The Preventive Power of the Mediterranean Diet Against Blue-Light-Induced Retinal Degeneration: Is the Secret in the Herbs and Spices?
Abstract
:1. Introduction
2. The Mediterranean Diet: Key Components and Health Benefits
2.1. The Beneficial Effects of the Mediterranean Diet on Cardiovascular Health
2.2. The Neuroprotective Effects of the Mediterranean Diet
2.3. The Anti-Inflammatory Properties of the Nutrients Used in Mediterranean Cuisine
3. The Eye-Related Benefits of the Mediterranean Diet
3.1. Age-Related Macular Degeneration
3.2. Diabetic Retinopathy
4. Blue Light and Retinal Damage
4.1. Blue Light Exposure from Digital Screens and Artificial Lighting
4.2. The Mechanisms of Oxidative Stress and Inflammation Caused by Blue Light
4.3. The Connection Between Blue Light and Retinal Conditions
5. Mediterranean Herbs and Spices: Bioactive Compounds and Their Properties
6. The Protective Effects of Mediterranean Herbs and Spices Against Blue-Light-Induced Retinal Damage
7. Future Directions: Dietary Recommendations for Eye Health
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AMD | Age-related macular degeneration |
ASCEND | A Study of Cardiovascular Events in Diabetes |
A2E | N-retinylidene-N-retinylethanolamin |
BDNF | Brain-derived neurotrophic factor |
CA | Carnosic acid |
CRP | C-reactive protein |
DES | Digital eye strain |
DNA | Deoxyribonucleic acid |
DR | Diabetic retinopathy |
EFSA | European Food Safety Authority |
ER | Endoplasmic reticulum |
HDL | High-density lipoprotein |
HIF-1α | Hypoxia-inducible factor 1-alpha |
ICAM-1 | Intercellular adhesion molecule-1 |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin-6 |
IL-10 | Interleukin-10 |
LDL | Low-density lipoprotein |
LED | Light-emitting diode |
MAPK | Mitogen-activated protein kinase |
MedDiet | Mediterranean diet |
mf-ERG | Multifocal electroretinography |
MMP | Matrix metalloproteinase |
NF-κB | Nuclear factor-kappa B |
PAF | Platelet-activating factor |
PREDIMED | Prevention with Mediterranean Diet |
RA | Rosmarinic acid |
ROS | Reactive oxygen species |
RPE | Retinal pigment epithelium |
RVE | Retinal microvascular endothelial |
TGF-β | Transforming growth factor beta |
TNF-α | Tumor necrosis factor-alpha |
UNESCO | United Nations Educational, Scientific and Cultural Organization |
VCAM-1 | Vascular cell adhesion molecule 1 |
VEGF | Vascular endothelial growth factor |
References
- Gomez-Delgado, F.; Katsiki, N.; Lopez-Miranda, J.; Perez-Martinez, P. Dietary Habits, Lipoprotein Metabolism and Cardiovascular Disease: From Individual Foods to Dietary Patterns. Crit. Rev. Food Sci. Nutr. 2021, 61, 1651–1669. [Google Scholar] [CrossRef] [PubMed]
- Saulle, R.; Torre, G.L. The Mediterranean Diet, Recognized by UNESCO as a Cultural Heritage of Humanity. Ital. J. Public Health 2010, 7, 414–415. [Google Scholar] [CrossRef]
- Trichopoulou, A. Mediterranean Diet as Intangible Heritage of Humanity: 10 Years On. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1943–1948. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean Diet and Health: A Comprehensive Overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef] [PubMed]
- Dhaheri, A.S.A.; Alkhatib, D.H.; Jaleel, A.; Tariq, M.N.M.; Feehan, J.; Apostolopoulos, V.; Osaili, T.M.; Mohamad, M.N.; Ismail, L.C.; Saleh, S.T.; et al. Proximate Composition and Mineral Content of Spices Increasingly Employed in the Mediterranean Diet. J. Nutr. Sci. 2023, 12, e79. [Google Scholar] [CrossRef]
- Cougnard-Gregoire, A.; Merle, B.M.J.; Aslam, T.; Seddon, J.M.; Aknin, I.; Klaver, C.C.W.; Garhöfer, G.; Layana, A.G.; Minnella, A.M.; Silva, R.; et al. Blue Light Exposure: Ocular Hazards and Prevention—A Narrative Review. Ophthalmol. Ther. 2023, 12, 755–788. [Google Scholar] [CrossRef]
- Yan, Y.; Wu, Y.; Zhao, Y.; Yang, Y.; An, G.; Liu, Z.; Qi, D. A Review on Eye Diseases Induced by Blue Light: Pathology, Model, Active Ingredients and Mechanisms. Front. Pharmacol. 2025, 16, 1513406. [Google Scholar] [CrossRef] [PubMed]
- Hipólito, V.; Coelho, J.M.P. Blue Light and Eye Damage: A Review on the Impact of Digital Device Emissions. Photonics 2023, 10, 560. [Google Scholar] [CrossRef]
- Ouyang, X.; Yang, J.; Hong, Z.; Wu, Y.; Xie, Y.; Wang, G. Mechanisms of Blue Light-Induced Eye Hazard and Protective Measures: A Review. Biomed. Pharmacother. 2020, 130, 110577. [Google Scholar] [CrossRef]
- Zhao, Z.-C.; Zhou, Y.; Tan, G.; Li, J. Research Progress about the Effect and Prevention of Blue Light on Eyes. Int. J. Ophthalmol. 2018, 11, 1999–2003. [Google Scholar] [CrossRef]
- Sikalidis, A.K.; Kelleher, A.H.; Kristo, A.S. Mediterranean Diet. Encyclopedia 2021, 1, 371–387. [Google Scholar] [CrossRef]
- Giacosa, A.; Barale, R.; Bavaresco, L.; Faliva, M.A.; Gerbi, V.; La Vecchia, C.; Negri, E.; Opizzi, A.; Perna, S.; Pezzotti, M.; et al. Mediterranean Way of Drinking and Longevity. Crit. Rev. Food Sci. Nutr. 2016, 56, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Richardson, L.A.; Izuora, K.; Basu, A. Mediterranean Diet and Its Association with Cardiovascular Disease Risk Factors: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 12762. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E.; PREDIMED INVESTIGATORS. Benefits of the Mediterranean Diet: Insights from the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef]
- Nucci, D.; Sommariva, A.; Degoni, L.M.; Gallo, G.; Mancarella, M.; Natarelli, F.; Savoia, A.; Catalini, A.; Ferranti, R.; Pregliasco, F.E.; et al. Association between Mediterranean Diet and Dementia and Alzheimer Disease: A Systematic Review with Meta-Analysis. Aging Clin. Exp. Res. 2024, 36, 77. [Google Scholar] [CrossRef] [PubMed]
- Detopoulou, P.; Demopoulos, C.A.; Karantonis, H.C.; Antonopoulou, S. Mediterranean Diet and Its Protective Mechanisms against Cardiovascular Disease: An Insight into Platelet Activating Factor (PAF) and Diet Interplay. Ann. Nutr. Disord. Ther. 2015, 2, 1016. [Google Scholar]
- Vaziri, Y. The Mediterranean Diet: A Powerful Defense against Alzheimer Disease—A Comprehensive Review. Clin. Nutr. ESPEN 2024, 64, 160–167. [Google Scholar] [CrossRef]
- Pelletier, A.; Barul, C.; Féart, C.; Helmer, C.; Bernard, C.; Periot, O.; Dilharreguy, B.; Dartigues, J.-F.; Allard, M.; Barberger-Gateau, P.; et al. Mediterranean Diet and Preserved Brain Structural Connectivity in Older Subjects. Alzheimer’s Dement. 2015, 11, 1023–1031. [Google Scholar] [CrossRef]
- Knight, A.; Bryan, J.; Wilson, C.; Hodgson, J.M.; Davis, C.R.; Murphy, K.J. The Mediterranean Diet and Cognitive Function among Healthy Older Adults in a 6-Month Randomised Controlled Trial: The MedLey Study. Nutrients 2016, 8, 579. [Google Scholar] [CrossRef]
- Koelman, L.; Egea Rodrigues, C.; Aleksandrova, K. Effects of Dietary Patterns on Biomarkers of Inflammation and Immune Responses: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2022, 13, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Ma, Q.; Li, Y.; Wei, L.; Zhang, Z.; Khan, A.; Khan, M.Z.; Wang, C. Butyrate Supplementation Improves Intestinal Health and Growth Performance in Livestock: A Review. Biomolecules 2025, 15, 85. [Google Scholar] [CrossRef]
- Iikuni, N.; Lam, Q.L.K.; Lu, L.; Matarese, G.; La Cava, A. Leptin and Inflammation. Curr. Immunol. Rev. 2008, 4, 70–79. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G. Mediterranean Dietary Pattern, Inflammation and Endothelial Function: A Systematic Review and Meta-Analysis of Intervention Trials. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 929–939. [Google Scholar] [CrossRef]
- Reddy, A.; Gatta, P.D.; Mason, S.; Nicoll, A.J.; Ryan, M.; Itsiopoulos, C.; Abbott, G.; Johnson, N.A.; Sood, S.; Roberts, S.K.; et al. Adherence to a Mediterranean Diet May Improve Serum Adiponectin in Adults with Nonalcoholic Fatty Liver Disease: The MEDINA Randomized Controlled Trial. Nutr. Res. 2023, 119, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Merle, B.M.J.; Silver, R.E.; Rosner, B.; Seddon, J.M. Adherence to a Mediterranean Diet, Genetic Susceptibility, and Progression to Advanced Macular Degeneration: A Prospective Cohort Study. Am. J. Clin. Nutr. 2015, 102, 1196–1206. [Google Scholar] [CrossRef]
- Jung, W.; Han, K.; Kim, B.; Hwang, S.; Yoon, J.M.; Park, J.; Lim, D.H.; Shin, D.W. Age-Related Macular Degeneration with Visual Disability Is Associated with Cardiovascular Disease Risk in the Korean Nationwide Cohort. J. Am. Heart Assoc. 2023, 12, e028027. [Google Scholar] [CrossRef] [PubMed]
- Murkey, S.P.; Agarwal, A.; Pandit, P.; Kumar, S.; Jaiswal, A. Unveiling the Spectrum of Ophthalmic Manifestations in Nutritional Deficiencies: A Comprehensive Review. Cureus 2023, 15, e50311. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, Y.; Yuan, Y.; Xiong, R.; Hu, Y.; Ning, K.; Ha, J.; Wang, W.; Han, X.; He, M. The Mediterranean Diet and Age-Related Eye Diseases: A Systematic Review. Nutrients 2023, 15, 2043. [Google Scholar] [CrossRef]
- Angelia, M.; Amelia, Y.S.; Pratama, K.G. Mediterranean Diet as a Modifiable Risk Factor for Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis. Tzu Chi Med. J. 2024, 36, 223–230. [Google Scholar] [CrossRef]
- Zooravar, D.; Soltani, P.; Khezri, S. Mediterranean Diet and Diabetic Microvascular Complications: A Systematic Review and Meta-Analysis. BMC Nutr. 2025, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Bryl, A.; Mrugacz, M.; Falkowski, M.; Zorena, K. A Mediterranean Diet May Be Protective in the Development of Diabetic Retinopathy. Int. J. Mol. Sci. 2023, 24, 11145. [Google Scholar] [CrossRef]
- Zeppieri, M.; Gagliano, C.; D’Esposito, F.; Musa, M.; Gattazzo, I.; Zanella, M.S.; Rossi, F.B.; Galan, A.; Babighian, S. Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA): A Targeted Antioxidant Strategy to Counter Oxidative Stress in Retinopathy. Antioxidants 2024, 14, 6. [Google Scholar] [CrossRef] [PubMed]
- Sammons, E.; Bowman, L.; Stevens, W.; Buck, G.; Wallendszus, K.; Hammami, I.; Parish, S.; Armitage, J.; ASCEND Collaborative Group. ASCEND-Eye: Rationale, Design and Baseline Characteristics for a Sub-Study of the ASCEND Randomised Trial, Exploring the Effects of Aspirin and Omega-3 Fatty Acids on Diabetic Retinopathy and Age-Related Macular Degeneration. Contemp. Clin. Trials Commun. 2023, 35, 101184. [Google Scholar] [CrossRef]
- Wang, P.; Chin, E.K.; Almeida, D. Antioxidants for the Treatment of Retinal Disease: Summary of Recent Evidence. Clin. Ophthalmol. 2021, 15, 1621–1628. [Google Scholar] [CrossRef]
- Sun, G.-F.; Qu, X.-H.; Jiang, L.-P.; Chen, Z.-P.; Wang, T.; Han, X.-J. The Mechanisms of Natural Products for Eye Disorders by Targeting Mitochondrial Dysfunction. Front. Pharmacol. 2024, 15, 1270073. [Google Scholar] [CrossRef] [PubMed]
- Boyer, N.P.; Higbee, D.; Currin, M.B.; Blakeley, L.R.; Chen, C.; Ablonczy, Z.; Crouch, R.K.; Koutalos, Y. Lipofuscin and N-Retinylidene-N-Retinylethanolamine (A2E) Accumulate in Retinal Pigment Epithelium in Absence of Light Exposure: Their Origin Is 11-Cis-Retinal. J. Biol. Chem. 2012, 287, 22276–22286. [Google Scholar] [CrossRef]
- Yang, B.; Yang, K.; Chen, Y.; Li, Q.; Chen, J.; Li, S.; Wu, Y. Exposure of A2E to Blue Light Promotes Ferroptosis in the Retinal Pigment Epithelium. Cell. Mol. Biol. Lett. 2025, 30, 22. [Google Scholar] [CrossRef]
- Basyal, D.; Lee, S.; Kim, H.J. Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration. Antioxidants 2024, 13, 568. [Google Scholar] [CrossRef]
- Rauf, A.; Khalil, A.A.; Awadallah, S.; Khan, S.A.; Abu-Izneid, T.; Kamran, M.; Hemeg, H.A.; Mubarak, M.S.; Khalid, A.; Wilairatana, P. Reactive Oxygen Species in Biological Systems: Pathways, Associated Diseases, and Potential Inhibitors—A Review. Food Sci. Nutr. 2024, 12, 675–693. [Google Scholar] [CrossRef]
- Lee, D.; Tomita, Y.; Miwa, Y.; Kunimi, H.; Nakai, A.; Shoda, C.; Negishi, K.; Kurihara, T. Recent Insights into Roles of Hypoxia-Inducible Factors in Retinal Diseases. Int. J. Mol. Sci. 2024, 25, 10140. [Google Scholar] [CrossRef] [PubMed]
- Hartman, G.D.; Muniyandi, A.; Sishtla, K.; Kpenu, E.K.; Miller, W.P.; Kaplan, B.A.; Kim, L.A.; Liu, S.; Wan, J.; Qi, X.; et al. Ref-1 Redox Activity Regulates Retinal Neovascularization by Modulating Transcriptional Activation of HIF-1α. FASEB J. 2025, 39, e70348. [Google Scholar] [CrossRef] [PubMed]
- Osborne, N.N.; Núñez-Álvarez, C.; Del Olmo-Aguado, S.; Merrayo-Lloves, J. Visual Light Effects on Mitochondria: The Potential Implications in Relation to Glaucoma. Mitochondrion 2017, 36, 29–35. [Google Scholar] [CrossRef]
- Shafi, V.; Khan, N.A.; Kazmi, J.; Siddiqui, I. Cytokine-Driven NF-κB Activation in Retinal Cells and Its Impact on the Pathogenesis of Age-Related Macular Degeneration: A Systematic Review. medRxiv 2024. [Google Scholar] [CrossRef]
- Nakanishi, T.; Shimazawa, M.; Sugitani, S.; Kudo, T.; Imai, S.; Inokuchi, Y.; Tsuruma, K.; Hara, H. Role of Endoplasmic Reticulum Stress in Light-Induced Photoreceptor Degeneration in Mice. J. Neurochem. 2013, 125, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, H.; Georgyev, V.; Wagen, C.; Hosseini, A.; Matsubara, J. Blue Light-Induced Phototoxicity in Retinal Cells: Implications in Age-Related Macular Degeneration. Front. Aging Neurosci. 2024, 16, 1509434. [Google Scholar] [CrossRef]
- Garcia-Garcia, J.; Usategui-Martin, R.; Sanabria, M.R.; Fernandez-Perez, E.; Telleria, J.J.; Coco-Martin, R.M. Pathophysiology of Age-Related Macular Degeneration: Implications for Treatment. Ophthalmic Res. 2022, 65, 615–636. [Google Scholar] [CrossRef]
- Song, W.; Zhu, R.; Gao, W.; Xing, C.; Yang, L. Blue Light Induces RPE Cell Necroptosis, Which Can Be Inhibited by Minocycline. Front. Med. 2022, 9, 831463. [Google Scholar] [CrossRef]
- Lin, C.-H.; Wu, M.-R.; Li, C.-H.; Cheng, H.-W.; Huang, S.-H.; Tsai, C.-H.; Lin, F.-L.; Ho, J.-D.; Kang, J.-J.; Hsiao, G.; et al. Editor’s Highlight: Periodic Exposure to Smartphone-Mimic Low-Luminance Blue Light Induces Retina Damage Through Bcl-2/BAX-Dependent Apoptosis. Toxicol. Sci. 2017, 157, 196–210. [Google Scholar] [CrossRef]
- Koushan, K.; Rusovici, R.; Li, W.; Ferguson, L.R.; Chalam, K.V. The Role of Lutein in Eye-Related Disease. Nutrients 2013, 5, 1823–1839. [Google Scholar] [CrossRef]
- Mrowicka, M.; Mrowicki, J.; Kucharska, E.; Majsterek, I. Lutein and Zeaxanthin and Their Roles in Age-Related Macular Degeneration-Neurodegenerative Disease. Nutrients 2022, 14, 827. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, M.; Wang, D.; Dong, G.; Chen, Z.; Li, S.; Sun, X.; Zeng, M.; Liao, H.; Chen, H.; et al. Blue Light from Cell Phones Can Cause Chronic Retinal Light Injury: The Evidence from a Clinical Observational Study and a SD Rat Model. BioMed Res. Int. 2021, 2021, 3236892. [Google Scholar] [CrossRef]
- Burton, M.J.; Ramke, J.; Marques, A.P.; Bourne, R.R.A.; Congdon, N.; Jones, I.; Ah Tong, B.A.M.; Arunga, S.; Bachani, D.; Bascaran, C.; et al. The Lancet Global Health Commission on Global Eye Health: Vision beyond 2020. Lancet Glob. Health 2021, 9, e489–e551. [Google Scholar] [CrossRef]
- Grigore-Gurgu, L.; Dumitrașcu, L.; Aprodu, I. Aromatic Herbs as a Source of Bioactive Compounds: An Overview of Their Antioxidant Capacity, Antimicrobial Activity, and Major Applications. Molecules 2025, 30, 1304. [Google Scholar] [CrossRef] [PubMed]
- Mandel, S.; Amit, T.; Reznichenko, L.; Weinreb, O.; Youdim, M.B.H. Green Tea Catechins as Brain-Permeable, Natural Iron Chelators-Antioxidants for the Treatment of Neurodegenerative Disorders. Mol. Nutr. Food Res. 2006, 50, 229–234. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.R. The Dietary Components Carnosic Acid and Carnosol as Neuroprotective Agents: A Mechanistic View. Mol. Neurobiol. 2016, 53, 6155–6168. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and Antifungal Activities of Thymol: A Brief Review of the Literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- de Almeida, L.G.N.; Thode, H.; Eslambolchi, Y.; Chopra, S.; Young, D.; Gill, S.; Devel, L.; Dufour, A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol. Rev. 2022, 74, 712–768. [Google Scholar] [CrossRef]
- Noor, S.; Mohammad, T.; Rub, M.A.; Raza, A.; Azum, N.; Yadav, D.K.; Hassan, M.I.; Asiri, A.M. Biomedical Features and Therapeutic Potential of Rosmarinic Acid. Arch. Pharmacal Res. 2022, 45, 205–228. [Google Scholar] [CrossRef]
- Lim, R.R.; Hainsworth, D.P.; Mohan, R.R.; Chaurasia, S.S. Characterization of a Functionally Active Primary Microglial Cell Culture from the Pig Retina. Exp. Eye Res. 2019, 185, 107670. [Google Scholar] [CrossRef]
- Yanishlieva, N.V.; Marinova, E.; Pokorný, J. Natural Antioxidants from Herbs and Spices. Eur. J. Lipid Sci. Technol. 2006, 108, 776–793. [Google Scholar] [CrossRef]
- Dobroslavić, E.; Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Polyphenolic Characterization and Antioxidant Capacity of Laurus nobilis L. Leaf Extracts Obtained by Green and Conventional Extraction Techniques. Processes 2021, 9, 1840. [Google Scholar] [CrossRef]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants 2017, 6, 70. [Google Scholar] [CrossRef]
- Fernandez-Gonzalez, P.; Mas-Sanchez, A.; Garriga, P. Polyphenols and Visual Health: Potential Effects on Degenerative Retinal Diseases. Molecules 2021, 26, 3407. [Google Scholar] [CrossRef]
- Amato, R.; Canovai, A.; Melecchi, A.; Pezzino, S.; Corsaro, R.; Dal Monte, M.; Rusciano, D.; Bagnoli, P.; Cammalleri, M. Dietary Supplementation of Antioxidant Compounds Prevents Light-Induced Retinal Damage in a Rat Model. Biomedicines 2021, 9, 1177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Song, T.; Kang, R.; Ren, F.; Liu, J.; Wang, J. Plant Bioactive Compounds Alleviate Photoinduced Retinal Damage and Asthenopia: Mechanisms, Synergies, and Bioavailability. Nutr. Res. 2023, 120, 115–134. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Scientific Advice Related to Nutrient Profiling for the Development of Harmonised Mandatory Front-of-Pack Nutrition Labelling and the Setting of Nutrient Profiles for Restricting Nutrition and Health Claims on Foods. EFSA J. 2022, 20, e07259. [Google Scholar] [CrossRef]
- EFSA. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on the Substantiation of Health Claims Related to Fruits and/or Vegetables (ID 1212, 1213, 1214, 1217, 1218, 1219, 1301, 1425, 1426, 1427, 1428, 1429, 1430) and to the “Mediterranean Diet” (ID 1423) Pursuant to Article 13(1) of Regulation (EC) No. 1924/2006. EFSA J. 2011, 9, 2245. [Google Scholar] [CrossRef]
- Zarbà, C.; Chinnici, G.; D’Amico, M. Novel Food: The Impact of Innovation on the Paths of the Traditional Food Chain. Sustainability 2020, 12, 555. [Google Scholar] [CrossRef]
- Trajkovska-Broach, A.; Trajkovska Petkoska, A. Mediterranean Herbs, Spices, and Medicinal Plants—Natural Remedies and Rich Sources of Bioactive Compounds. JSFA Rep. 2023, 3, 4–12. [Google Scholar] [CrossRef]
- Kim, D.Y.; Park, S.-H.; Yoon, Z.; Kim, J.; Kang, M.-K.; Kang, Y.-H. Eucalyptol Ameliorates Retinal Microvascular Defects through Modulating ER Stress and Angiopoietin–Tie Signaling in Diabetic Eyes. Int. J. Mol. Sci. 2024, 25, 7826. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, B.J.; Kim, J.H.; Yu, Y.S.; Kim, M.Y.; Kim, K.-W. Rosmarinic Acid Suppresses Retinal Neovascularization via Cell Cycle Arrest with Increase of p21WAF1 Expression. Eur. J. Pharmacol. 2009, 615, 150–154. [Google Scholar] [CrossRef]
- Rezaie, T.; McKercher, S.R.; Kosaka, K.; Seki, M.; Wheeler, L.; Viswanath, V.; Chun, T.; Joshi, R.; Valencia, M.; Sasaki, S.; et al. Protective Effect of Carnosic Acid, a Pro-Electrophilic Compound, in Models of Oxidative Stress and Light-Induced Retinal Degeneration. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7847–7854. [Google Scholar] [CrossRef] [PubMed]
- Khalilzadeh, E.; Hazrati, R.; Saiah, G.V. Effects of Topical and Systemic Administration of Eugenia Caryophyllata Buds Essential Oil on Corneal Anesthesia and Analgesia. Res. Pharm. Sci. 2016, 11, 293–302. [Google Scholar] [CrossRef]
- Kanchan, D.M.; Kale, S.S.; Somani, G.S.; Kaikini, A.A.; Sathaye, S. Thymol, a Monoterpene, Inhibits Aldose Reductase and High-Glucose-Induced Cataract on Isolated Goat Lens. J. Pharm. Bioallied Sci. 2016, 8, 277–283. [Google Scholar] [CrossRef]
- Iorio, R.; Celenza, G.; Petricca, S. Multi-Target Effects of ß-Caryophyllene and Carnosic Acid at the Crossroads of Mitochondrial Dysfunction and Neurodegeneration: From Oxidative Stress to Microglia-Mediated Neuroinflammation. Antioxidants 2022, 11, 1199. [Google Scholar] [CrossRef]
- Kang, K.; Tarchick, M.J.; Yu, X.; Beight, C.; Bu, P.; Yu, M. Carnosic Acid Slows Photoreceptor Degeneration in the Pde6b(Rd10) Mouse Model of Retinitis pigmentosa. Sci. Rep. 2016, 6, 22632. [Google Scholar] [CrossRef]
- Nisar, M.F.; Khadim, M.; Rafiq, M.; Chen, J.; Yang, Y.; Wan, C.C. Pharmacological Properties and Health Benefits of Eugenol: A Comprehensive Review. Oxidative Med. Cell. Longev. 2021, 2021, 2497354. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, Y.; Li, J.; Wu, E.; Tang, T.; Singla, R.K.; Shen, B.; Zhang, M. Natural Products for the Treatment of Age-Related Macular Degeneration. Phytomedicine 2024, 130, 155522. [Google Scholar] [CrossRef]
- Javed, H.; Azimullah, S.; Meeran, M.F.N.; Ansari, S.A.; Ojha, S. Neuroprotective Effects of Thymol, a Dietary Monoterpene Against Dopaminergic Neurodegeneration in Rotenone-Induced Rat Model of Parkinson’s Disease. Int. J. Mol. Sci. 2019, 20, 1538. [Google Scholar] [CrossRef]
- Campos, J.F.; Berteina-Raboin, S. Eucalyptol, an All-Purpose Product. Catalysts 2022, 12, 48. [Google Scholar] [CrossRef]
- Ghasemzadeh Rahbardar, M.; Hosseinzadeh, H. Therapeutic Effects of Rosemary (Rosmarinus officinalis L.) and Its Active Constituents on Nervous System Disorders. Iran. J. Basic Med. Sci. 2020, 23, 1100–1112. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R.; Lawrenson, J.G. A Review of the Evidence for Dietary Interventions in Preventing or Slowing the Progression of Age-Related Macular Degeneration. Ophthalmic Physiol. Opt. 2014, 34, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, K.; Higashi, N.; Koga, K. Antioxidant and Antiinflammatory Activities of Oregano Extract. J. Health Sci. 2006, 52, 169–173. [Google Scholar] [CrossRef]
- Tsigalou, C.; Konstantinidis, T.; Paraschaki, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Mediterranean Diet as a Tool to Combat Inflammation and Chronic Diseases. An Overview. Biomedicines 2020, 8, 201. [Google Scholar] [CrossRef]
- Bungau, S.; Abdel-Daim, M.M.; Tit, D.M.; Ghanem, E.; Sato, S.; Maruyama-Inoue, M.; Yamane, S.; Kadonosono, K. Health Benefits of Polyphenols and Carotenoids in Age-Related Eye Diseases. Oxidative Med. Cell. Longev. 2019, 2019, 9783429. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, L.; Zhang, B.; Wang, S. Berries and Their Active Compounds in Prevention of Age-Related Macular Degeneration. Antioxidants 2024, 13, 1558. [Google Scholar] [CrossRef]
- Walia, A.; Gupta, A.K.; Sharma, V. Role of Bioactive Compounds in Human Health. Acta Sci. Med. Sci. 2019, 3, 25–33. [Google Scholar]
- Yuan, M.; Zhang, G.; Bai, W.; Han, X.; Li, C.; Bian, S. The Role of Bioactive Compounds in Natural Products Extracted from Plants in Cancer Treatment and Their Mechanisms Related to Anticancer Effects. Oxidative Med. Cell. Longev. 2022, 2022, 1429869. [Google Scholar] [CrossRef]
Aromatic Herbs | Key Bioactive Compounds | Mechanisms Supporting Retinal Health | Clinical Implications |
---|---|---|---|
Rosemary (Rosmarinus officinalis) | Rosmarinic acid Carnosic acid | Antioxidant (scavenges ROS, upregulates glutathione), anti-inflammatory (inhibits NF-κB, COX-2), antimicrobial [61]; RA inhibits aldose reductase, an enzyme linked to diabetic retinopathy; CA combats oxidative stress in retinal degeneration [54]. | RA’s inhibition of aldose reductase may help manage diabetic retinopathy; antioxidant/anti-inflammatory effects may slow AMD progression. |
Sage (Salvia spp.) | Rosmarinic acid Carnosic acid | Antioxidant (reduces lipid peroxidation), enhances antioxidant defenses [61]. | Potential for retinal protection via antioxidant and anti-inflammatory effects. |
Thyme (Thymus vulgaris) | Thymol Rosmarinic acid | Antioxidant, anti-inflammatory (suppresses cytokines, inhibits MMPs), antimicrobial [54]. | Potential protection against retinal inflammation and infection. |
Oregano (Origanum vulgare) | Thymol Rosmarinic acid | Antioxidant, anti-inflammatory (suppresses cytokines, inhibits MMPs), antimicrobial [54]. | Potential protection against retinal inflammation and infection. |
Bay Laurel (Laurus nobilis) | Rosmarinic acid, ferulic acid, caffeic acid [62] | Antioxidant [63,64]. | Possible antioxidant support of retinal health [63]. |
Bioactive Compound | Source | Experimental Model and Treatments | Observations | Reference |
---|---|---|---|---|
Eucalyptol (1,8-cineole) | Monoterpene oxide primarily sourced from Eucalyptus species (e.g., Eucalyptus globulus); also found in Laurus nobilis (bay laurel), Rosmarinus officinalis (rosemary), Salvia officinalis (sage), Cinnamomum camphora (camphor tree), and Ocimum basilicum (basil). | 33 mM glucose-exposed human RVE cells and diabetic db/db mice. In vitro: 1–20 μM of eucalyptol, 3-day pretreatment In vivo: 10 mg/kg of oral eucalyptol, 8 weeks of treatment | Reduced Aβ protein production in glucose-treated RVE cells and diabetic mouse eyes and mitigated apoptosis in Aβ-exposed RVE cells and diabetic retinal cells. Blocked Aβ-mediated ER stress by inhibiting the PERK-eIF2α-ATF4-CHOP pathway. Activated the Ang-1/Tie-2 signaling pathway and inhibited the Ang-2 and VEGF expression in diabetic models. Reversed the Aβ-induced suppression of the junction proteins VE-cadherin and occludin-1 in the RVE cells and reduced Aβ-induced permeability in the RVE cells. Oral eucalyptol diminished vascular leakage in diabetic retinal vessels. | [71] |
Rosmarinic acid (RA) | A polyphenolic compound naturally occurring mainly in plants from the Lamiaceae family, especially in rosemary (Salvia rosmarinus/Rosmarinus officinalis), as well as in Melissa officinalis (lemon balm), Perilla frutescens (perilla), Ocimum basilicum (basil), Thymus vulgaris (thyme), and Origanum vulgare (oregano). | Retinal endothelial cells and an in vivo mouse model of oxygen-induced retinopathy of prematurity. In vitro: 10–100 μM of RA, 24 h In vivo: 50 µM of RA IVT injected on postnatal day P14 | Inhibited retinal neovascularization, which is related to cell cycle arrest with an increase in p21WAF1. Antiproliferative activity in the retinal endothelial cells was related to G2/M phase cell cycle arrest in a dose-dependent manner. | [72] |
Carnosic acid (CA) | A phenolic diterpene primarily found in plants from the Lamiaceae family, especially in rosemary (Rosmarinus officinalis) and common sage (Salvia officinalis); also present in Salvia lavandulifolia and other Salvia species. | H2O2-induced toxicity in retina-derived cell lines (human ARPE-19 and mouse photoreceptor-derived 661W cell lines) and light-induced stress in 5–6-week-old Sprague-Dawley rats. In vitro: 10 μM of CA for 24 h In vivo: 25 mg/kg/day through IP injection for 6 days | Induced antioxidant phase 2 enzymes and reduced the formation of hyperoxidized peroxiredoxin (Prx2). Protected the retinas in vivo from light-induced damage, producing significant improvements in the thickness of the outer nuclear layer and electroretinogram activity. | [73] |
Eugenol | A phenylpropene derivative found predominantly in clove oil (from Syzygium aromaticum); also present in Cinnamomum verum (true cinnamon), Ocimum sanctum (holy basil/tulsi), Pimenta dioica (allspice), and Laurus nobilis (bay leaf). | An acute corneal pain model in rats. Systemic: 50, 100, and 200 mg/kg clove oil, SC Topical: 25, 50, and 200 µg clove oil/eye, 25, 50, and 100 µg eugenol/eye | Had analgesic and local anesthetic effects on the cornea, with potential applications in managing ocular discomfort, through the opioidergic and cholinergic systems. | [74] |
Thymol | A monoterpenoid phenol primarily found in Thymus vulgaris (thyme) and Origanum vulgare (oregano); also present in Monarda didyma (bee balm), Satureja montana (winter savory), and Ajwain (Trachyspermum ammi). | Isolated goat lenses for modeling of cataracts induced by high-glucose exposure. In vitro: 20 to 60 µg/mL, 3 days | Prevented cataract formation through the inhibition of aldose reductase and a reduction in oxidative stress (a decrease in lipid peroxidation levels). | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harej Hrkać, A.; Pelčić, A.; Čaljkušić-Mance, T.; Mršić-Pelčić, J.; Pilipović, K. The Preventive Power of the Mediterranean Diet Against Blue-Light-Induced Retinal Degeneration: Is the Secret in the Herbs and Spices? Curr. Issues Mol. Biol. 2025, 47, 418. https://doi.org/10.3390/cimb47060418
Harej Hrkać A, Pelčić A, Čaljkušić-Mance T, Mršić-Pelčić J, Pilipović K. The Preventive Power of the Mediterranean Diet Against Blue-Light-Induced Retinal Degeneration: Is the Secret in the Herbs and Spices? Current Issues in Molecular Biology. 2025; 47(6):418. https://doi.org/10.3390/cimb47060418
Chicago/Turabian StyleHarej Hrkać, Anja, Ana Pelčić, Tea Čaljkušić-Mance, Jasenka Mršić-Pelčić, and Kristina Pilipović. 2025. "The Preventive Power of the Mediterranean Diet Against Blue-Light-Induced Retinal Degeneration: Is the Secret in the Herbs and Spices?" Current Issues in Molecular Biology 47, no. 6: 418. https://doi.org/10.3390/cimb47060418
APA StyleHarej Hrkać, A., Pelčić, A., Čaljkušić-Mance, T., Mršić-Pelčić, J., & Pilipović, K. (2025). The Preventive Power of the Mediterranean Diet Against Blue-Light-Induced Retinal Degeneration: Is the Secret in the Herbs and Spices? Current Issues in Molecular Biology, 47(6), 418. https://doi.org/10.3390/cimb47060418