Biphasic Slc2a4 Gene Expression in 3T3-L1 Adipocytes in Response to Treatment with Low and High Concentrations of Daidzein and Genistein
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Treatments
2.2. Experimental Design
2.3. Reverse Transcription and Quantitative Polymerase Chain Reaction (RT-qPCR)
2.4. Western Blotting
2.5. Statistical Analysis
3. Results
3.1. Low to High Concentrations of Phytoestrogens Do Not Alter Adipocyte Viability in Culture
3.2. Low Concentration of Daidzein and Genistein Mimics Estrogen’s Enhancing Effect on Slc2a4/GLUT4 Expression in Adipocytes
3.3. The Enhancing Effect of Low Concentration of Daidzein and Genistein on Slc2a4 Gene Expression in Adipocytes Involves the Activation of ESR1
3.4. High Concentration of Daidzein and Genistein Reverses Their Enhancer Effect on the Slc2a4/GLUT4 Expression in Adipocytes
3.5. The Repressor Effect of High Concentrations of Daidzein and Genistein on the Slc2a4 Gene Expression in Adipocytes Seems to Involve ESR1 Inhibition and ESR2 Activation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | one-way analysis of variance |
AU | arbitrary units |
D | daidzein |
DM | diabetes mellitus |
DMEM | Dulbecco’s modified eagle medium |
DMSO | dimethylsulfoxide |
FBS | fetal bovine serum |
ECL | enhanced chemiluminescence |
Erα | estrogen receptor alpha |
Erβ | estrogen receptor beta |
ERE | estrogen responsive element |
ESR1 | estrogen receptor 1 |
ESR2 | estrogen receptor 2 |
E2 | 17β-estradiol |
G | genistein |
Gapdh | glyceraldehyde-3-phosphate dehydrogenase (mouse gene) |
GLUT4 | solute carrier family 2, facilitated glucose transporter member 4 |
HDL | high-density lipoprotein cholesterol |
M | MPP (ESR1 antagonist) |
MTT | tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
P | PHTPP (ESR2 antagonist) |
RT-qPCR | reverse transcription and quantitative polymerase chain reaction |
SD | standard deviation |
Slc2a4 | solute carrier family 2 member 4 (mouse gene) |
TG | triacylglycerol |
References
- Rathery, F.; Rudolf, M. Folliculine, insuline et diabète. Bull. Mem. Soc. Med. Hop. Paris 1928, 52, 741. [Google Scholar]
- Sun, L.; Wang, Y.; Zhou, T.; Zhao, X.; Wang, Y.; Wang, G.; Gang, X. Glucose metabolism in turner syndrome. Front. Endocrinol. 2019, 10, 49. [Google Scholar] [CrossRef]
- Paschou, S.A.; Marina, L.V.; Spartalis, E.; Anagnostis, P.; Alexandrou, A.; Goulis, D.G.; Lambrinoudaki, I. Therapeutic strategies for type 2 diabetes mellitus in women after menopause. Maturitas 2019, 126, 69–72. [Google Scholar] [CrossRef]
- Zeng, X.; Xie, Y.J.; Liu, Y.T.; Long, S.L.; Mo, Z.C. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin. Chim. Acta 2020, 502, 214–221. [Google Scholar] [CrossRef]
- Cooke, P.S.; Nanjappa, M.K.; Ko, C.; Prin, G.S.; Hess, R.A. Estrogens in male physiology. Physiol. Rev. 2017, 97, 995–1043. [Google Scholar] [CrossRef]
- Faustini-Fustini, M.; Rochira, V.; Carani, C. Oestrogen deficiency in men: Where are we today? Eur. J. Endocrinol. 1999, 140, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Belgorosky, A.; Guercio, G.; Pepe, C.; Saraco, N.; Rivarola, M.A. Genetic and clinical spectrum of aromatase deficiency in infancy, childhood and adolescence. Horm. Res. 2009, 72, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Elbers, J.M.H.; Giltay, E.J.; Teerlink, T.; Scheffer, P.G.; Asscheman, H.; Seidell, J.C.; Gooren, L.J.G. Effects of sex steroids on components of the insulin resistance syndrome in transsexual subjects. Clin. Endocrinol. 2003, 58, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Heldring, N.; Pike, A.; Andersson, S.; Matthews, J.; Cheng, G.; Hartman, J.; Tujague, M.; Ström, A.; Treuter, E.; Warner, M.; et al. Estrogen receptors: How do they signal and what are their targets. Physiol. Rev. 2007, 87, 905–931. [Google Scholar] [CrossRef]
- Nilsson, S.; Mäkelä, S.; Treuter, E.; Tujague, M.; Thomsen, J.; Andersson, G.; Enmark, E.; Pettersson, K.; Warner, M.; Gustafsson, J.Å. Mechanisms of Estrogen Action. Physiol. Rev. 2001, 81, 1535–1565. [Google Scholar] [CrossRef]
- Safe, S.; Kim, K. Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. J. Mol. Endocrinol. 2008, 41, 263–275. [Google Scholar] [CrossRef]
- Barros, R.P.A.; Machado, U.F.; Warner, M.; Gustafsson, J.A. Muscle GLUT4 regulation by estrogen receptors ERbeta and ERalpha. Proc. Natl. Acad. Sci. USA 2006, 103, 1605–1608. [Google Scholar] [CrossRef]
- Barros, R.P.A.; Gustafsson, J.A. Estrogen receptors and the metabolic network. Cell Metab. 2011, 14, 289–299. [Google Scholar] [CrossRef]
- Campello, R.S.; Alves-Wagner, A.B.; Lucas, T.F.; Mori, R.C.; Furuya, D.T.; Porto, C.S.; Machado, U.F. Estrogen receptor 1 agonist PPT stimulates Slc2a4 gene expression and improves insulin-induced glucose uptake in adipocytes. Curr. Top. Med. Chem. 2012, 12, 2059–2069. [Google Scholar] [CrossRef]
- Klip, A.; McGraw, T.E.; James, D.E. Thirty sweet years of GLUT4. J. Biol. Chem. 2019, 294, 11369–11381. [Google Scholar] [CrossRef] [PubMed]
- Campello, R.S.; Fátima, L.A.; Barreto-Andrade, J.N.; Lucas, T.F.; Mori, R.C.; Porto, C.S.; Machado, U.F. Estradiol-induced regulation of GLUT4 in 3T3-L1 cells: Involvement of ESR1 and AKT activation. J. Mol. Endocrinol. 2017, 59, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Gupta, C.; Prakash, D.; Gupta, S. Phytoestrogens as pharma foods. Adv. Food Technol. Nutr. Sci. Open J. 2016, 2, 19–31. [Google Scholar] [CrossRef]
- Pilšáková, L.; Riečanský, I.; Jagla, F. The physiological actions of isoflavone phytoestrogens. Physiol. Res. 2010, 59, 651–664. [Google Scholar] [CrossRef]
- Gregorio, K.C.R.; Laurindo, C.P.; Machado, U.F. Estrogen and Glycemic Homeostasis: The Fundamental Role of Nuclear Estrogen Receptors ESR1/ESR2 in Glucose Transporter GLUT4 Regulation. Cells 2021, 10, 99. [Google Scholar] [CrossRef]
- Kostelac, D.; Rechkemmer, G.; Briviba, K. Phytoestrogens Modulate Binding Response of Estrogen Receptors α and β to the Estrogen Response Element. J. Agric. Food Chem. 2003, 51, 7632–7635. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.V.; Glass, B.D.; Agatonovic-Kustrin, S. Molecular aspects of phytoestrogen selective binding at estrogen receptors. J. Pharm. Sci. 2007, 96, 1879–1885. [Google Scholar] [CrossRef]
- Kuiper, G.G.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der Burg, B.; Gustafsson, J.A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998, 139, 4252–4263. [Google Scholar] [CrossRef]
- Pinto-Junior, D.C.; Silva, K.S.; Michalani, M.L.; Yonamine, C.Y.; Esteves, J.V.; Fabre, N.T.; Thieme, K.; Catanozi, S.; Okamoto, M.M.; Seraphim, P.M.; et al. Advanced glycation end products-induced insulin resistance involves repression of skeletal muscle GLUT4 expression. Sci. Rep. 2018, 8, 8109. [Google Scholar] [CrossRef]
- Bhathena, S.J.; Velasquez, M.T. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am. J. Clin. Nutr. 2002, 76, 1191–1201. [Google Scholar] [CrossRef]
- Pandozzi, C.; Giannetta, E.; Tarsitano, M.G. Phytotherapic approach in menopause: Light and darkness. Minerva Endocrinol. 2022, 47, 4. [Google Scholar] [CrossRef]
- Dang, Z.C. Dose-dependent effects of soy phyto-oestrogen genistein on adipocytes: Mechanisms of action. Obes. Rev. 2009, 10, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.; Kern, R.M.; Sokol, R.Z. A method for quantification and correction of proteins after transfer to immobilization membranes. Biochem. Mol. Biol. Int. 1995, 36, 59–66. [Google Scholar] [PubMed]
- Ferguson, R.E.; Carroll, H.P.; Harris, A.; Maher, E.R.; Selby, P.J.; Banks, R.E. Housekeeping proteins: A preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics 2005, 5, 566–571. [Google Scholar] [CrossRef]
- Romero-Calvo, I.; Ocón, B.; Martínez-Moya, P.; Suárez, M.D.; Zarzuelo, A.; Martínez-Augustin, O.; de Medina, F.S. Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal. Biochem. 2010, 401, 318–320. [Google Scholar] [CrossRef]
- Welinder, C.; Ekblad, L. Coomassie Staining as Loading Control in Western Blot. J. Proteome Res. 2011, 10, 1416–1419. [Google Scholar] [CrossRef]
- Moritz, C.P. Tubulin or not tubulin: Heading toward total protein staining as loading control in Westernblots. Proteomics 2017, 17, 1600189. [Google Scholar] [CrossRef] [PubMed]
- Esteves, J.V.; Yonamine, C.Y.; Machado, U.F. SLC2A4 expression and its epigenetic regulation as biomarkers for insulin resistance treatment in diabetes mellitus. Biomark. Med. 2020, 14, 413–416. [Google Scholar] [CrossRef]
- Seraphim, P.M.; Nunes, M.T.; Giannocco, G.; Machado, U.F. Age related obesity-induced shortening of GLUT4 mRNA poly(A) tail length in rat gastrocnemius skeletal muscle. Mol. Cell. Endocrinol. 2007, 276, 80–87. [Google Scholar] [CrossRef]
- Shi, J.; Kandror, K.V. Sortilin is essential and sufficient for the formation of Glut4 storage vesicles in 3T3-L1 adipocytes. Dev. Cell 2005, 9, 99–108. [Google Scholar] [CrossRef]
- Gonzalez-Menendez, P.; Hevia, D.; Rodriguez-Garcia, A.; Mayo, J.C.; Sainz, R.M. Regulation of GLUT transporters by flavonoids in androgen-sensitive and -insensitive prostate cancer cells. Endocrinology 2014, 155, 3238–3250. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Huang, C.; Luo, Q.; Liu, W.; Cheng, D.; Li, Y.; Xia, Y.; Li, C.; Tang, L.; Fang, J.; et al. Soy Isoflavones Ameliorate Fatty Acid Metabolism of Visceral Adipose Tissue by Increasing the AMPK Activity in Male Rats with Diet-Induced Obesity (DIO). Molecules 2019, 24, 2809. [Google Scholar] [CrossRef]
- Abler, A.; Smith, J.A.; Randazzo, P.A.; Rothenberg, P.L.; Jarett, L. Genistein differentially inhibits postreceptor effects of insulin in rat adipocytes without inhibiting the insulin receptor kinase. J. Biol. Chem. 1992, 267, 3946–3951. [Google Scholar] [CrossRef]
- Kwon, H.; Han, H.; Oh, Y.; Kim, Y.; Kim, J.H. Anti-cancer effects of genistein supplementation and moderate-intensity exercise in high-fat diet-induced breast cancer via regulation of inflammation and adipose tissue metabolism in vivo and in vitro. BMC Complement. Med. Ther. 2025, 25, 223. [Google Scholar]
- Adlercreutz, H.; Fotsis, T.; Lampe, J.; Wähälä, K.; Mäkelä, T.; Brunow, G.; Hase, T. Quantitative Determination of Lignans and Isoflavonoids in Plasma of Omnivorous and Vegetarian Women by Isotope Dilution Gas Chromatographγ-Mass Spectrometry. Scand. J. Clin. Lab. Investig. 1993, 53 (Suppl. 215), 5–18. [Google Scholar] [CrossRef]
- Kinjo, J.; Tsuchihashi, R.; Morito, K.; Hirose, T.; Aomori, T.; Nagao, T.; Okabe, H.; Nohara, T.; Masamune, Y. Interactions of phytoestrogens with estrogen receptors alpha and beta (III). Estrogenic activities of soy isoflavone aglycones and their metabolites isolated from human urine. Biol. Pharm. Bull. 2004, 27, 185–188. [Google Scholar] [CrossRef]
- King, R.; Bursill, D. Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans. Am. J. Clin. Nutr. 1998, 67, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Morton, M.S.; Wilcox, G.; Wahlqvist, M.L.; Griffiths, K. Determination of lignans and isoflavonoids in human female plasma following dietary supplementation. J. Endocrinol. 1998, 142, 251–259. [Google Scholar] [CrossRef]
- Yang, Z.; Kulkarni, K.; Zhu, W.; Hu, M. Bioavailability and pharmacokinetics of genistein: Mechanistic studies on its ADME. Anti-Cancer Agents Med. Chem. 2012, 12, 1264–1280. [Google Scholar] [CrossRef]
- Glisic, M.; Kastrati, N.; Musa, J.; Milic, J.; Asllanaj, E.; Fernandez, E.P.; Nano, J.; Rosales, C.O.; Amiri, M.; Kraja, B.; et al. Phytoestrogen supplementation and body composition in postmenopausal women: A systematic review and meta-analysis of randomized controlled trials. Maturitas 2018, 115, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zeng, Q.; Huang, X.; Liang, Z.; Hu, H. Effect of Isoflavones on Blood Lipid Alterations in Postmenopausal Females: A Systematic Review and Meta-Analysis of Randomized Trials. Adv. Nutr. 2023, 14, 1633–1643. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregorio, K.C.R.; Laurindo, C.P.; Freitas, H.S.; Okamoto, M.M.; Seraphim, P.M.; Machado, U.F. Biphasic Slc2a4 Gene Expression in 3T3-L1 Adipocytes in Response to Treatment with Low and High Concentrations of Daidzein and Genistein. Curr. Issues Mol. Biol. 2025, 47, 857. https://doi.org/10.3390/cimb47100857
Gregorio KCR, Laurindo CP, Freitas HS, Okamoto MM, Seraphim PM, Machado UF. Biphasic Slc2a4 Gene Expression in 3T3-L1 Adipocytes in Response to Treatment with Low and High Concentrations of Daidzein and Genistein. Current Issues in Molecular Biology. 2025; 47(10):857. https://doi.org/10.3390/cimb47100857
Chicago/Turabian StyleGregorio, Karen Cristina Rego, Caroline Pancera Laurindo, Helayne Soares Freitas, Maristela Mitiko Okamoto, Patricia Monteiro Seraphim, and Ubiratan Fabres Machado. 2025. "Biphasic Slc2a4 Gene Expression in 3T3-L1 Adipocytes in Response to Treatment with Low and High Concentrations of Daidzein and Genistein" Current Issues in Molecular Biology 47, no. 10: 857. https://doi.org/10.3390/cimb47100857
APA StyleGregorio, K. C. R., Laurindo, C. P., Freitas, H. S., Okamoto, M. M., Seraphim, P. M., & Machado, U. F. (2025). Biphasic Slc2a4 Gene Expression in 3T3-L1 Adipocytes in Response to Treatment with Low and High Concentrations of Daidzein and Genistein. Current Issues in Molecular Biology, 47(10), 857. https://doi.org/10.3390/cimb47100857