C.; Suceveanu, A.; Sarbu, E.; Stoica, R.A.; Gherghiceanu, F.; Bohiltea, R.E.; Stefan, S.D.; Stoian, A.P. Nonalcoholic fatty liver disease: A major challenge in type 2 diabetes mellitus (Review). Exp. Ther. Med. 2020, 20, 2387–2391. [Google Scholar] [CrossRef] [PubMed]
- Melin, J.; Forslund, M.; Alesi, S.; Piltonen, T.; Romualdi, D.; Spritzer, P.M.; Tay, C.T.; Pena, A.; Witchel, S.F.; Mousa, A.; et al. The impact of metformin with or without lifestyle modification versus placebo on polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Endocrinol. 2023, 189, S37–S63. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.W.; Li, D.H.; Luo, X.Z.; Tang, L.L.; Shi, Y.L. Therapeutic effect of metformin on patients with polycystic ovary syndrome with normal insulin sensitivity: A retrospective study. Reprod. Dev. Med. 2019, 3, 153–158. [Google Scholar] [CrossRef]
- Riemann, A.; Blaschke, M.; Jauho-Ghadimi, A.; Siggelkow, H.; Gollisch, K.S.C. Metformin Improves the Hepatic Steatosis Index in Non-Obese Patients with Polycystic Ovary Syndrome. J. Clin. Med. 2022, 11, 4294. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kahal, H.; Abouda, G.; Rigby, A.S.; Coady, A.M.; Kilpatrick, E.S.; Atkin, S.L. GLP-1 analogue, liraglutide, improves liver fibrosis markers in obese women with PCOS and NAFLD. Clin. Endocrinol. 2014, 81, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Abera, M.; Suresh, S.B.; Malireddi, A.; Boddeti, S.; Noor, K.; Ansar, M.; Malasevskaia, I. Vitamin E and Non-alcoholic Fatty Liver Disease: Investigating the Evidence Through a Systematic Review. Cureus 2024, 16, e72596. [Google Scholar] [CrossRef] [PubMed]
- Cussons, A.J.; Watts, G.F.; Mori, T.A.; Stuckey, B.G.A. Omega-3 fatty acid supplementation decreases liver fat content in PCOS: A randomized controlled trial. J. Clin. Endocrinol. Metab. 2009, 94, 3842–3848. [Google Scholar] [CrossRef] [PubMed]
- Brent, G.A. Mechanisms of thyroid hormone action. J. Clin. Investig. 2012, 122, 3035–3043. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.A.; Yen, P.M. Metabolic messengers: Thyroid hormones. Nat. Metab. 2024, 6, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.A.; Singh, B.K.; Yen, P.M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 2018, 14, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Zhang, Y.; Hillgartner, F.B. SREBP-1 interacts with thyroid hormone receptor to enhance ACC-alpha transcription. J. Biol. Chem. 2002, 277, 19554–19565. [Google Scholar] [CrossRef] [PubMed]
- Radenne, A.; Akpa, M.; Martel, C.; Sawadogo, S.; Mauvoisin, D.; Mounier, C. Hepatic regulation of fatty acid synthase by insulin and T3. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E884–E894. [Google Scholar] [CrossRef] [PubMed]
- Salati, L.M.; Ma, X.J.; McCormick, C.C.; Stapleton, S.R.; Goodridge, A.G. T3 stimulates and cAMP inhibits malic enzyme gene transcription in chick embryo hepatocytes. J. Biol. Chem. 1991, 266, 4010–4016. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, A.; Tang, C.; Choi, J.; Acuña, M.; Logan, M.; Martin, A.G.; Al-Sowaimel, L.; Desai, B.N.; Tenen, D.E.; Jacobs, C.; et al. Thyroid hormone signaling promotes hepatic lipogenesis via ChREBP. Sci. Signal. 2021, 14, eabh3839. [Google Scholar] [CrossRef] [PubMed]
- Rizos, C.V.; Elisaf, M.S.; Liberopoulos, E.N. Effects of thyroid dysfunction on lipid profile. Open Cardiovasc. Med. J. 2011, 5, 76–84. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, L.S.; Ritter, M.J. Thyroid hormone and the liver. Hepatol. Commun. 2024, 9, e0596. [Google Scholar] [CrossRef] [PubMed]
- Lammel Lindemann, J.A.; Angajala, A.; Engler, D.A.; Webb, P.; Ayers, S.D. Thyroid hormone induction of human CYP7A1 in vitro. Mol. Cell Endocrinol. 2014, 388, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Ness, G.C.; Lopez, D. Regulation of LDL receptor and CYP7A1 by thyroid hormone in rat liver. Arch. Biochem. Biophys. 1995, 323, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Brenta, G.; Berg, G.; Arias, P.; Zago, V.; Schnitman, M.; Muzzio, M.L.; Sinay, I.; Schreier, L. Lipoprotein alterations, hepatic lipase activity, and insulin sensitivity in subclinical hypothyroidism. Thyroid 2007, 17, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Mullur, R.; Liu, Y.Y.; Brent, G.A. Thyroid hormone regulation of metabolism. Physiol. Rev. 2014, 94, 355–382. [Google Scholar] [CrossRef] [PubMed]
- Ritter, M.J.; Amano, I.; Hollenberg, A.N. Thyroid hormone signaling and the liver. Hepatology 2020, 72, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Corral, C.; Alderete, T.; Goran, M. Dyslipidemia: Relationship to Insulin Resistance and Fatty Liver. In Lipid Management; Yassine, H., Ed.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Ramanathan, R.; Patwa, S.A.; Ali, A.H.; Ibdah, J.A. Thyroid hormone and mitochondrial dysfunction in MASLD. Cells 2023, 12, 2806. [Google Scholar] [CrossRef] [PubMed]
- Brenta, G. Why can insulin resistance be a consequence of thyroid dysfunction? J. Thyroid. Res. 2011, 2011, 152850. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Jiang, Y.; Meltzer, P.; Yen, P.M. Thyroid hormone regulation of hepatic genes in vivo. Mol. Endocrinol. 2000, 14, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Park, E.A.; Jerden, D.C.; Bahouth, S.W. Regulation of PEPCK gene by thyroid hormone. Biochem. J. 1995, 309, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, M.B.; Utter, M.F. Effect of thyroid hormone on turnover of pyruvate carboxylase and PDH. J. Biol. Chem. 1979, 254, 9492–9499. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, S.P.; O’Boyle, E.; Fisher, M.; Haber, R.S. Regulation of GLUT2 by thyroid hormone. Endocrinology 1994, 135, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, S.P.; O’Boyle, E.; Haber, R.S. Thyroid hormone increases glucose transport in skeletal muscle via GLUT4. Diabetes 1994, 43, 1185–1189. [Google Scholar] [CrossRef] [PubMed]
- Tanase, D.M.; Gosav, E.M.; Neculae, E.; Costea, C.F.; Ciocoiu, M.; Hurjui, L.L.; Tarniceriu, C.C.; Floria, M. Hypothyroidism-induced NAFLD: Mechanisms and therapeutic options. Int. J. Mol. Sci. 2020, 21, 5927. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.H.; Liu, C.-H.; Zeng, Q.-M.; Hu, T.-Y.; Huang, Y.; Song, Y.; Guan, H.; Rockey, D.C.; Tang, H.; Li, S. Resmetirom and thyroid hormone receptor—Targeted treatment for MASLD. Portal Hypertens. Cirrhosis. 2025, 4, 66–78. [Google Scholar] [CrossRef]
- Kochman, J.; Jakubczyk, K.; Bargiel, P.; Janda-Milczarek, K. The influence of oxidative stress on thyroid diseases. Antioxidants 2021, 10, 1442. [Google Scholar] [CrossRef] [PubMed]
- Biondi, B. Subclinical hypothyroidism in patients with obesity and metabolic syndrome. Nutrients 2024, 16, 87. [Google Scholar] [CrossRef] [PubMed]
- Duntas, L.H.; Biondi, B. Interconnections between obesity, thyroid function, and autoimmunity. Thyroid 2013, 23, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Chaker, L.; Ligthart, S.; Korevaar, T.I.; Hofman, A.; Franco, O.H.; Peeters, R.P.; Dehghan, A. Thyroid function and risk of type 2 diabetes. BMC Med. 2016, 14, 150. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Csermely, A.; Bilson, J.; Borella, N.; Enrico, S.; Pecoraro, B.; Shtembari, E.; Morandin, R.; Polyzos, S.A.; Valenti, L.; et al. Association between primary hypothyroidism and metabolic dysfunction-associated steatotic liver disease: An updated meta-analysis. Gut 2024, 73, 1554–1561. [Google Scholar] [CrossRef] [PubMed]
- Surks, M.I.; Ortiz, E.; Daniels, G.H.; Sawin, C.T.; Col, N.F.; Cobin, R.H.; Franklyn, J.A.; Hershman, J.M.; Burman, K.D.; Denke, M.A.; et al. Subclinical thyroid disease: Scientific review and guidelines for diagnosis and management. JAMA 2004, 291, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yu, Y.; Zhao, M.; Zheng, D.; Zhang, X.; Guan, Q.; Xu, C.; Gao, L.; Zhao, J.; Zhang, H. Benefits of Levothyroxine Replacement Therapy on Nonalcoholic Fatty Liver Disease in Subclinical Hypothyroidism Patients. Int. J. Endocrinol. 2017, 2017, 5753039. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sheikhi, V.; Heidari, Z. Association of subclinical hypothyroidism with nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus: A cross-sectional study. Adv. Biomed. Res. 2022, 11, 124. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Li, M.; Han, B.; Qi, X. Association of non-alcoholic fatty liver disease with thyroid function: A systematic review and meta-analysis. Dig. Liver Dis. 2018, 50, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Ratziu, V.; Scanlan, T.S.; Bruinstroop, E. Thyroid hormone receptor-β analogues for the treatment of metabolic dysfunction-associated steatohepatitis (MASH). J. Hepatol. 2025, 82, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-L.; Tian, S.; Wu, J.; Li, H.; Li, S.; Xu, Z.; Liang, X.Y.; Adhikari, V.P.; Xiao, J.; Song, J.Y.; et al. Impact of thyroid function on the prevalence and mortality of metabolic dysfunction-associated fatty liver disease. J. Clin. Endocrinol. Metab. 2023, 108, e434–e443. [Google Scholar] [CrossRef] [PubMed]
- Somnay, K.; Wadgaonkar, P.; Sridhar, N.; Roshni, P.; Rao, N.; Wadgaonkar, R. Liver fibrosis leading to cirrhosis: Mechanisms and clinical perspectives. Biomedicines 2024, 12, 2229. [Google Scholar] [CrossRef] [PubMed]
- Chao, G.; Zhu, Y.; Bao, Y. Screening study of liver fibrosis risk in patients with MAFLD. Sci. Rep. 2024, 14, 23714. [Google Scholar] [CrossRef] [PubMed]
- Martagón, A.J.; Lin, J.Z.; Cimini, S.L.; Webb, P.; Phillips, K.J. TR agonists reduce steatosis but not insulin resistance in ob/ob mice. PLoS ONE 2015, 10, e0122987. [Google Scholar]
- Wang, X.; Wang, L.; Geng, L.; Tanaki, N.; Ye, B. Resmetirom ameliorates NASH by suppressing STAT3/NF-κB. Int. J. Mol. Sci. 2023, 24, 5843. [Google Scholar] [CrossRef] [PubMed]
- Pantos, C.; Mourouzis, I. The emerging role of TRα1 in cardiac repair: Potential therapeutic implications. Oxid. Med. Cell Longev. 2014, 2014, 481482. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, S.-Y.; Leonard, J.L.; Davis, P.J. Molecular aspects of thyroid hormone actions. Endocr. Rev. 2010, 31, 139–170. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, C.; Privalsky Martin, L. The two major isoforms of thyroid hormone receptor, TRα1 and TRβ1, preferentially partner with distinct panels of auxiliary proteins. Mol. Cell. Endocrinol. 2014, 383, 80–95. [Google Scholar] [CrossRef] [PubMed]
- Pedrelli, M.; Pramfalk, C.; Parini, P. Thyroid hormones and thyroid hormone receptors: Effects of thyromimetics on reverse cholesterol transport. World J. Gastroenterol. 2010, 16, 5958–5964. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.-L.; Mellstrom, K.; Mellin, C.; Lars-Goran, B.; Koehler, K.; Neeraj, G.; Ana, M.G.C.; Chris, L.; Husman, B.; et al. Thyroid receptor ligands. 1. agonist ligands selective for the thyroid receptor β1. J. Med. Chem. 2003, 46, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Pafili, K.; Roden, M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol. Metab. 2021, 50, 101122. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Xie, H.; Shan, H.; Zheng, Z.; Li, G.; Li, M.; Hong, L. Development of Thyroid Hormones and Synthetic Thyromimetics in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2022, 23, 1102. [Google Scholar] [CrossRef] [PubMed]
- Moran, C.; McEniery, C.M.; Schoenmakers, N.; Mitchell, C.; Sleigh, A.; Watson, L.; Lyons, G.; Burling, K.; Barker, P.; Chatterjee, K. Dyslipidemia, Insulin Resistance, Ectopic Lipid Accumulation, and Vascular Function in Resistance to Thyroid Hormone β. J. Clin. Endocrinol. Metab. 2021, 106, e2005–e2014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moran, C.; Chatterjee, K. Resistance to thyroid hormone due to defective thyroid receptor alpha. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 647–657. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, K.; Chen, F.; Wang, J.; Liu, H. Drug discovery targeting thyroid hormone receptor β (THRβ) for the treatment of liver diseases and other medical indications. Acta Pharm. Sin. B 2025, 15, 35–51. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kelly, M.J.; Pietranico-Cole, S.; Larigan, J.D.; Haynes, N.; Reynolds, C.H.; Scott, N.; Vermeulen, J.; Dvorozniak, M.; Conde-Knape, K.; Huang, K.S.; et al. Discovery of 2-[3,5-dichloro-4-(5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yloxy)phenyl]-3,5-dioxo-2,3,4,5-tetrahydro[1,2,4]triazine-6-carbonitrile (MGL-3196), a highly selective thyroid hormone receptor β agonist in clinical trials for the treatment of dyslipidemia. J. Med. Chem. 2014, 57, 3912–3923. [Google Scholar] [PubMed]
- Harrison, S.A.; Bedossa, P.; Guy, C.D.; Schattenberg, J.M.; Loomba, R.; Taub, R.; Labriola, D.; Moussa, S.E.; Neff, G.W.; Rinella, M.E.; et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. T Rados. N. Engl. J. Med. 2024, 390, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Boyer, S.H.; Jiang, H.J.; Jacintho, J.D.; Reddy, M.V.; Li, H.Q.; Li, W.Y.; Li, W.; Godwin, J.L.; Schulz, W.G.; Cable, E.E.; et al. Synthesis and biological evaluation of a series of liver-selective phosphonic acid thyroid hormone receptor agonists and their prodrugs. J. Med. Chem. 2008, 51, 7075–7093. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Zeng, M.; Chen, L.; Fu, N. Targeting Thyroid Hormone/Thyroid Hormone Receptor Axis: An Attractive Therapy Strategy in Liver Diseases. Front. Pharmacol. 2022, 13, 871100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berkenstam, A.; Kristensen, J.; Mellstroem, K.; Carlsson, B.; Malm, J.; Rehnmark, S.; Garg, N.; Andersson, C.M.; Rudling, M.; Sjöberg, F.; et al. The thyroid hormone mimetic compound KB2115 lowers plasma LDL cholesterol and stimulates bile acid synthesis without cardiac effects in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Chiellini, G.; Apriletti, J.W.; Yoshihara, H.; Baxter, J.D.; Ribeiro, R.C.J.; Scanlan, T.S. A high-affinity subtype-selective agonist ligand for the thyroid hormone receptor. Chem. Biol. 1998, 5, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Tancevski, I.; Rudling, M.; Eller, P. Thyromimetics: A journey from bench to bed-side. Pharmacol. Ther. 2011, 131, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Li, L.; Liu, Z.; Cao, L.; Chen, X.; Suo, C.; Zhang, T. Thyroid hormones and MAFLD: Mediated by obesity and metabolic disorders. Dig. Liver Dis. 2023, 55, 785–790. [Google Scholar] [CrossRef] [PubMed]
- FDA. Roadmap to Reducing Animal Testing in Preclinical Safety Studies. 2025. Available online: https://www.fda.gov/media/186092/download?attachment (accessed on 20 March 2025).
- Harris, J.; Deen, N.; Zamani, S.; Hasnat, M.A. Mitophagy and the Release of Inflammatory Cytokines. Mitochondrion 2018, 41, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Radosavljevic, T.; Brankovic, M.; Samardzic, J.; Djuretić, J.; Vukicevic, D.; Vucevic, D.; Jakovljevic, V. Altered Mitochondrial Function in MASLD: Key Features and Promising Therapeutic Approaches. Antioxidants 2024, 13, 906. [Google Scholar] [CrossRef]
- Velliou, R.I.; Giannousi, E.; Ralliou, C.; Kassi, E.; Chatzigeorgiou, A. Ex Vivo Tools and Models in MASLD Research. Cells 2024, 13, 1827. [Google Scholar] [CrossRef] [PubMed]
- Ronaldson-Bouchard, K.; Vunjak-Novakovic, G. Organs-on-a-chip: A fast track for engineered human tissues in drug development. Cell Stem Cell 2018, 22, 310–324. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.J.; Otieno, M.A.; Ronxhi, J.; Lim, H.K.; Ewart, L.; Kodella, K.R.; Petropolis, D.B.; Kulkarni, G.; Rubins, J.E.; Conegliano, D.; et al. Reproducing human and cross-species drug toxicities using a Liver-Chip. Sci. Transl. Med. 2019, 11, eaax5516. [Google Scholar] [CrossRef] [PubMed]
- Ali, H. Artificial intelligence in multi-omics data integration: Advancing precision medicine, biomarker discovery and genomic-driven disease interventions. Int. J. Sci. Res. Arch. 2023, 8, 1012–1030. [Google Scholar]
- Kim, H.Y. Recent advances in nonalcoholic fatty liver disease metabolomics. Clin. Mol. Hepatol. 2021, 27, 553. [Google Scholar] [CrossRef] [PubMed]
- Meneses, J.; Conceição, F.; Van Der Meer, A.D.; de Wit, S.; Moreira Teixeira, L. Guiding organs-on-chips towards applications: A balancing act between integration of advanced technologies and standardization. Front. Lab A Chip Technol. 2024, 3, 1376964. [Google Scholar] [CrossRef]
- Mohr, A.E.; Ortega-Santos, C.P.; Whisner, C.M.; Klein-Seetharaman, J.; Jasbi, P. Navigating challenges and opportunities in multi-omics integration for personalized healthcare. Biomedicines 2024, 12, 1496. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobre, M.-Z.; Virgolici, B.; Cioarcă-Nedelcu, R. Lipid Hormones at the Intersection of Metabolic Imbalances and Endocrine Disorders. Curr. Issues Mol. Biol. 2025, 47, 565. https://doi.org/10.3390/cimb47070565
Dobre M-Z, Virgolici B, Cioarcă-Nedelcu R. Lipid Hormones at the Intersection of Metabolic Imbalances and Endocrine Disorders. Current Issues in Molecular Biology. 2025; 47(7):565. https://doi.org/10.3390/cimb47070565
Chicago/Turabian StyleDobre, Maria-Zinaida, Bogdana Virgolici, and Ruxandra Cioarcă-Nedelcu. 2025. "Lipid Hormones at the Intersection of Metabolic Imbalances and Endocrine Disorders" Current Issues in Molecular Biology 47, no. 7: 565. https://doi.org/10.3390/cimb47070565
APA StyleDobre, M.-Z., Virgolici, B., & Cioarcă-Nedelcu, R. (2025). Lipid Hormones at the Intersection of Metabolic Imbalances and Endocrine Disorders. Current Issues in Molecular Biology, 47(7), 565. https://doi.org/10.3390/cimb47070565