Antidiabetic Activity of Silver Nanoparticles Biosynthesized with Stenocereus queretaroensis Flower Extract
Abstract
1. Introduction
2. Results and Discussion
2.1. Phytochemical Screening
2.2. Biosynthesis of Silver Nanoparticles
2.3. Ultraviolet−Visible (UV-Vis) Spectroscopy
2.4. Particle Size and Zeta Potential
2.5. Scanning Electron Microscopy–Energy Dispersive X-Ray Analysis
2.6. X-Ray Diffraction Analysis (XRD)
2.7. Fourier Transform Infrared Spectrophotometer Spectroscopy Analysis (FTIR)
2.8. Antidiabetic Activity In Vitro
2.9. Postprandial Hypoglycemic Activity In Vivo
3. Materials and Methods
3.1. Chemical Reagents
3.2. Plant Material
3.2.1. Preparation of Aqueous Extract
3.2.2. Phytochemical Characterization
3.2.3. Identification of Phenolic Compounds by High-Performance Liquid Chromatography
3.3. Biosynthesis of Nanoparticles
3.4. Characterization of SAgNPs
3.4.1. Ultraviolet–Visible Spectroscopy Analysis
3.4.2. Particle Size and Zeta Potential Measurement
3.4.3. Scanning Electron Microscopy–Energy Dispersive X-Ray Analysis
3.4.4. X-Ray Diffraction Analysis
3.4.5. Fourier Transform Infrared Spectrophotometer Spectroscopy (FTIR) Analysis
3.5. Evaluation of Antidiabetic Activity In Vitro
3.6. Evaluation of Postprandial Hypoglycemic Activity In Vivo
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; Available online: https://www.diabetesatlas.org (accessed on 6 February 2025).
- Gupta, S.; Sharma, N.; Arora, S.; Verma, S. Diabetes: A review of its pathophysiology, and advanced methods of mitigation. Curr. Med. Res. Opin. 2024, 40, 773–780. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Summary of Revisions: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47, S5–S10. [Google Scholar] [CrossRef] [PubMed]
- Lorenzati, B.; Zucco, C.; Miglietta, S.; Lamberti, F.; Bruno, G. Oral hypoglycemic drugs: Pathophysiological basis of their mechanism of action. Pharmaceuticals 2010, 3, 3005–3020. [Google Scholar] [CrossRef]
- Weinberg Sibony, R.; Segev, O.; Dor, S.; Raz, I. Drug therapies for diabetes. Int. J. Mol. Sci. 2023, 24, 17147. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Bhutani, J.; O’Keefe, J.H. Acarbose: Safe and effective for lowering postprandial hyperglycemia and improving cardiovascular outcomes. Open Heart 2015, 2, e000327. [Google Scholar] [CrossRef]
- Yedjou, C.G.; Grigsby, J.; Mbemi, A.; Nelson, D.; Mildort, B.; Latinwo, L.; Tchounwou, P.B. The Management of Diabetes Mellitus Using Medicinal Plants and Vitamins. Int. J. Mol. Sci. 2023, 24, 9085. [Google Scholar] [CrossRef]
- Ansari, P.; Akther, S.; Hannan, J.M.A.; Seidel, V.; Nujat, N.J.; Abdel-Wahab, Y.H.A. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules 2022, 27, 4278. [Google Scholar] [CrossRef] [PubMed]
- Mat Yusuf, S.N.A.; Che Mood, C.N.A.; Ahmad, N.H.; Sandai, D.; Lee, C.K.; Lim, V. Optimization of biogenic synthesis of silver nanoparticles from flavonoid-rich Clinacanthus nutans leaf and stem aqueous extracts. R. Soc. Open Sci. 2020, 7, 200065. [Google Scholar] [CrossRef] [PubMed]
- Dahl, J.A.; Maddux, B.L.; Hutchison, J.E. Toward greener nanosynthesis. Chem. Rev. 2007, 107, 2228–2269. [Google Scholar] [CrossRef]
- Alharbi, N.S.; Alsubhi, N.S.; Felimban, A.I. Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. J. Radiat. Res. 2022, 15, 109–124. [Google Scholar] [CrossRef]
- Saratale, G.D.; Saratale, R.G.; Benelli, G.; Kumar, G.; Pugazhendhi, A.; Kim, D.-S.; Shin, H.-S. Antidiabetic Potential of Silver Nanoparticles Synthesized with Argyreia nervosa Leaf Extract High Synergistic Antibacterial Activity with Standard Antibiotics Against Foodborne Bacteria. J. Clust. Sci. 2017, 28, 1709–1727. [Google Scholar] [CrossRef]
- Wahab, M.; Bhatti, A.; John, P. Evaluation of antidiabetic activity of biogenic silver nanoparticles using Thymus serpyllum on streptozotocin-induced diabetic BALB/c mice. Polymers 2022, 14, 3138. [Google Scholar] [CrossRef]
- Paul, S.; Sarkar, I.; Sarkar, N.; Bose, A.; Chakraborty, M.; Chakraborty, A.; Mukherjee, S. Silver nanoparticles in diabetes mellitus: Therapeutic potential and mechanistic in-sights. Bull. Natl. Res. Cent. 2024, 48, 33. [Google Scholar] [CrossRef]
- Saratale, R.G.; Saratale, G.D.; Ahn, S.; Shin, H.S. Grape Pomace Extracted Tannin for Green Synthesis of Silver Nanoparticles: Assessment of Their Antidiabetic, Antioxidant Potential and Antimicrobial Activity. Polymers 2021, 13, 4355. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.A.; Ghufran, M.; Shams, S.; Jamal, A.; Khan, A.; Abdullah; Awan, Z.A.; Khan, M.I. Green synthesis of silver nanoparticles from plant Fagonia cretica and evaluating its anti-diabetic activity through indepth in-vitro and in-vivo analysis. Front. Pharmacol. 2023, 14, 1194809. [Google Scholar] [CrossRef]
- Anandachockalingam, A.; Shanmugam, R.; Ryntathiang, I.; Dharmalingam Jothinathan, M.K. Green Synthesis of Silver Nanoparticles Using Zingiber officinale and Ocimum gratissimum Formulation for Its Anti-inflammatory and Antidiabetic Activity: An In Vitro Study. Cureus 2024, 16, e58098. [Google Scholar] [CrossRef]
- Noriega-Juárez, A.D.; Nolasco-González, Y.; Vázquez-Mora, J.; García-Magaña, M.D.L.; Montalvo-González, E. Physicochemical Characterization, Bioactive Compounds, and Antioxidant Capacity from Stenocereus queretaroensis: Mexican Endemic Fruits with High Potential Functionality. Horticulturae 2024, 10, 451. [Google Scholar] [CrossRef]
- Dang, K.P.T.; Ngo, V.N.; Vu_Quang, H.; Nguyen, T.D. Gold nanoparticles biosynthesized from flavonoid extract of Hopea odorata leaves and their catalytic activity for 4-nitrophenol reduction. J. Eng. Res. 2024; in press. Corrected Proof. [Google Scholar]
- Coelho, V.S.; de Moura, D.G.; Aguiar, L.L.; Ribeiro, L.V.; Silva, V.D.M.; da Veiga Correia, V.T.; Melo, A.C.; Silva, M.R.; de Paula, A.C.C.F.F.; de Araújo, R.L.B.; et al. The Profile of Phenolic Compounds Identified in Pitaya Fruits, Health Effects, and Food Applications: An Integrative Review. Plants 2024, 13, 3020. [Google Scholar] [CrossRef]
- Singh, H.; Desimone, M.F.; Pandya, S.; Jasani, S.; George, N.; Adnan, M.; Aldarhami, A.; Bazaid, A.S.; A Alderhami, S.A. Revisiting the green synthesis of nanoparticles: Uncovering influences of plant extracts as reducing agents for enhanced synthesis efficiency and its biomedical applications. Int. J. Nanomed. 2023, 2023, 4727–4750. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yu, C.; Ahmad, S.; Ri, C.; Tang, J. Preferential role of distinct phytochemicals in biosynthesis and antibacterial activity of silver nanoparticles. J. Environ. Manag. 2023, 344, 118546. [Google Scholar] [CrossRef]
- Coman, N.A.; Nicolae-Maranciuc, A.; Berța, L.; Nicolescu, A.; Babotă, M.; Man, A.; Tanase, C. Green synthesis of metallic nanoparticles from Quercus bark extracts: Characterization and functional properties. Antioxidants 2024, 13, 822. [Google Scholar] [CrossRef]
- Verduzco-Chavira, K.; Vallejo-Cardona, A.A.; González-Garibay, A.S.; Torres-González, O.R.; Sánchez-Hernández, I.M.; Flores-Fernández, J.M.; Padilla-Camberos, E. Antibacterial and antibiofilm activity of chemically and biologically synthesized silver nanoparticles. Antibiotics 2023, 12, 1084. [Google Scholar] [CrossRef]
- Mariadoss, A.V.A.; Ramachandran, V.; Shalini, V.; Agilan, B.; Franklin, J.H.; Sanjay, K.; Ernest, D. Green synthesis, characterization and antibacterial activity of silver nanoparticles by Malus domestica and its cytotoxic effect on (MCF-7) cell line. Microb. Pathog. 2019, 135, 103609. [Google Scholar] [CrossRef]
- Ider, M.; Abderrafi, K.; Eddahbi, A.; Ouaskit, S.; Kassiba, A. Rapid synthesis of silver nanoparticles by microwave-polyol method with the assistance of latex copolymer. J. Clust. Sci. 2017, 28, 1025–1040. [Google Scholar] [CrossRef]
- Badeggi, U.M.; Omoruyi, S.I.; Ismail, E.; Africa, C.; Botha, S.; Hussein, A.A. Characterization and Toxicity of Hypoxoside Capped Silver Nanoparticles. Plants 2022, 11, 1037. [Google Scholar] [CrossRef] [PubMed]
- Okaiyeto, K.; Ojemaye, M.O.; Hoppe, H.; Mabinya, L.V.; Okoh, A.I. Phytofabrication of silver/silver chloride nanoparticles using aqueous leaf extract of Oedera genistifolia: Characterization and antibacterial potential. Molecules 2019, 24, 4382. [Google Scholar] [CrossRef] [PubMed]
- Khanal, L.N.; Sharma, K.R.; Paudyal, H.; Parajuli, K.; Dahal, B.; Ganga, G.C.; Kalauni, S.K. Green synthesis of silver nanoparticles from root extracts of Rubus ellipticus Sm. and comparison of antioxidant and antibacterial activity. J. Nanomater. 2022, 2022, 1832587. [Google Scholar] [CrossRef]
- Ghatage, M.M.; Mane, P.A.; Gambhir, R.P.; Parkhe, V.S.; Kamble, P.A.; Lokhande, C.D.; Tiwari, A.P. Green synthesis of silver nanoparticles via Aloe barbadensis miller leaves: Anticancer, antioxidative, antimicrobial and photocatalytic properties. Appl. Surf. Sci. Adv. 2023, 16, 100426. [Google Scholar] [CrossRef]
- Cifuentes-Jiménez, C.; Bolanos-Carmona, M.V.; Enrich-Essvein, T.; Rodríguez-Navarro, A.B.; González-López, S.; Yamauti, M.; Álvarez-Lloret, P. Green synthesis of chitosan-and fluoride-functionalized silver nanoparticles using Camellia sinensis: Characterization and dental applications. Int. J. Biol. Macromol. 2024, 268, 131676. [Google Scholar] [CrossRef]
- Alcan, V.; Ozkendir, O.M. Evaluating electronic and structural properties of Au and Cu substituted AgCl electrode for application in surface electromyography. Materialia 2021, 18, 101170. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Kang, L.; Wu, M.; Yang, Y. Highly dispersed of Ag/AgCl nanoparticles on exfoliated FeOCl nanosheets as photo-Fenton catalysts for pollutants degradation via accelerating Fe (II)/Fe (III) cycle. Chemosphere 2022, 296, 134039. [Google Scholar] [CrossRef]
- Jeeva, K.; Thiyagarajan, M.; Elangovan, V.; Geetha, N.; Venkatachalam, P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind. Crops Prod. 2014, 52, 714–720. [Google Scholar] [CrossRef]
- Mehta, B.K.; Chhajlani, M.; Shrivastava, B.D. Green synthesis of silver nanoparticles and their characterization by XRD. J. Phys. Conf. Ser. 2017, 836, 012050. [Google Scholar] [CrossRef]
- Hassanzadeh-Tabrizi, S.A. Precise calculation of crystallite size of nanomaterials: A review. J. Alloys Compd. 2023, 968, 171914. [Google Scholar] [CrossRef]
- Pasieczna-Patkowska, S.; Cichy, M.; Flieger, J. Application of Fourier Transform Infrared (FTIR) Spectroscopy in Characterization of Green Synthesized Nanoparticles. Molecules 2025, 30, 684. [Google Scholar] [CrossRef]
- Mojet, B.L.; Ebbesenz, S.D.; Lefferts, L. Light at the interface: The potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water. Chem. Soc. Rev. 2010, 39, 4643–4655. [Google Scholar] [CrossRef] [PubMed]
- Parthibavarman, M.; Bhuvaneshwari, S.; Jayashree, M.; BoopathiRaja, R. Green synthesis of silver (Ag) nanoparticles using extract of apple and grape and with enhanced visible light photocatalytic activity. BioNanoScience 2019, 9, 423–432. [Google Scholar] [CrossRef]
- Diaz-Sotomayor, M.; Quezada-Calvillo, R.; Avery, S.E.; Chacko, S.K.; Yan, L.K.; Lin, A.H.M. Maltase-glucoamylase modulates gluconeogenesis and sucrase isomaltase dominates starch digestion glucogenesis. J. Pediatr. Gastroenterol. Nutr. 2013, 57, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bai, Y.; Jin, Z.; Svensson, B. Food-derived non-phenolic α-amylase and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes. LWT 2022, 153, 112455. [Google Scholar] [CrossRef]
- Patel, D.A.; Ishnava, K.B. Biogenic synthesis of silver nanoparticles from the leaf extract of Enicostema axillare (Poir. ex Lam.) A. Raynal and its alpha amylase inhibition activity. Food Chem. Adv. 2024, 4, 100624. [Google Scholar] [CrossRef]
- Bhardwaj, M.; Yadav, P.; Dalal, S.; Kataria, S.K. A review on ameliorative green nanotechnological approaches in diabetes management. Biomed. Pharmacother. 2020, 127, 110198. [Google Scholar] [CrossRef] [PubMed]
- Majeed, S.; Abidin, N.B.Z.; Muthukumarasamy, R.; Danish, M.; Mahmad, A.; Ibrahim, M.N.M.; Sisinthy, S.P. Wound healing and antidiabetic properties of green synthesized silver nanoparticles in 3T3-L1 mouse embryo fibroblast cells through 2-NBDG expression. Inorg. Chem. Commun. 2024, 159, 111692. [Google Scholar] [CrossRef]
- Badmus, J.A.; Oyemomi, S.A.; Adedosu, O.T.; Yekeen, T.A.; Azeez, M.A.; Adebayo, E.A.; Lateef, A.; Badeggi, U.M.; Botha, S.; Hussein, A.A.; et al. Photo-assisted bio-fabrication of silver nanoparticles using Annona muricata leaf extract: Exploring the antioxidant, anti-diabetic, antimicrobial, and cytotoxic activities. Heliyon 2020, 6, e05413. [Google Scholar] [CrossRef]
- Paramasivam, D.; Balasubramanian, B.; Suresh, R.; Kumaravelu, J.; Vellingiri, M.M.; Liu, W.C.; Meyyazhagan, A.; Alanazi, A.M.; Rengasamy, K.R.R.; Arumugam, V.A. One-Pot Synthesis of Silver Nanoparticles Derived from Aqueous Leaf Extract of Ageratum conyzoides and Their Biological Efficacy. Antibiotics 2023, 12, 688. [Google Scholar] [CrossRef] [PubMed]
- Le, A.T.; Ha, H.A.; Al-Ansari, M.M.; Elankathirselvan, K.; Al-Humaid, L.A. Aristolochia bracteolata flower extract based phytosynthesis and characterization of AgNPs: Antimicrobial, antidiabetic, and antioxidant activities potential assessment. Environ. Res. 2024, 251, 118729. [Google Scholar] [CrossRef]
- Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Nutr. Sci. 2020, 8, 6320–6337. [Google Scholar] [CrossRef]
- Das, G.; Patra, J.K.; Basavegowda, N.; Vishnuprasad, C.N.; Shin, H.S. Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of Ipomoea batatas (L.) Lam. Int. J. Nanomed. 2019, 14, 4741–4754. [Google Scholar] [CrossRef]
- Das, G.; Shin, H.S.; Patra, J.K. Comparative Assessment of Antioxidant, Anti-Diabetic and Cytotoxic Effects of Three Peel/Shell Food Waste Extract-Mediated Silver Nanoparticles. Int. J. Nanomed. 2020, 15, 9075–9088. [Google Scholar] [CrossRef]
- Eker, F.; Duman, H.; Akdaşçi, E.; Witkowska, A.M.; Bechelany, M.; Karav, S. Silver nanoparticles in therapeutics and beyond: A review of mechanism insights and applications. Nanomaterials 2024, 14, 1618. [Google Scholar] [CrossRef]
- Torabian, F.; Akhavan Rezayat, A.; Ghasemi Nour, M.; Ghorbanzadeh, A.; Najafi, S.; Sahebkar, A.; Sabouri, Z.; Darroudi, M. Administration of Silver Nanoparticles in Diabetes Mellitus: A Systematic Review and Meta-Analysis on Animal Studies. Biol. Trace Elem. Res. 2022, 200, 1699–1709. [Google Scholar] [CrossRef] [PubMed]
- Mangamma, J.L.; Sagar, P.V.; Kumar, P.K.; Prameeladevi, S.; Basavaiah, K. Eco-conscious Silver nanoparticles through “flower extract” of Murraya paniculata (L) Jack for reduction of 4-nitro phenol. Mater. Lett. 2024, 377, 137438. [Google Scholar] [CrossRef]
- Hossain, M.A.; AL-Raqmi, K.A.S.; AL-Mijizy, Z.H.; Weli, A.M.; Al-Riyami, Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac. J. Trop. Biomed. 2013, 3, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, B.; Lopes, R.; Andrade, P.B.; Seabra, R.M.; Gonçalves, R.F.; Baptista, P.; Quelhas, I. Comparative study of phytochemicals and antioxidant potential of wild edible mushroom caps and stipes. Food Chem. 2008, 110, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Godlewska, K.; Pacyga, P.; Szumny, A.; Szymczycha-Madeja, A.; Wełna, M.; Michalak, I. Methods for Rapid Screening of Biologically Active Compounds Present in Plant-Based Extracts. Molecules 2022, 27, 7094. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.M.; Redha, A.A.; Mandeel, Q. Phytochemical Investigations of Pomegranate (Punica granatum) Rind and Aril Extracts and their Antioxidant, Antidiabetic and Antibacterial Activity. Nat. Prod. Chem. Res. 2018, 6, 332. [Google Scholar]
- Sreedevi, P.; Vijayalakshmi, K.; Venkateswari, R. Phytochemical evaluation of Punica granatum L. leaf extract. Int. J. Curr. Pharm. Res. 2017, 9, 14–18. [Google Scholar] [CrossRef]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Chem. Technol. Metall. 2005, 40, 255–260. [Google Scholar]
- García-Cruz, L.; Dueñas, M.; Santos-Buelgas, C.; Valle-Guadarrama, S.; Salinas-Moreno, Y. Betalains and phenolic compounds profiling and antioxidant capacity of pitaya (Stenocereus spp.) fruit from two species (S. Pruinosus and S. stellatus). Food Chem. 2017, 234, 111–118. [Google Scholar] [CrossRef]
- Oesterle, I.; Pretzler, M.; Rompel, A.; Warth, B. Comprehensive polyphenolic profiling of nine distinct plants and edible mushrooms by targeted and untargeted LC-(HR) MS (/MS). Microchem. J. 2024, 200, 110358. [Google Scholar] [CrossRef]
- Padilla-Camberos, E.; Sanchez-Hernandez, I.M.; Torres-Gonzalez, O.R.; Ramirez-Rodriguez, P.; Diaz, E.; Wille, H.; Flores-Fernandez, J.M. Biosynthesis of silver nanoparticles using Stenocereus queretaroensis fruit peel extract: Study of antimicrobial activity. Materials 2021, 14, 4543. [Google Scholar] [CrossRef]
- Ugwoke, E.; Aisida, S.O.; Mirbahar, A.A.; Arshad, M.; Ahmad, I.; Zhao, T.K.; Ezema, F.I. Concentration induced properties of silver nanoparticles and their antibacterial study. J. Surf. Interfac. 2020, 18, 100419. [Google Scholar] [CrossRef]
- Zayed, M.F.; Mahfoze, R.A.; El-Kousy, S.M.; Al-Ashkar, E.A. In-Vitro Antioxidant and Antimicrobial Activities of Metal Nanoparticles Biosynthesized Using Optimized Pimpinella anisum Extract. Colloids Surf. A 2020, 585, 124167. [Google Scholar] [CrossRef]
- Prajapat, K.; Mahajan, U.; Dhonde, M.; Sahu, K.; Shirage, P.M. Synthesis and characterization of TiO2 nanoparticles: Unraveling the influence of copper doping on structural, surface morphology, and optical properties. Chem. Phys. Impact 2024, 8, 100607. [Google Scholar] [CrossRef]
- Ghasemi, S.; Dabirian, S.; Kariminejad, F.; Koohi, D.E.; Nemattalab, M.; Majidimoghadam, S.; Yousefbeyk, F. Process optimization for green synthesis of silver nanoparticles using Rubus discolor leaves extract and its biological activities against multi-drug resistant bacteria and cancer cells. Sci. Rep. 2024, 14, 4130. [Google Scholar] [CrossRef]
- Yarrappagaari, S.; Gutha, R.; Narayanaswamy, L.; Thopireddy, L.; Benne, L.; Mohiyuddin, S.S.; Vijayakumar, V.; Saddala, R.R. Eco-friendly synthesis of silver nanoparticles from the whole plant of Cleome viscosa and evaluation of their characterization, antibacterial, antioxidant and antidiabetic properties. Saudi J. Biol. Sci. 2020, 27, 3601–3614. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Garcia, S.N.; Garcia-Mier, L.; Ramirez-Gomez, X.S.; Aguirre-Becerra, H.; Escobar-Ortiz, A.; Contreras-Medina, L.M.; Feregrino-Perez, A.A. Pitahaya peel: A by-product with great phytochemical potential, biological activity, and functional application. Molecules 2022, 27, 5339. [Google Scholar] [CrossRef] [PubMed]
- Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food. Official Mexican Standard NOM-062-ZOO-1999. 2001. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (accessed on 13 December 2023).
- Padilla-Camberos, E.; Juárez-Navarro, K.J.; Sanchez-Hernandez, I.M.; Torres-Gonzalez, O.R.; Flores-Fernandez, J.M. Toxicological evaluation of silver nanoparticles synthesized with peel extract of Stenocereus queretaroensis. Materials 2022, 15, 5700. [Google Scholar] [CrossRef] [PubMed]
- Flores-Fernández, J.M.; Barragán-Álvarez, C.P.; Díaz-Martínez, N.E.; Villanueva-Rodríguez, S.; Padilla-Camberos, E. In vitro and In vivo Postprandial Glycemic Activity of Citrus limetta Peel Flour. Pharmacogn. Mag. 2017, 13, 613–616. [Google Scholar] [CrossRef]
- Sher, A.; Tsai, T.C.; Sohail, A.; Alouffi, A.; Almutairi, M.M.; Wadood, A.; Rehman, G. Green synthesis of silver nanoparticles and characterization using Asparagus officinalis: Elucidation of Antidiabetic potentials through In-Silico, In-Vitro, and In-Vivo Analyses. Green Chem. Lett. Rev. 2025, 18, 2479589. [Google Scholar] [CrossRef]
- Tahir, H.; Rashid, F.; Ali, S.; Summer, M.; Afzal, M. Synthesis, Characterization, Phytochemistry, and Therapeutic Potential of Azadirachta indica Conjugated Silver Nanoparticles: A Comprehensive Study on Antidiabetic and Antioxidant Properties. Biol. Trace Elem. Res. 2025, 203, 2170–2185. [Google Scholar] [CrossRef]
- Hosen, M.E.; Rahman, M.A.; Rahman, M.S.; Akash, S.; Khalekuzzaman, M.; Alsahli, A.A.; Bourhia, M.; Nafidi, H.A.; Islam, M.A.; Zaman, R. Synthesis of Silver Nanoparticles Using Camellia sinensis Leaf Extract: Promising Particles for the Treatment of Cancer and Diabetes. Chem. Biodivers. 2024, 21, e202301661. [Google Scholar] [CrossRef] [PubMed]
Qualitative Analysis | |
---|---|
Glucosides | − |
Alkaloids | − |
Triterpenoids | − |
Tannins | + |
Sterols | + |
Saponins | + |
Phenolic compounds | + |
Flavonoids | + |
Quantitative Analysis | |
---|---|
Phenolic compounds | 172.81 µg GAE/mL |
Flavonoids | 202 µg QE/mL |
Sample | Absorption Band | Functional Group |
---|---|---|
S. queretaroensis flower extract and SAgNPs | 3451 | O-H |
1637 | Amide | |
2078 | Coupling |
IC50 (µg/mL) | ||
---|---|---|
Sample | Enzymes | |
α-amylase | α-glucosidase | |
SAgNPs | 4.92 | 0.68 |
Acarbose | 1.38 | 1.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Garibay, A.S.; Sánchez-Hernández, I.M.; Torres-González, O.R.; Hernández-Aviña, A.D.S.; Villarreal-Amézquita, A.A.; Padilla-Camberos, E. Antidiabetic Activity of Silver Nanoparticles Biosynthesized with Stenocereus queretaroensis Flower Extract. Pharmaceuticals 2025, 18, 1310. https://doi.org/10.3390/ph18091310
González-Garibay AS, Sánchez-Hernández IM, Torres-González OR, Hernández-Aviña ADS, Villarreal-Amézquita AA, Padilla-Camberos E. Antidiabetic Activity of Silver Nanoparticles Biosynthesized with Stenocereus queretaroensis Flower Extract. Pharmaceuticals. 2025; 18(9):1310. https://doi.org/10.3390/ph18091310
Chicago/Turabian StyleGonzález-Garibay, Angélica Sofía, Iván Moisés Sánchez-Hernández, Omar Ricardo Torres-González, Ana Del Socorro Hernández-Aviña, Ariadna Abigail Villarreal-Amézquita, and Eduardo Padilla-Camberos. 2025. "Antidiabetic Activity of Silver Nanoparticles Biosynthesized with Stenocereus queretaroensis Flower Extract" Pharmaceuticals 18, no. 9: 1310. https://doi.org/10.3390/ph18091310
APA StyleGonzález-Garibay, A. S., Sánchez-Hernández, I. M., Torres-González, O. R., Hernández-Aviña, A. D. S., Villarreal-Amézquita, A. A., & Padilla-Camberos, E. (2025). Antidiabetic Activity of Silver Nanoparticles Biosynthesized with Stenocereus queretaroensis Flower Extract. Pharmaceuticals, 18(9), 1310. https://doi.org/10.3390/ph18091310