Therapeutic Potential of Natural Xanthones Against Prostate Adenocarcinoma: A Comprehensive Review of Research Trends During the Last Ten Years (2014–2024)
Abstract
1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Information Sources and Searches
2.3. Major Selection or Study Choices
2.4. Data Collection and Methodological Quality Assessment
3. Results
3.1. Characteristics of Results from Literature Search
3.2. Simple Oxygenated Xanthones
3.3. Prenylated Xanthones
3.4. Caged-Prenylated Xanthones
3.5. Neo Caged-Prenylated Xanthones
3.6. Pyranoxanthones
4. Discussion
4.1. Discussion and Structure–Activity Relationships (SARs) of Plant-Derived Bioactive Xanthones Against PC-3 and WPMY-1 During the Past Ten Years
4.1.1. Downregulation of Hormone-Dependent Prostate Cancer by Xanthones
4.1.2. Discussion and Structure–Activity Relationships (SARs)
4.2. Limitations
4.3. Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rebello, R.J.; Oing, C.; Knudsen, K.E.; Loeb, S.; Johnson, D.C.; Reiter, R.E.; Gillessen, S.; Van der Kwast, T.; Bristow, R.G. Prostate cancer. Nat. Rev. Dis. Primers 2021, 7, 9. [Google Scholar] [CrossRef]
- Attard, G.; Parker, C.; Eeles, R.A.; Schröder, F.; Tomlins, S.A.; Tannock, I.; Drake, C.G.; DeBono, J.S. Prostate cancer. Lancet 2016, 387, 70–82. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA A Cancer J. Clin. 2018, 1, 7–30. [Google Scholar] [CrossRef]
- James, L.; Noor, M.; Halim, A.; Fox, C. Students’ perceptions and experiences of taking a Leave of Absence (LOA) during their degree. Open Scholarsh. Teach. Learn. 2024, 2, 102–119. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 6, 394–424. [Google Scholar] [CrossRef]
- Tabakam, T.G.; Makhafola, T.J. Plant-Derived Alkaloids as a Potential Source of Treatment for Colorectal Cancer over the Past Five Years: A Comprehensive Review. Plants 2024, 19, 2723. [Google Scholar] [CrossRef]
- Teixeira, T.; Kweder, S.L.; Saint-Raymond, A. Are the European Medicines Agency, US Food and Drug Administration, and Other International Regulators Talking to Each Other? Clin. Pharmacol. Ther. 2020, 3, 507–513. [Google Scholar] [CrossRef]
- Potts, J.; Genov, G.; Segec, A.; Raine, J.; Straus, S.; Arlett, P. Improving the Safety of Medicines in the European Union: From Signals to Action. Clin. Pharmacol. Ther. 2020, 3, 521–529. [Google Scholar] [CrossRef]
- Emons, G. Hormone-Dependent Cancers: Molecular Mechanisms and Therapeutical Implications. Cells 2023, 12, 110. [Google Scholar] [CrossRef]
- Xu, Q.; Ma, J.; Lei, J.; Duan, W.; Sheng, L.; Chen, X.; Hu, A.; Wang, Z.; Wu, Z.; Wu, E.; et al. α-Mangostin suppresses the viability and epithelial-mesenchymal transition of pancreatic cancer cells by downregulating the PI3K/Akt pathway. BioMed Res. Int. 2014, 2014, 546353. [Google Scholar] [CrossRef]
- Luo, M.; Liu, Q.; He, M.; Yu, Z.; Pi, R.; Li, M.; Yang, X.; Wang, S.; Liu, A. Gartanin induces cell cycle arrest and autophagy and suppresses migration involving PI3K/Akt/mTOR and MAPK signalling pathway in human glioma cells. J. Cell. Mol. Med. 2017, 21, 46–57. [Google Scholar] [CrossRef]
- Yu, X.J.; Han, Q.B.; Wen, Z.S.; Ma, L.; Gao, J.; Zhou, G.B. Gambogenic acid induces G1 arrest via GSK3beta-dependent cyclin D1 degradation and triggers autophagy in lung cancer cells. Cancer Lett. 2012, 322, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.J.; Petiwala, S.M.; Syed, D.N.; Rasmussen, J.T.; Adhami, V.M.; Siddiqui, I.A.; Kohl, A.M.; Mukhtar, H. α-Mangostin, a xanthone from mangosteen fruit, promotes cell cycle arrest in prostate cancer and decreases xenograft tumor growth. Carcinogenesis 2012, 33, 413–419. [Google Scholar] [CrossRef]
- Hung, S.H.; Shen, K.H.; Wu, C.H.; Liu, C.L.; Shih, Y.W. Alpha-mangostin suppresses PC-3 human prostate carcinoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen expression through the JNK signaling pathway. J. Agric. Food Chem. 2009, 57, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.H.; Chen, C.W.; Yu, P.L.; Lin, Y.L.; Hsieh, R.H. Mangosteen pericarp components alleviate progression of prostatic hyperplasia and mitochondrial dysfunction in rats. Sci. Rep. 2020, 10, 322. [Google Scholar] [CrossRef]
- Li, G.; Petiwala, S.M.; Yan, M.; Won, J.H.; Petukhov, P.A.; Johnson, J.J. Gartanin, an isoprenylated xanthone from the mangosteen fruit (Garcinia mangostana), is an androgen receptor degradation enhancer. Mol. Nutr. Food Res. 2016, 60, 1458–1469. [Google Scholar] [CrossRef]
- Vemu, B.; Nauman, M.C.; Veenstra, J.P.; Johnson, J.J. Structure activity relationship of xanthones for inhibition of Cyclin Dependent Kinase 4 from mangosteen (Garcinia mangostana L.). Int. J. Nutr. 2019, 4, 38–45. [Google Scholar] [CrossRef]
- Li, G.; Petiwala, S.M.; Nonn, L.; Johnson, J.J. Inhibition of CHOP accentuates the apoptotic effect of α-mangostin from the mangosteen fruit (Garcinia mangostana) in 22Rv1 prostate cancer cells. Biochem. Biophys. Res. Commun. 2014, 453, 75–80. [Google Scholar] [CrossRef]
- Li, G.; Thomas, S.; Johnson, J.J. Polyphenols from the mangosteen (Garcinia mangostana) fruit for breast and prostate cancer. Front. Pharmacol. 2013, 4, 80. [Google Scholar] [CrossRef]
- Oriola, A.O.; Kar, P. Naturally Occurring Xanthones and Their Biological Implications. Molecules 2024, 17, 4241. [Google Scholar] [CrossRef]
- de Medeiros, J.V.A.; Kokubum, M.; de Sousa, J.D. Pseudoboa nigra. (Black False Boa). DIET. Herpetol. Rev. 2021, 3, 1–3. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B.; Blunt, H.; Brigham, T.; Chang, S.; et al. PRISMA-S: An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Fomani, M.; Happi, E.N.; Francois-hugues, P. A prenylated acridone alkaloid and ferulate xanthone from barks of Citrus medica (Rutaceae). Z. Naturforschung B 2015, 4, 71–75. [Google Scholar] [CrossRef]
- Dar, A.A.; Dangroo, N.A.; Raina, A.; Qayum, A.; Singh, S.; Kumar, A.; Sangwan, P.L. Biologically active xanthones from Codonopsis ovata. Phytochemistry 2016, 132, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Fu, W.; Wu, R.; Tan, H.; Shen, Z.; Xu, H. Bioassay-Guided Isolation of Prenylated Xanthone Derivatives from the Leaves of Garcinia oligantha. J. Nat. Prod. 2016, 79, 1752–1761. [Google Scholar] [CrossRef]
- Dar, A.A.; Sangwan, P.L.; Khan, I.; Gupta, N.; Qaudri, A.; Tasduq, S.A.; Kitchlu, S.; Kumar, A.; Koul, S. Simultaneous quantification of eight bioactive secondary metabolites from Codonopsis ovata by validated high performance thin layer chromatography and their antioxidant profile. J. Pharm. Biomed. Anal. 2014, 100, 300–308. [Google Scholar] [CrossRef]
- Zhang, B.; Fu, W.; Wu, R.; Yang, J.; Yao, C.; Yan, B.; Tan, H.; Zheng, C.; Song, Z.; Xu, H. Bioactive scalemic caged xanthones from the leaves of Garcinia bracteata. Bioorg. Chem. 2019, 82, 274–283. [Google Scholar] [CrossRef]
- Zhang, B.J.; Fu, W.W.; Wu, R.; Yang, J.L.; Yao, C.Y.; Yan, B.X.; Tan, H.S.; Zheng, C.W.; Song, Z.J.; Xu, H.X. Cytotoxic prenylated xanthones from the leaves of Garcinia bracteata. Planta Medica 2019, 6, 444–452. [Google Scholar] [CrossRef]
- Chukaew, A.; Saithong, S.; Chusri, S.; Limsuwan, S.; Watanapokasin, R.; Voravuthikunchai, S.P.; Chakthong, S. Phytochemistry Cytotoxic xanthones from the roots of Mesua ferrea L. Phytochemistry 2019, 157, 64–70. [Google Scholar] [CrossRef]
- Jia, C.; Gong, C.; Chen, H.; Pu, J.; Li, D.; Li, Z.; Hua, H. A pair of new enantiomers of xanthones from the stems and leaves of Cratoxylum cochinchinense. Chin. Med. 2019, 14, 14. [Google Scholar] [CrossRef]
- Jia, C.; Cui, X.J.; Jing, G.C.; Li, X.; Li, D.H.; Li, Z.L.; Hua, H.M. Chiral resolution and anticancer effect of xanthones from Garcinia paucinervis. Fitoterapia 2018, 127, 220–225. [Google Scholar] [CrossRef]
- Shakui, T.; Iguchi, K.; Ito, T.; Baba, M.; Usui, S.; Oyama, M.; Tosa, H.; Iinuma, M.; Hirano, K. Anti-androgenic activity of hydroxyxanthones in prostate cancer LNCaP cells. Fitoterapia 2014, 1, 9–15. [Google Scholar] [CrossRef] [PubMed]
- El-Seedi, H.; El-Barbary, M.; El-Ghorab, D.; Bohlin, L.; Borg-Karlson, A.K.; Göransson, U.; Verpoorte, R. Recent insights into the biosynthesis and biological activities of natural xanthones. Curr. Med. Chem. 2010, 17, 854–901. [Google Scholar] [CrossRef]
- Kuete, V.; Efferth, T. African flora has the potential to fight multidrug resistance of cancer. BioMed Res. Int. 2015, 2015, 914813. [Google Scholar] [CrossRef] [PubMed]
- Vieira, L.M.M.; Kijjoa, A. Naturally-Occurring Xanthones: Recent Developments. Curr. Med. Chem. 2005, 12, 2413–2446. [Google Scholar] [CrossRef] [PubMed]
- Savadogo, O.; Mandal, K.C. Studies on new chemically deposited photoconducting antimony trisulphide thin films. Sol. Energy Mater. Sol. Cells 1992, 26, 117–136. [Google Scholar] [CrossRef]
- Sultanbawa, M.U.S. Xanthonoids of tropical plants. Tetrahedron 1980, 11, 1465–1506. [Google Scholar] [CrossRef]
- Elix, J.A.; Gaul, K.L.; Thorsten Lumbsch, H. Isolation of a novel lichen xanthone from the genus Diploschistes s. lat. Aust. J. Chem. 1987, 5, 1031–1033. [Google Scholar] [CrossRef]
- Wolfender, J.L.; Hamburger, M.; Msonthi, J.D.; Hostettmann, K. Xanthones from Chironia krebsii. Planta Medica 1991, 57 (Suppl. 2), 3625–3629. [Google Scholar] [CrossRef]
- Singh, S.; Gray, A.; Waterman, P.; Mesuabixanthone, A.; Mesuabixanthone, B. Novel B/S-Xanthones From The Stem Bark of Mesua ferrea (Guttiferae). Nat. Product. Lett. 1993, 1, 53–58. [Google Scholar] [CrossRef]
- de Oliveira, W.G.; Mesquita, A.A.L.; Kubitzki, K.; Gottlieb, O.R. Xanthones from Bonnetia dinizii. Phytochemistry 1990, 29, 1893–1894. [Google Scholar] [CrossRef]
- Poobrasert, O.; Constant, H.L.; Beecher, C.W.W.; Farnsworth, N.R.; Kinghorn, A.D.; Pezzuto, J.; Cordell, G.A.; Santisukt, T.; Reutrakul, V. Xanthones from the twigs of Mammea siamensis. Phytochemistry 1998, 8, 1661–1663. [Google Scholar] [CrossRef]
- Genovese, S.; Fiorito, S.; Taddeo, V.A.; Epifano, F. Recent developments in the pharmacology of prenylated xanthones. Drug Discov. Today 2016, 11, 1814–1819. [Google Scholar] [CrossRef]
- Shen, Y.C.; Wang, L.T.; Khalil, A.T.; Chiang, L.C.; Cheng, P.W. Bioactive pyranoxanthones from the roots of Calophyllum blancoi. Chem. Pharm. Bull. 2005, 2, 244–247. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, C.C.; Kawata, Y.; Hattori, M.; Namba, T. Prenylated xanthones from Cudrania cochinchinensis. Phytochemistry 1989, 10, 2823–2826. [Google Scholar] [CrossRef]
- Botta, B.; Delle Monache, G.; Delle Monache, F.; Bettolo, G.B.M.; Menichini, F. Vismione H and prenylated xanthones from Vismia guineensis. Phytochemistry 1986, 5, 1217–1219. [Google Scholar] [CrossRef]
- Govindachari, T.; Kalyanaraman, P.; Muthukumaraswamy, N.; Pai, B. Xanthones of Garcinia mangostana Linn. Tetrahedron 1971, 27, 3919–3926. [Google Scholar] [CrossRef]
- Deachathai, S.; Mahabusarakam, W.; Phongpaichit, S.; Taylor, W.C. Phenolic compounds from the fruit of Garcinia dulcis. Phytochemistry 2005, 19, 2368–2375. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.S.; Hou, A.J.; Zhu, G.F.; Chen, Y.F.; Sun, H.D.; Zhao, Q.S. Cytotoxic isoprenylated xanthones from Cudrania tricuspidata. Bioorg. Med. Chem. 2004, 8, 1947–1953. [Google Scholar] [CrossRef]
- Iinuma, M.; Tosa, H.; Tanaka, T.; Asai, F.; Kobayashi, Y.; Shimano, R.; Miyauchi, K.I. Antibacterial activity of xanthones from guttiferaeous plants against methicillin-resistant Staphylococcus aureus. J. Pharm. Pharmacol. 1996, 8, 861–865. [Google Scholar] [CrossRef]
- Mahabusarakam, W.; Nuangnaowarat, W.; Taylor, W.C. Xanthone derivatives from Cratoxylum cochinchinense roots. Phytochemistry 2005, 5, 470–474. [Google Scholar] [CrossRef]
- Raksat, A.; Sripisut, T.; Maneerat, W. Bioactive xanthones from Cratoxylum cochinchinense. Nat. Product. Commun. 2015, 11, 1969–1972. [Google Scholar] [CrossRef]
- Rukachaisirikul, V.; Naklue, W.; Phongpaichit, S.; Towatana, N.H.; Maneenoon, K. Phloroglucinols, depsidones and xanthones from the twigs of Garcinia parvifolia. Tetrahedron 2006, 36, 8578–8585. [Google Scholar] [CrossRef]
- Schmidt, W.; Abd el-Mawla, A.M.; Wolfender, J.L.; Hostettmann, K.; Beerhues, L. Xanthones in cell cultures of Hypericum androsaemum. Planta Medica 2000, 4, 380–381. [Google Scholar] [CrossRef]
- Monache, G.D.; Monache, D.; Waterman, P.G.; Crichton, E.G. Minor xanthones from Rheedia gardneriana. Phytochemistry 1984, 8, 1757–1759. [Google Scholar] [CrossRef]
- Hu, G.; Zhang, Z.; Yang, P.; Zhang, Q.; Yuan, C. Development of microsatellite markers in Garcinia paucinervis (Clusiaceae), an endangered species of karst habitats. Appl. Plant Sci. 2017, 5, apps.1600131. [Google Scholar] [CrossRef]
- Iinuma, M.; Tosa, H.; Tanaka, T.; Asai, F.; Shimano, R. Three xanthones from root bark of Garcinia subelliptica. Phytochemistry 1995, 1, 247–249. [Google Scholar] [CrossRef]
- Nauman, M.C.; Tocmo, R.; Vemu, B.; Veenstra, J.P.; Johnson, J.J. Inhibition of CDK2/CyclinE1 by xanthones from the mangosteen (Garcinia mangostana): A structure-activity relationship study. Nat. Product. Res. 2021, 23, 5429–5433. [Google Scholar] [CrossRef]
- Asano, J.; Chiba, K.; Tada, M.; Yoshii, T. Cytotoxic xanthones from Garcinia hanburyi. Phytochemistry 1996, 3, 815–820. [Google Scholar] [CrossRef]
- Batova, A.; Lam, T.; Wascholowski, V.; Yu, A.L.; Giannis, A.; Theodorakis, E.A. Synthesis and evaluation of caged Garcinia xanthones. Org. Biomol. Chem. 2007, 3, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Anantachoke, N.; Tuchinda, P.; Kuhakarn, C.; Pohmakotr, M.; Reutrakul, V. Prenylated caged xanthones: Chemistry and biology. Pharm. Biol. 2012, 1, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.G.; Sng, V.H.L.; Wu, X.H.; Sim, K.Y.; Tan, B.H.K.; Pereira, J.T.; Goh, S.H. Novel cytotoxic polyprenylated xanthonoids from Garcinia gaudichaudii (Guttiferae). Tetrahedron 1998, 36, 10915–10924. [Google Scholar] [CrossRef]
- Shadid, K.A.; Shaari, K.; Abas, F.; Israf, D.A.; Hamzah, A.S.; Syakroni, N.; Saha, K.; Lajis, N.H. Cytotoxic caged-polyprenylated xanthonoids and a xanthone from Garcinia cantleyana. Phytochemistry 2007, 20, 2537–2544. [Google Scholar] [CrossRef]
- Ren, Y.; Matthew, S.; Lantvit, D.D.; Ninh, T.N.; Chai, H.; Fuchs, J.R.; Soejarto, D.D.; De Blanco, E.J.C.; Swanson, S.M.; Kinghorn, A.D. Cytotoxic and NF-κB inhibitory constituents of the stems of Cratoxylum cochinchinense and their semisynthetic analogues. J. Nat. Prod. 2011, 5, 1117–1125. [Google Scholar] [CrossRef]
- Thoison, O.; Fahy, J.; Dumontet, V.; Chiaroni, A.; Riche, C.; Van Tri, M.; Sévenet, T. Cytotoxic prenylxanthones from Garcinia bracteata. J. Nat. Prod. 2000, 4, 441–446. [Google Scholar] [CrossRef]
- Niu, S.L.; Li, D.H.; Li, X.Y.; Wang, Y.T.; Li, S.G.; Bai, J.; Pei, Y.H.; Jing, Y.K.; Li, Z.L.; Hua, H.M. Bioassay- and Chemistry-Guided Isolation of Scalemic Caged Prenylxanthones from the Leaves of Garcinia bracteata. J. Nat. Prod. 2018, 4, 749–757. [Google Scholar] [CrossRef]
- Harrison, L.J.; Leong, L.S.; Sia, G.L.; Sim, K.Y.; Tan, H.T.W. Xanthones from Garcinia forbesii. Phytochemistry 1993, 3, 727–728. [Google Scholar] [CrossRef]
- Shen, T.; Li, W.; Wang, Y.Y.; Zhong, Q.Q.; Wang, S.Q.; Wang, X.N.; Ren, D.M.; Lou, H.X. Antiproliferative activities of Garcinia bracteata extract and its active ingredient, isobractatin, against human tumor cell lines. Arch. Pharm. Res. 2014, 37, 412–420. [Google Scholar] [CrossRef]
- Na, Z.; Hu, H.B.; Fan, Q.F. A novel caged-prenylxanthone from Garcinia bracteata. Chin. Chem. Lett. 2010, 4, 443–445. [Google Scholar] [CrossRef]
- Denisova-Dyatlova, O.A.; Glyzin, V.I. Natural Xanthones. Russ. Chem. Rev. 1982, 10, 1007–1019. [Google Scholar] [CrossRef]
- Boonnak, N.; Karalai, C.; Chantrapromma, S.; Ponglimanont, C.; Kanjana-Opas, A.; Chantrapromma, K.; Kato, S. Chromene and prenylated xanthones from the roots of Cratoxylum formosum ssp. pruniflorum. Chem. Pharm. Bull. 2010, 3, 386–389. [Google Scholar] [CrossRef]
- Li, G.; Petiwala, S.M.; Pierce, D.R.; Nonn, L.; Johnson, J.J. Selective modulation of endoplasmic reticulum stress markers in prostate cancer cells by a standardized mangosteen fruit extract. PLoS ONE 2013, 8, e81572. [Google Scholar] [CrossRef]
- Sarmento-Cabral, A.; L-López, F.; Gahete, M.D.; Castano, J.P.; Luque, R.M. Metformin Reduces Prostate Tumor Growth, in a Diet-Dependent Manner, by Modulating Multiple Signaling Pathways. Mol. Cancer Res. 2017, 15, 862–874. [Google Scholar] [CrossRef]
- Acuna, U.; Jancovski, N.; Kennelly, E. Polyisoprenylated Benzophenones from Clusiaceae: Potential Drugs and Lead Compounds. Curr. Top. Med. Chem. 2009, 16, 1560–1580. [Google Scholar] [CrossRef]
- Komguem, J.; Lannang, A.M.; Tangmouo, J.G.; Louh, G.N.; Ngounou, F.N.; Lontsi, M.D.I.C. NPC Natural Product. Communications 2010, 4, 9–12. [Google Scholar]
- Kaennakam, S.; Siripong, P.; Tip-Pyang, S. Kaennacowanols A–C, three new xanthones and their cytotoxicity from the roots of Garcinia cowa. Fitoterapia 2015, 102, 171–176. [Google Scholar] [CrossRef]
- Ruan, J.; Zheng, C.; Liu, Y.; Qu, L.; Yu, H.; Han, L.; Zhang, Y.; Wang, T. Chemical and biological research on herbal medicines rich in xanthones. Molecules 2017, 10, 1698. [Google Scholar] [CrossRef]
Characteristics of Included Studies | ||||||
---|---|---|---|---|---|---|
Classes of Compounds | Xanthones | Plant Source (Family) | Year | Country | Type of Cancer Cells Lines | References |
Simple oxygenated xanthones | Medicaxanthone (1) | Citrus medica (Rutaceae) | 2015 | Cameroon | Human PC (PC-3) | [24] |
Coxanthone B (2) | Codonopsis ovata (Campanulaceae) | 2016 | India | Human PC (PC-3) | [25] | |
Prenylated xanthones | Oliganthin H (3) | Garcinia oligantha (Clusiaceae) | 2016 | China | Human PC (PC-3) | [26] |
Oliganthin I (4) | Garcinia oligantha (Clusiaceae) | 2016 | China | Human PC (PC-3) | [26] | |
Caged prenylated-xanthones | Oliganthone B (5) | Garcinia oligantha (Clusiaceae) | 2016 | China | Human PC (PC-3) | [26] |
Garcibractatin A (6) | Garcinia bracteate (Clusiaceae) | 2018 | China | - Human PC (PC-3) - Normal human cell line (WPMY-1) | [28] | |
Prenylated xanthones | Bracteaxanthone VII (7) | Garcinia bracteate (Clusiaceae) | 2018 | China | - Human PC (PC-3) - Normal human cell line (WPMY-1) | [29] |
Bracteaxanthone VIII (8) | Garcinia bracteate (Clusiaceae) | 2018 | China | Human PC (PC-3) | [29] | |
Paucinervin L (9) | Garcinia paucinervis (Clusiaceae) | 2018 | China | Human PC (PC-3) | [31] | |
Pyranoxanthones | (+) Paucinervin N (10) | Garcinia paucinervis (Clusiaceae) | 2018 | China | Human PC (PC-3) | [31] |
(−) Paucinervin N (11) | Garcinia paucinervis (Clusiaceae) | 2018 | China | Human PC (PC-3) | [31] | |
Prenylated xanthones | Paucinervin O (12) | Garcinia paucinervis (Clusiaceae) | 2018 | China | Human PC (PC-3) | [31] |
Paucinervin P (13) | Garcinia paucinervis (Clusiaceae) | 2018 | China | Human PC (PC-3) | [31] | |
Simple oxygenated xanthones | Lichenxanthone (14) | Citrus medica (Rutaceae) | 2015 | Cameroon | Human PC (PC-3) | [24] |
Swertiperenine (15) | Codonopsis ovata (Campanulaceae) | 2016 | India | Human PC (PC-3) | [25,27] | |
1,7,8-Trihydroxy-3-methoxy-xanthone (16) | Codonopsis ovata (Campanulaceae) | 2016 | India | Human PC (PC-3) | [25] | |
Caged prenylated-xanthones | Gaudichaudione H (17) | Garcinia oligantha (Clusiaceae) | 2016 | China | Human PC (PC-3) | [26] |
Cantleyanone A (18) | Garcinia oligantha (Clusiaceae) | 2016 | China | Human PC (PC-3) | [26] | |
Cochinchinoxanthone (19) | Garcinia bracteate (Clusiaceae) | 2018 | China | Human PC (PC-3) | [29] | |
Bractatin (20) | Garcinia bracteate (Clusiaceae) | 2018 | China | Human PC (PC-3) | [29] | |
Caged prenylated-xanthones | 1-O-methylbractatin (21) | Garcinia bracteate (Clusiaceae) | 2018 | China | - Normal human cell line (WPMY-1) | [29] |
Isobractatin (22) | Garcinia bracteate (Clusiaceae) | 2018 | China | Human PC (PC-3) | [29] | |
1-O-methylisobractatin (23) | Garcinia bracteate (Clusiaceae) | 2018 | China | Human PC (PC-3) | [28] | |
Epiisobractatin (24) | Garcinia bracteate (Clusiaceae) | 2018 | China | Human PC (PC-3) | [28] | |
Forbesione (25) | Garcinia bracteate (Clusiaceae) | 2018 | China | Human PC (PC-3) | [28] | |
Isoforbesione (26) | Garcinia bracteate (Clusiaceae) | 2018 | China | Human PC (PC-3) | [28] | |
Neo-caged prenylated-xanthones | Neobractatin (27) | Garcinia bracteate (Clusiaceae) | 2018 | China | Human PC (PC-3) | [28] |
3-O-methyl-neobractatin (28) | Garcinia bracteate (Clusiaceae) | 2018 | China | Human PC (PC-3) | [28] | |
Prenylated xanthones | Gartanin (29) | Garcinia bracteate (Clusiaceae) | 2018 | China | - Human PC (PC-3) - Normal human cell line (WPMY-1) | [28] |
3-Hydroxyblanco-xanthone (30) | Garcinia bracteate (Clusiaceae) | 2018 | China | - Human PC (PC-3) - Normal human cell line (WPMY-1) | [28] | |
Xanthone V1 (31) | Garcinia bracteate (Clusiaceae) | 2018 | China | - Human PC (PC-3) - Normal human cell line (WPMY-1) | [28] | |
Gerontoxanthone I (32) | Garcinia bracteate (Clusiaceae) | 2018 | China | - Human PC (PC-3) - Normal human cell line (WPMY-1) | [28] | |
Xanthone V1a (33) | Garcinia bracteate (Clusiaceae) | 2018 | China | - Human PC (PC-3) - Normal human cell line (WPMY-1) | [28] | |
Simple oxygenated xanthones | 1,5,6-trihydroxyxanthone (34) | Mesua ferrea (Calophyllaceae) | 2019 | Thailand | Human PC (PC-3) | [30] |
Simple oxygenated xanthones | 1,5-dihydroxy-6-methoxyxanthone (35) | Mesua ferrea (Calophyllaceae) | 2019 | Thailand | Human PC (PC-3) | [30] |
5-hydroxy-1-methoxyxanthone (36) | Mesua ferrea (Calophyllaceae) | 2019 | Thailand | Human PC (PC-3) | [30] | |
5-hydroxy-1,3-dimethoxyxanthone (37) | Mesua ferrea (Calophyllaceae) | 2019 | Thailand | Human PC (PC-3) | [30] | |
Prenylated xanthones | Dulcisxanthone B (38) | Cratoxylum cochinchinense Blume (Clusiaceae) | 2019 | China | Human PC (PC-3) | [31] |
Cudratricusxanthone E (39) | Cratoxylum cochinchinense Blume (Clusiaceae) | 2019 | China | Human PC (PC-3) | [31] | |
γ-Mangostin (40) | Cratoxylum cochinchinense Blume (Clusiaceae) | 2019 | China | Human PC (PC-3) | [31] | |
Prenylated xanthones | 1,3,7-trihydroxy-2,4-Diisoprenylxanthone (41) | Cratoxylum cochinchinense Blume (Clusiaceae) | 2019 | China | Human PC (PC-3) | [31] |
Cochinchinone A (42) | Cratoxylum cochinchinense Blume (Clusiaceae) | 2019 | China | Human PC (PC-3) | [31] | |
Cochinchinone B (43) | Cratoxylum cochinchinense Blume (Clusiaceae) | 2019 | China | Human PC (PC-3) | [31] | |
Pruniflorone Q (44) | Cratoxylum cochinchinense Blume (Clusiaceae) | 2019 | China | Human PC (PC-3) | [31] | |
Pyranoxanthone | Pruniflorone N (45) | Cratoxylum cochinchinense Blume (Clusiaceae) | 2019 | China | Human PC (PC-3) | [31] |
Prenylated xanthones | Xanthone V1 (46) | Cratoxylum cochinchinense Blume (Clusiaceae) | 2019 | China | Human PC (PC-3) | [31] |
Prenylated xanthones | Parvifolixanthone A (47) | Garcinia paucinervis (Clusiaceae) | 2018 | China | Human PC (PC-3) | [32] |
2-prenyl-1,3,5,6-tetrahydroxylxanthone (48) | Garcinia paucinervis (Clusiaceae) | 2018 | China | Human PC (PC-3) | [32] | |
7-prenyljacareubin (49) | Garcinia paucinervis (Clusiaceae) | 2018 | China | Human PC (PC-3) | [32] | |
Paucinervin I (50) | Garcinia paucinervis (Clusiaceae) | 2018 | China | Human PC (PC-3) | [32] | |
Subelliptenones F (51) | Garcinia subelliptica (Clusiaceae) | 2014 | Japan | Human PC (LNCaP) | [33] |
Compounds | Mechanism of Action | Cell Lines | Targets | References |
---|---|---|---|---|
Isobractatin (22) | Enhancement of the cell apoptosis, and arrested cell cycle in the G0/G1 phase. | Human prostate cancer (PC-3) | ↓ Cyclin D1 and E, ↑ CDK, ↑ P21, ↑ Bax, ↑ Caspase 3 and 9, ↓ Bcl-2. | [69] |
γ-Mangostin (40) | Promote cell cycle arrest and apoptosis. | Human prostate carcinoma epithelial cell line (22Rv1) | ↓ CDK2/CyclinE1 | [59] |
Classes of Compounds | Name of Compounds | Molecular Formula | Molecular Mass (Cal.) |
---|---|---|---|
Oxygenated-xanthones | Medicaxanthone (1) | C47H66O8 | 758.4758 |
Coxanthone B (2) | C19H20O6 | 344.1260 | |
Lichenxanthone (14) | C16H14O5 | 286.0841 | |
Swertiperenine (15) | C15H12O6 | 288.0634 | |
1,7,8-Trihydroxy-3-methoxy-xanthone (16) | C14H10O6 | 275.0477 | |
1,5,6-trihydroxyxanthone (34) | C29H34O6 | 244.0372 | |
1,5-dihydroxy-6-methoxyxanthone (35) | C14H10O5 | 258.0528 | |
5-hydroxy-1-methoxyxanthone (36) | C14H10O4 | 242.0579 | |
5-hydroxy-1,3-dimethoxyxanthone (37) | C15H12O5 | 272.0685 | |
Prenylated-xanthones | Oliganthin H (3) | C33H38O7 | 546.2618 |
Oliganthin I (4) | C28H30O7 | 478.1992 | |
Bracteaxanthone VII (7) | C27H26O6 | 410.1729 | |
Bracteaxanthone VIII (8) | C23H24O6 | 396.1573 | |
Paucinervin L (9) | C29H32O7 | 492.2148 | |
Paucinervin O (12) | C23H22O6 | 394.1416 | |
Paucinervin P (13) | C25H24O6 | 420.1573 | |
Gartanin (29) | C23H24O6 | 396.1573 | |
3-Hydroxyblanco-xanthone (30) | C23H22O6 | 394.1416 | |
Xanthone V1 (31) | C23H22O6 | 394.4230 | |
Gerontoxanthone I (32) | C23H24O6 | 396.1576 | |
Xanthone V1a (33) | C23H24O6 | 396.1573 | |
Dulcisxanthone B (38) | C24H26O6 | 410.1729 | |
Prenylated-xanthones | Cudratricusxanthone E (39) | C23H24O6 | 396.1573 |
γ-Mangostin (40) | C23H24O6 | 396.1573 | |
1,3,7-trihydroxy-2,4-diisoprenylxanthone (41) | C23H24O5 | 380.1624 | |
Cochinchinone A (42) | C28H32O5 | 448.2250 | |
Cochinchinone B (43) | C28H32O6 | 465.2199 | |
Pruniflorone Q (44) | C28H32O6 | 464.2199 | |
Xanthone V1 (46) | C23H22O6 | 394.1416 | |
Parvifolixanthone A (47) | C28H32O6 | 464.2199 | |
2-prenyl-1,3,5,6-tetrahydroxylxanthone (48) | C18H16O6 | 328.0947 | |
7-prenyljacareubin (49) | C23H22O6 | 394.1416 | |
Paucinervin I (50) | C23H22O6 | 394.1416 | |
Subelliptenones F (51) | C18H16O6 | 328.0947 | |
Caged-prenylated-xanthones | Oliganthone B (5) | C28H32O7 | 480.2148 |
Garcibractatin A (6) | C30H36O6 | 492.2512 | |
Gaudichaudione H (17) | C29H34O7 | 494.2305 | |
Cantleyanone A (18) | C34H42O7 | 562.2931 | |
Cochinchinoxanthone (19) | C23H24O6 | 396.1573 | |
Bractatin (20) | C28H32O6 | 464.2199 | |
1-O-methylbractatin (21) | C29H34O6 | 478.2355 | |
Isobractatin (22) | C28H32O6 | 464.2199 | |
1-O-methylisobractatin (23) | C29H34O6 | 478.2355 | |
Epiisobractatin (24) | C28H32O6 | 464.2199 | |
Forbesione (25) | C28H32O6 | 464.2199 | |
Isoforbesione (26) | C28H32O6 | 464.2199 | |
Neo-caged-prenylated-xanthones | Neobractatin (27) | C28H32O6 | 464.2199 |
3-O-methyl-neobractatin (28) | C29H34O6 | 478.2355 | |
Pyrano-xanthone | (+) Paucinervin N (10) | C23H22O8 | 426.1215 |
(–) Paucinervin N (11) | C23H22O6 | 394.1416 | |
Pruniflorone N (45) | C18H16O6 | 328.0947 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabakam, G.T.; Njoya, E.M.; Chukwuma, C.I.; Mashele, S.S.; Awouafack, M.D.; Makhafola, T.J. Therapeutic Potential of Natural Xanthones Against Prostate Adenocarcinoma: A Comprehensive Review of Research Trends During the Last Ten Years (2014–2024). Pharmaceuticals 2025, 18, 1197. https://doi.org/10.3390/ph18081197
Tabakam GT, Njoya EM, Chukwuma CI, Mashele SS, Awouafack MD, Makhafola TJ. Therapeutic Potential of Natural Xanthones Against Prostate Adenocarcinoma: A Comprehensive Review of Research Trends During the Last Ten Years (2014–2024). Pharmaceuticals. 2025; 18(8):1197. https://doi.org/10.3390/ph18081197
Chicago/Turabian StyleTabakam, Gaétan Tchangou, Emmanuel Mfotie Njoya, Chika Ifeanyi Chukwuma, Samson Sitheni Mashele, Maurice Ducret Awouafack, and Tshepiso Jan Makhafola. 2025. "Therapeutic Potential of Natural Xanthones Against Prostate Adenocarcinoma: A Comprehensive Review of Research Trends During the Last Ten Years (2014–2024)" Pharmaceuticals 18, no. 8: 1197. https://doi.org/10.3390/ph18081197
APA StyleTabakam, G. T., Njoya, E. M., Chukwuma, C. I., Mashele, S. S., Awouafack, M. D., & Makhafola, T. J. (2025). Therapeutic Potential of Natural Xanthones Against Prostate Adenocarcinoma: A Comprehensive Review of Research Trends During the Last Ten Years (2014–2024). Pharmaceuticals, 18(8), 1197. https://doi.org/10.3390/ph18081197