Empagliflozin Attenuates Liver Inflammation and Fibrosis in NAFLD: Evidence from Mendelian Randomization and Mouse Experiments
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Biochemical Analyses
2.3. Histological Examination
2.4. Gene Expression Analysis
2.5. Mendelian Randomization Analysis
2.6. Statistical Analysis
3. Results
3.1. Genetic Evidence Supporting SGLT2 Inhibition in NAFLD
3.2. Empagliflozin Alleviates Metabolic Burden and Liver Injury
3.3. Empagliflozin Ameliorates Hepatic Steatosis and Inflammatory Responses
3.4. Empagliflozin Regulates Lipid Metabolism and Oxidative Stress in NAFLD Mice
3.5. Empagliflozin Attenuates Hepatic Fibrosis in NAFLD Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, Y.; Wu, L.; Zhu, X.; Bian, H.; Gao, X.; Xia, M. Advances in management of metabolic dysfunction-associated steatotic liver disease: From mechanisms to therapeutics. Lipids Health Dis. 2024, 23, 95. [Google Scholar] [CrossRef]
- Dawod, S.; Brown, K. Non-invasive testing in metabolic dysfunction-associated steatotic liver disease. Front. Med. 2024, 11, 1499013. [Google Scholar] [CrossRef]
- Canivet, C.M.; Faure, S. Diagnosis and evaluation of metabolic dysfunction associated steatotic liver disease (MASLD). Rev. Med. Interne 2024, 45, 41–47. [Google Scholar] [CrossRef]
- Rong, L.; Zou, J.; Ran, W.; Qi, X.; Chen, Y.; Cui, H.; Guo, J. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD). Front. Endocrinol. 2022, 13, 1087260. [Google Scholar] [CrossRef] [PubMed]
- Long, M.T.; Gandhi, S.; Loomba, R. Advances in non-invasive biomarkers for the diagnosis and monitoring of non-alcoholic fatty liver disease. Metab. Clin. Exp. 2020, 111, 154259. [Google Scholar] [CrossRef]
- Zeng, Y.; He, H.; An, Z. Advance of Serum Biomarkers and Combined Diagnostic Panels in Nonalcoholic Fatty Liver Disease. Dis. Markers 2022, 2022, 1254014. [Google Scholar] [CrossRef] [PubMed]
- De, A.; Duseja, A. Natural History of Simple Steatosis or Nonalcoholic Fatty Liver. J. Clin. Exp. Hepatol. 2020, 10, 255–262. [Google Scholar] [CrossRef]
- Jennison, E.; Patel, J.; Scorletti, E.; Byrne, C.D. Diagnosis and management of non-alcoholic fatty liver disease. Postgrad. Med. J. 2019, 95, 314–322. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Newsome, P.N.; Kliers, I.; Østergaard, L.H.; Long, M.T.; Kjær, M.S.; Cali, A.M.G.; Bugianesi, E.; Rinella, M.E.; Roden, M.; et al. Phase 3 Trial of Semaglutide in Metabolic Dysfunction-Associated Steatohepatitis. N. Engl. J. Med. 2025, 392, 2089–2099. [Google Scholar] [CrossRef]
- Yin, Y.H.; Sang, L.X.; Chang, B. Potential therapeutic targets for nonalcoholic fatty liver disease: Glucagon-like peptide 1. World J. Gastroenterol. 2023, 29, 6235–6238. [Google Scholar] [CrossRef]
- Makri, E.S.; Goulas, A.; Polyzos, S.A. Sodium-glucose co-transporter 2 inhibitors in nonalcoholic fatty liver disease. Eur. J. Pharmacol. 2021, 907, 174272. [Google Scholar] [CrossRef]
- Bhushan, S.; Sohal, A.; Noureddin, M.; Kowdley, K.V. Resmetirom: The first approved therapy for treating metabolic dysfunction associated steatohepatitis. Expert Opin. Pharmacother. 2025, 26, 663–675. [Google Scholar] [CrossRef]
- Guo, X.; Yin, X.; Liu, Z.; Wang, J. Non-Alcoholic Fatty Liver Disease (NAFLD) Pathogenesis and Natural Products for Prevention and Treatment. Int. J. Mol. Sci. 2022, 23, 15489. [Google Scholar] [CrossRef]
- Zhong, H.; Dong, J.; Zhu, L.; Mao, J.; Dong, J.; Zhao, Y.; Zou, Y.; Guo, M.; Ding, G. Non-alcoholic fatty liver disease: Pathogenesis and models. Am. J. Transl. Res. 2024, 16, 387–399. [Google Scholar] [CrossRef]
- Agrawal, S.; Duseja, A.K. Non-alcoholic Fatty Liver Disease: East Versus West. J. Clin. Exp. Hepatol. 2012, 2, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Wang, Y.; Loor, J.J.; Zhao, C.; Wang, J. Non-esterified fatty acids disrupt hepatic lipid metabolism and mitochondrial function via TLR4/MyD88/IRAK2 signaling in bovine hepatocytes. J. Steroid Biochem. Mol. Biol. 2025, 253, 106813. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Q.; Ning, J.; Jiang, T.; Kang, A.; Li, L.; Pang, Y.; Zhang, B.; Huang, X.; Wang, Q.; et al. The proteasome-dependent degradation of ALKBH5 regulates ECM deposition in PM(2.5) exposure-induced pulmonary fibrosis of mice. J. Hazard. Mater. 2022, 432, 128655. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhou, S.; Peng, L.; Wang, W.; Liu, Y.; Wang, T.; Cheng, D.; Li, Z.; Xiong, H.; Jia, X.; et al. Fatty Acid Oxidation-Glycolysis Metabolic Transition Affects ECM Homeostasis in Silica-Induced Pulmonary Fibrosis. Adv. Sci. 2025, 12, e2407134. [Google Scholar] [CrossRef]
- Yankah, R.K.; Anku, E.K.; Eligar, V. Sodium-Glucose Cotransporter-2 Inhibitors and Cardiovascular Protection Among Patients With Type 2 Diabetes Mellitus: A Systematic Review. J. Diabetes Res. 2024, 2024, 9985836. [Google Scholar] [CrossRef]
- Kario, K.; Okada, K.; Murata, M.; Suzuki, D.; Yamagiwa, K.; Abe, Y.; Usui, I.; Tsuchiya, N.; Iwashita, C.; Harada, N.; et al. Effects of luseogliflozin on arterial properties in patients with type 2 diabetes mellitus: The multicenter, exploratory LUSCAR study. J. Clin. Hypertens. 2020, 22, 1585–1593. [Google Scholar] [CrossRef]
- Chrysant, S.G.; Chrysant, G.S. Beneficial cardiovascular and remodeling effects of SGLT 2 inhibitors. Expert Rev. Cardiovasc. Ther. 2022, 20, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Fatima, E.; Irfan, H.; Fatima, F.; Jain, J.; Ur Rehman, O.; Sehar, A.; Ahmad, B.; Kumari, S.; Akilimali, A. “Is sotagliflozin a ‘wonder drug’? A review of its impact on cardiovascular, diabetic, renal, neuroprotective, and hepatic outcomes”. Ann. Med. Surg. 2025, 87, 3700–3706. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, Y.; Yang, S.; Zhang, L.; Liu, B.; Zhang, J.; Yu, X.; Wei, X.; Li, S.; Wang, J.; et al. Targeting antioxidant factor Nrf2 by raffinose ameliorates lipid dysmetabolism-induced pyroptosis, inflammation and fibrosis in NAFLD. Phytomedicine Int. J. Phytother. Phytopharm. 2024, 130, 155756. [Google Scholar] [CrossRef] [PubMed]
- Aarts, S.; Reiche, M.; den Toom, M.; Gijbels, M.; Beckers, L.; Gerdes, N.; Lutgens, E. Depletion of CD40 on CD11c(+) cells worsens the metabolic syndrome and ameliorates hepatic inflammation during NASH. Sci. Rep. 2019, 9, 14702. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Szarek, M.; Steg, P.G.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Voors, A.A.; Metra, M.; et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N. Engl. J. Med. 2021, 384, 117–128. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Szarek, M.; Pitt, B.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Inzucchi, S.E.; Kosiborod, M.N.; et al. Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. N. Engl. J. Med. 2021, 384, 129–139. [Google Scholar] [CrossRef]
- Zaccardi, F.; Webb, D.R.; Htike, Z.Z.; Youssef, D.; Khunti, K.; Davies, M.J. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: Systematic review and network meta-analysis. Diabetes Obes. Metab. 2016, 18, 783–794. [Google Scholar] [CrossRef]
- Brown, E.; Heerspink, H.J.L.; Cuthbertson, D.J.; Wilding, J.P.H. SGLT2 inhibitors and GLP-1 receptor agonists: Established and emerging indications. Lancet 2021, 398, 262–276. [Google Scholar] [CrossRef]
- Mbatchou, J.; Barnard, L.; Backman, J.; Marcketta, A.; Kosmicki, J.A.; Ziyatdinov, A.; Benner, C.; O’Dushlaine, C.; Barber, M.; Boutkov, B.; et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 2021, 53, 1097–1103. [Google Scholar] [CrossRef]
- Rosoff, D.B.; Bell, A.S.; Jung, J.; Wagner, J.; Mavromatis, L.A.; Lohoff, F.W. Mendelian Randomization Study of PCSK9 and HMG-CoA Reductase Inhibition and Cognitive Function. J. Am. Coll. Cardiol. 2022, 80, 653–662. [Google Scholar] [CrossRef]
- Schaid, D.J. Genetic Epidemiology. Genet. Epidemiol. 2001, 20, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.S.; MacGregor, S. Implementing MR-PRESSO and GCTA-GSMR for pleiotropy assessment in Mendelian randomization studies from a practitioner’s perspective. Genet. Epidemiol. 2019, 43, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 2013, 37, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Monda, V.M.; Gentile, S.; Porcellati, F.; Satta, E.; Fucili, A.; Monesi, M.; Strollo, F. Heart Failure with Preserved Ejection Fraction and Obstructive Sleep Apnea: A Novel Paradigm for Additional Cardiovascular Benefit of SGLT2 Inhibitors in Subjects With or Without Type 2 Diabetes. Adv. Ther. 2022, 39, 4837–4846. [Google Scholar] [CrossRef]
- Guo, N.; Shi, H.; Zhang, H.; Wang, H. Comparison of the efficacy and safety of hypoglycemic treatments in patients with non-alcoholic fatty liver disease and type-2 diabetes: A systematic review and Bayesian network analysis. Eur. J. Clin. Pharmacol. 2023, 79, 1465–1474. [Google Scholar] [CrossRef]
- Hüttl, M.; Markova, I.; Miklankova, D.; Zapletalova, I.; Poruba, M.; Haluzik, M.; Vaněčkova, I.; Malinska, H. In a Prediabetic Model, Empagliflozin Improves Hepatic Lipid Metabolism Independently of Obesity and before Onset of Hyperglycemia. Int. J. Mol. Sci. 2021, 22, 1513. [Google Scholar] [CrossRef]
- Lee, J.; Hong, S.W.; Kim, M.J.; Lim, Y.M.; Moon, S.J.; Kwon, H.; Park, S.E.; Rhee, E.J.; Lee, W.Y. Sodium-glucose cotransporter 2 inhibitors ameliorate ER stress-induced pro-inflammatory cytokine expression by inhibiting CD36 in NAFLD progression in vitro. Biochem. Biophys. Res. Commun. 2024, 735, 150620. [Google Scholar] [CrossRef]
- Yabiku, K. Efficacy of Sodium-Glucose Cotransporter 2 Inhibitors in Patients with Concurrent Type 2 Diabetes Mellitus and Non-Alcoholic Steatohepatitis: A Review of the Evidence. Front. Endocrinol. 2021, 12, 768850. [Google Scholar] [CrossRef]
- Martos-Guillami, N.; Vergara, A.; Llorens-Cebrià, C.; Motto, A.E.; Martínez-Díaz, I.; Gonçalves, F.; Garcias-Ramis, M.M.; Allo-Urzainqui, E.; Narváez, A.; Bermejo, S.; et al. SGLT2i and GLP1-RA exert additive cardiorenal protection with a RAS blocker in uninephrectomized db/db mice. Front. Pharmacol. 2024, 15, 1415879. [Google Scholar] [CrossRef]
- Chehrehgosha, H.; Sohrabi, M.R.; Ismail-Beigi, F.; Malek, M.; Reza Babaei, M.; Zamani, F.; Ajdarkosh, H.; Khoonsari, M.; Fallah, A.E.; Khamseh, M.E. Empagliflozin Improves Liver Steatosis and Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease and Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Diabetes Ther. Res. Treat. Educ. Diabetes Relat. Disord. 2021, 12, 843–861. [Google Scholar] [CrossRef]
- El-Kashef, D.H.; Sewilam, H.M. Empagliflozin mitigates methotrexate-induced hepatotoxicity: Targeting ASK-1/JNK/Caspase-3 pathway. Int. Immunopharmacol. 2023, 114, 109494. [Google Scholar] [CrossRef]
- Iogna Prat, L.; Tsochatzis, E.A. The effect of antidiabetic medications on non-alcoholic fatty liver disease (NAFLD). Hormones 2018, 17, 219–229. [Google Scholar] [CrossRef]
- Colak, Y.; Yesil, A.; Mutlu, H.H.; Caklili, O.T.; Ulasoglu, C.; Senates, E.; Takir, M.; Kostek, O.; Yilmaz, Y.; Yilmaz Enc, F.; et al. A potential treatment of non-alcoholic fatty liver disease with SIRT1 activators. J. Gastrointest. Liver Dis. JGLD 2014, 23, 311–319. [Google Scholar] [CrossRef]
- Hansen, H.H.; Pors, S.; Andersen, M.W.; Vyberg, M.; Nøhr-Meldgaard, J.; Nielsen, M.H.; Oró, D.; Madsen, M.R.; Lewinska, M.; Møllerhøj, M.B.; et al. Semaglutide reduces tumor burden in the GAN diet-induced obese and biopsy-confirmed mouse model of NASH-HCC with advanced fibrosis. Sci. Rep. 2023, 13, 23056. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Talwalkar, P.G.; Das, S.; Goswami, S. Cardiovascular Effects of Sodium Glucose Co-transporter-2 Inhibitors in Patients with Type 2 Diabetes Mellitus. Indian J. Endocrinol. Metab. 2019, 23, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M.; Asaba, K. Educational Attainment Decreases the Risk of COVID-19 Severity in the European Population: A Two-Sample Mendelian Randomization Study. Front. Public Health 2021, 9, 673451. [Google Scholar] [CrossRef] [PubMed]
- Boland, M.L.; Oldham, S.; Boland, B.B.; Will, S.; Lapointe, J.M.; Guionaud, S.; Rhodes, C.J.; Trevaskis, J.L. Nonalcoholic steatohepatitis severity is defined by a failure in compensatory antioxidant capacity in the setting of mitochondrial dysfunction. World J. Gastroenterol. 2018, 24, 1748–1765. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhou, C.; Yin, W.; Chen, T.; Han, T.; Xie, Y.; Zhou, A. Strength gains and distinct acute blood lactate responses induced by stepwise load reduction training in healthy males. Front. Physiol. 2025, 16, 1658993. [Google Scholar] [CrossRef]
- Gajjar, A.; Raju, A.K.; Gajjar, A.; Menon, M.; Shah, S.A.Y.; Dani, S.; Weinberg, A. SGLT2 Inhibitors and GLP-1 Receptor Agonists in Cardiovascular-Kidney-Metabolic Syndrome. Biomedicines 2025, 13, 1924. [Google Scholar] [CrossRef]
- Chui, Z.S.W.; Xue, Y.; Xu, A. Hormone-based pharmacotherapy for metabolic dysfunction-associated fatty liver disease. Med. Rev. 2024, 4, 158–168. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, K.; Chen, F.; Qian, J.; Wang, D.; Wu, Y.; Zhou, C.; Yu, Y.; Chen, K.; Hwa, J.; et al. Bone marrow-derived naïve B lymphocytes improve heart function after myocardial infarction: A novel cardioprotective mechanism for empagliflozin. Basic Res. Cardiol. 2022, 117, 47. [Google Scholar] [CrossRef]
Gene | Forward (5′→3′) | Reverse (5′→3′) |
---|---|---|
GAPDH | ATG GTG AAG GTC GGT GTG AA | CGC TCC TGG AAG ATG GTG AT |
SREBP1c | GGA GCC ATG GAT TGC ACA TT | CAG GAA GGC TTC CAG AGA GG |
FASN | GCC TAC ACC CAG AGC TAC CG | GCC ATG GTA CTT GGC CTT G |
TNF-α | ATG GAT CTC AAA GAC AAC CAA CTA G | ACG GCA GAG AGG AGG TTG ACT T |
IL-1β | TCG TGC TGT CGG ACC CAT AT | GGT TCT CCT TGT ACA AAG CTC ATG |
IL-6 | AAC CAC GGG CTT CCC TAC TT | TCT GTT GGG AGT GGT ATC CTC TGT |
NF-κB | ATG GCA GAC GAT GAT CCC TAC | CGG ATC GAA ATC CCC TCT GTT |
α-SMA | GCT TCG CTG GTG ATG ATG CTC | AGT TGG TGA TGA TGC CGT GTT C |
COL1a1 | GAC AGG CGA ACA AGG TGA CAG AG | CAG GAG AAC CAG GAG AAC CAG GAG |
TIMP-1 | GCA TCT CTG GCA TCT GGC ATC C | CGC TGG TAT AAG GTG GTC TCG TTG |
MMP-9 | AGC ACG GCA ACG GAG AAG G | CCA CTC GGG TAG GGC AGA AG |
Outcome | Drug | NSNPs | Pleiotropy | Heterogeneity | |||||
---|---|---|---|---|---|---|---|---|---|
MR Egger | Inverse Variance Weighted | ||||||||
Egger Intercept | SE | p Value | Q | p Value | Q | p Value | |||
Fibrosis and cirrhosis of liver | SGLT2i | 12 | 0.0513 | 0.0303 | 0.1212 | 8.48 | 0.58 | 11.34 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, C.; Deng, L.; Zhu, X.; Wang, B.; Hu, B.; Xue, H.; Zeng, Q.; Zhang, Y. Empagliflozin Attenuates Liver Inflammation and Fibrosis in NAFLD: Evidence from Mendelian Randomization and Mouse Experiments. Curr. Issues Mol. Biol. 2025, 47, 846. https://doi.org/10.3390/cimb47100846
Fu C, Deng L, Zhu X, Wang B, Hu B, Xue H, Zeng Q, Zhang Y. Empagliflozin Attenuates Liver Inflammation and Fibrosis in NAFLD: Evidence from Mendelian Randomization and Mouse Experiments. Current Issues in Molecular Biology. 2025; 47(10):846. https://doi.org/10.3390/cimb47100846
Chicago/Turabian StyleFu, Chao, Lijiao Deng, Xiaochan Zhu, Bin Wang, Bin Hu, Huan Xue, Qingxuan Zeng, and Yi Zhang. 2025. "Empagliflozin Attenuates Liver Inflammation and Fibrosis in NAFLD: Evidence from Mendelian Randomization and Mouse Experiments" Current Issues in Molecular Biology 47, no. 10: 846. https://doi.org/10.3390/cimb47100846
APA StyleFu, C., Deng, L., Zhu, X., Wang, B., Hu, B., Xue, H., Zeng, Q., & Zhang, Y. (2025). Empagliflozin Attenuates Liver Inflammation and Fibrosis in NAFLD: Evidence from Mendelian Randomization and Mouse Experiments. Current Issues in Molecular Biology, 47(10), 846. https://doi.org/10.3390/cimb47100846