The Role of Dandelion (Taraxacum officinale) in Liver Health and Hepatoprotective Properties
Abstract
1. Introduction
2. Botanical, Ethnopharmacological, and Experimental Overview of Taraxacum officinale
2.1. Distribution, Habitat, and Botanical Description
2.2. History and Traditional Uses of T. officinale
2.3. Chemical Composition of T. officinale
2.4. In Vitro and In Vivo Evidence of T. officinale Biological Activities
2.5. T. officinale and Liver Pathologies
2.6. In Vivo Liver Studies of T. officinale Effects on Acute and Chronic Liver Disease
2.7. Impact on Metabolic-Related Liver Diseases
2.8. T. officinale Bioactive Compounds on Liver Pathologies
2.9. T. officinale in Liver Cancer
2.10. Safety Considerations, Contraindications, and Interactions of Taraxacum officinale
2.11. Limitations and Future Perspectives
3. Literature Search Strategy and Selection Criteria
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TA | Taraxasterol |
T. officinale | Taraxacum officinale |
WHO | World Health Organization |
Nrf2 | Nuclear factor erythroid 2–related factor 2 |
NF-κB/NF-kB | Nuclear factor kappa B/Nuclear factor kappa-light-chain-enhancer of activated B cells |
PTBP1 | Polypyrimidine tract-binding protein 1 |
SIRT1 | Sirtuin-1 NAD-dependent deacetylase |
ROS | Reactive oxygen species |
TNF-α | Tumor necrosis factor alpha |
TLR2 | Toll-like receptor 2 |
T1DM | Type 1 Diabetes Mellitus |
T2DM | Type 2 Diabetes Mellitus |
ICR Mice | Outbred mice derived from Swiss albino mice |
INS-1 Cells | Rat insulinoma-1 cells |
IR-HepG2 Cells | Human insulin-resistant HepG2 cells |
V79-4 Cell Line | Subline of Chinese hamster lung fibroblast V79 cells |
MAC-T | Primary bovine mammary alveolar cells |
HepG2 Cell Line | Liver biopsy from a 15-year-old Caucasian male |
HeLa Cell Line | Cervical cancer cells from a female human |
Raw264 Cell Line | Tumor in a male mouse induced with Abelson murine leukemia virus (A-MuLV) |
HepG2/2E1 Cells | Human liver cancer cells expressing cytochrome P450 2E1 (CYP2E1) |
HepG 2.2.15 Cells | Human hepatoblastoma-derived cells |
Huh7 Cell Line | Hepatoma-derived cells from a human male |
HCC H22 Cells | Mouse hepatocellular carcinoma cells |
Hep3B Cell Line | Liver cancer cells from an 8-year-old Black male |
CLD | Chronic liver disorders |
ESCOP | European Scientific Cooperative on Phytotherapy |
German Commission E | Expert Commission of the German Ministry of Health |
EMA | European Medicines Agency |
APAP | Acetaminophen |
CCL4 | Carbon tetrachloride |
ACLF | Acute-on-chronic liver failure |
MAFLD | Metabolic dysfunction-associated fatty liver disease |
HCC | Hepatocellular carcinoma |
TG | Triglycerides |
TC | Total cholesterol |
STZ | Streptozotocin |
AST | Aspartate aminotransferase |
ALT | Alanine aminotransferase |
GSH | Reduced glutathione |
CAT | Catalase |
Con A | Concanavalin A |
TLR4 | Toll-like receptor 4 |
Bax | Bcl-2-associated X protein |
Bcl-2 | B-cell lymphoma 2 |
NO | Nitric oxide |
SOD | Superoxide dismutase |
IκBα | Inhibitor alpha of kappa B |
ECM | Extracellular matrix |
HIF-1α | Hypoxia-inducible factor 1-alpha |
TGF-β/SMAD | Transforming growth factor-beta signaling pathway |
Hint1 | Histidine triad nucleotide-binding protein 1 |
Mouse HCC H22 | Mouse hepatocellular carcinoma cell line H22 |
References
- Petrovska, B.B. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Aremu, O.O.; Oyedeji, A.O.; Oyedeji, O.O.; Nkeh-Chungag, B.N.; Sewani Rusike, C.R. In Vitro and In Vivo Antioxidant Properties of Taraxacum officinale in Nω-Nitro-l-Arginine Methyl Ester (L-NAME)-Induced Hypertensive Rats. Antioxidants 2019, 8, 309. [Google Scholar] [CrossRef] [PubMed]
- GBIF Secretariat. GBIF Backbone Taxonomy 2022. Available online: https://doi.org/10.15468/39omei (accessed on 3 October 2023).
- Di Napoli, A.; Zucchetti, P. A comprehensive review of the benefits of Taraxacum officinale on human health. Bull. Natl. Res. Cent. 2021, 45, 110. [Google Scholar] [CrossRef]
- Jinchun, Z.; Jie, C. The effects of Taraxacum officinale extracts (TOE) supplementation on physical fatigue in mice. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 128–133. [Google Scholar] [CrossRef]
- González-Castejón, M.; Visioli, F.; Rodriguez-Casado, A. Diverse biological activities of dandelion. Nutr. Rev. 2012, 70, 534–547. [Google Scholar] [CrossRef]
- Schütz, K.; Carle, R.; Schieber, A. Taraxacum—A review on its phytochemical and pharmacological profile. J. Ethnopharmacol. 2006, 107, 313–323. [Google Scholar] [CrossRef]
- Stearn, W.T. Botanical Latin: History, Grammar Syntax, Terminology and Vocabulary, 3rd ed.; David & Charles: Trowbridge, UK, 1973; 472p. [Google Scholar]
- Siedentopp, U. Nutrición: El diente de león. Rev. Int. Acupunt. 2007, 1, 44–46. [Google Scholar] [CrossRef]
- Miłek, M.; Marcinčáková, D.; Legáth, J. Polyphenols Content, Antioxidant Activity, and Cytotoxicity Assessment of Taraxacum officinale Extracts Prepared through the Micelle-Mediated Extraction Method. Molecules 2019, 24, 1025. [Google Scholar] [CrossRef]
- Rasool, S.; Sharma, B. Taraxacum officinale: A high value less known medicinal plant. Ann. Plant Sci. 2014, 3, 908–915. [Google Scholar]
- Stewart-Wade, S.M.; Neumann, S.; Collins, L.L.; Boland, G.J. The biology of Canadian weeds. 117. Taraxacum officinale G. H. Weber ex Wiggers. Can. J. Plant Sci. 2002, 82, 825–853. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Roberts, T.H.; Matthews, K.R.; Bezerra, C.F.; Morais-Braga, M.F.B.; Coutinho, H.D.M.; Sharopov, F.; Salehi, B.; Yousaf, Z.; Sharifi-Rad, M.; et al. Ethnobotany of the genus Taraxacum—Phytochemicals and antimicrobial activity. Phytother. Res. 2018, 32, 2131–2145. [Google Scholar] [CrossRef] [PubMed]
- Lis, B.; Olas, B. Pro-health activity of dandelion (Taraxacum officinale L.) and its food products—History and present. J. Funct. Foods 2019, 59, 40–48. [Google Scholar] [CrossRef]
- Awortwe, C.; Sackeyfio, A.C.; Osei-Safo, D.; Bugyei, K.A.; Asiedu-Gyekye, I.J. Dual effect of Taraxacum officinale leaves: Anticholinergic and inhibitory effect on inflammatory cells in ovalbumin-sensitized guinea-pigs. Afr. J. Pharm. Pharmacol. 2011, 5, 2613–2619. [Google Scholar] [CrossRef]
- Sweeney, B.; Vora, M.; Ulbricht, C.; Basch, E. Evidence-Based Systematic Review of Dandelion (Taraxacum officinale) by Natural Standard Research Collaboration. J. Herb. Pharmacother. 2009, 5, 79–93. [Google Scholar] [CrossRef]
- Wirngo, F.E.; Lambert, M.N.; Jeppesen, P.B. The Physiological Effects of Dandelion (Taraxacum officinale) in Type 2 Diabetes. Rev. Diabet. Stud. 2016, 13, 113–131. [Google Scholar] [CrossRef]
- Martinez, M.; Poirrier, P.; Chamy, R.; Prüfer, D.; Schulze-Gronover, C.; Jorquera, J.; Ruiz, G. Taraxacum officinale and related species—An ethnopharmacological review and its potential as a commercial medicinal plant. J. Ethnopharmacol. 2015, 169, 244–262. [Google Scholar] [CrossRef]
- Lis, B.; Rolnik, A.; Jedrejek, D.; Soluch, A.; Stochmal, A.; Olas, B. Dandelion (Taraxacum officinale L.) root components exhibit anti-oxidative and antiplatelet action in an in vitro study. J. Funct. Foods 2019, 59, 16–24. [Google Scholar] [CrossRef]
- Fan, M.; Zhang, X.; Song, H.; Zhang, Y. Dandelion (Taraxacum Genus): A Review of Chemical Constituents and Pharmacological Effects. Molecules 2023, 28, 5022. [Google Scholar] [CrossRef]
- Escudero, N.L.; De Arellano, M.L.; Fernández, S.; Albarracín, G.; Mucciarelli, S. Taraxacum officinale as a food source. Plant Foods Hum. Nutr. 2003, 58, 1–10. [Google Scholar] [CrossRef]
- Vondrášková, B.; Čermák, B.; Martínková, L.; Brouček, J. Examination of the nutritional quality of forbs from mountainous pastures in the southwestern Bohemia region. Ekol. Bratisl. 2012, 31, 231–237. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Concepts in functional foods: The case of inulin and oligofructose. J. Nutr. 1999, 129, 1398S–1401S. [Google Scholar] [CrossRef] [PubMed]
- Pfingstgraf, I.O.; Taulescu, M.; Pop, R.M.; Orăsan, R.; Vlase, L.; Uifalean, A.; Todea, D.; Alexescu, T.; Toma, C.; Pârvu, A.E. Protective Effects of Taraxacum officinale L. (Dandelion) Root Extract in Experimental Acute on Chronic Liver Failure. Antioxidants 2021, 10, 504. [Google Scholar] [CrossRef] [PubMed]
- Díaz, K.; Espinoza, L.; Madrid, A.; Pizarro, L.; Chamy, R. Isolation and Identification of Compounds from Bioactive Extracts of Taraxacum officinale Weber ex F. H. Wigg. (Dandelion) as a Potential Source of Antibacterial Agents. Evid.-Based Complement. Altern. Med. 2018, 2018, 2706417. [Google Scholar] [CrossRef] [PubMed]
- Treml, J.; Šmejkal, K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr. Rev. Food Sci. Food Saf. 2016, 15, 720–738. [Google Scholar] [CrossRef]
- Juee, L.Y.M.; Naqishbandi, A.M. In vivo and in vitro antidiabetic potential of Taraxacum officinale root extracts. Curr. Issues Pharm. Med. Sci. 2020, 33, 168–175. [Google Scholar] [CrossRef]
- Jeon, D.; Kim, S.J.; Kim, H.S. Anti-inflammatory evaluation of the methanolic extract of Taraxacum officinale in LPS-stimulated human umbilical vein endothelial cells. BMC Complement. Altern. Med. 2017, 17, 508. [Google Scholar] [CrossRef]
- Jędrejek, D.; Kontek, B.; Lis, B.; Stochmal, A.; Olas, B. Evaluation of antioxidant activity of phenolic fractions from the leaves and petals of dandelion in human plasma treated with H2O2 and H2O2/Fe. Chem. Biol. Interact. 2017, 262, 29–37. [Google Scholar] [CrossRef]
- Petlevski, R.; Hadžija, M.; Slijepčević, M.; Juretić, D.; Petrik, J. Glutathione S-transferases and malondialdehyde in the liver of NOD mice on short-term treatment with plant mixture extract P-9801091. Phytother. Res. 2003, 17, 311–314. [Google Scholar] [CrossRef]
- Xu, L.; Yu, Y.; Sang, R.; Li, J.; Ge, B.; Zhang, X. Protective Effects of Taraxasterol against Ethanol-Induced Liver Injury by Regulating CYP2E1/Nrf2/HO-1 and NF-κB Signaling Pathways in Mice. Oxid. Med. Cell. Longev. 2018, 2018, 8284107. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Khan, Q.M.; Khaliq, T. Effects of Euphorbia prostrata and Fumaria parviflora in normoglycaemic and alloxan-treated hyperglycaemic rabbits. Planta Med. 1984, 50, 138–142. [Google Scholar] [CrossRef]
- Cho, S.Y.; Park, J.Y.; Park, E.M.; Choi, M.S.; Lee, M.K.; Jeon, S.M.; Jang, M.K.; Kim, M.J.; Park, Y.B. Alternation of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion water extract. Clin. Chim. Acta 2002, 317, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Waheed, A.; Qureshi, R.A.; Burdi, D.K.; Verspohl, E.J.; Khan, N.; Hasan, M. The effect of medicinal plants of Islamabad and Murree region of Pakistan on insulin secretion from INS-1 cells. Phytother. Res. 2004, 18, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Gao, Z.; Ma, L.; Wang, X.; Li, Z.; Li, J. Taraxacum officinale Extracts Alleviate Anhedonia and Depression by Inhibiting UPRmt and Mitophagy in the Hippocampi of T2DM Rats. Pharmacogn. Mag. 2024, 20, 794–801. [Google Scholar] [CrossRef]
- Aabideen, Z.U.; Mumtaz, M.W.; Akhtar, M.T.; Mukhtar, H.; Raza, S.A.; Touqeer, T.; Saari, N. Anti-Obesity Attributes; UHPLC-QTOF-MS/MS-Based Metabolite Profiling and Molecular Docking Insights of Taraxacum officinale. Molecules 2020, 25, 4935. [Google Scholar] [CrossRef]
- Choi, U.K.; Lee, O.H.; Yim, J.H.; Cho, C.W.; Rhee, Y.K.; Lim, S.I.; Kim, Y.C. Hypolipidemic and antioxidant effects of dandelion (Taraxacum officinale) root and leaf on cholesterol-fed rabbits. Int. J. Mol. Sci. 2010, 11, 67–78. [Google Scholar] [CrossRef]
- Alfaifi, A.M.; Tashkandi, M.A.; Yousef, J.M. Roles for Taraxacum officinale and Vitamins (C, K) on Bone Formation and Resorption Heparin-Induced in Rats. Arch. Pharm. Pract. 2023, 14, 82–91. [Google Scholar] [CrossRef]
- Heo, J.; Kim, M.; Kim, J.H.; Shin, H.; Lim, S.E.; Jung, H.S.; Sohn, Y.; Ku, J. Effect of Taraxaci Herba on Bone Loss in an OVX-Induced Model through the Regulation of Osteoclast Differentiation. Nutrients 2022, 14, 4354. [Google Scholar] [CrossRef]
- Colle, D.; Arantes, L.P.; Gubert, P.; da Luz, S.C.A.; Athayde, M.L.; Teixeira Rocha, J.B.; Soares, F.A.A. Antioxidant properties of Taraxacum officinale leaf extract are involved in the protective effect against hepatoxicity induced by acetaminophen in mice. J. Med. Food 2012, 15, 549–556. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, Y.; Wang, Z.; Chen, J.; Yang, Y.; Dong, G. Dandelion Extract Alleviated Lipopolysaccharide-Induced Oxidative Stress through the Nrf2 Pathway in Bovine Mammary Epithelial Cells. Toxins 2020, 12, 496. [Google Scholar] [CrossRef]
- Salem, M.O.A.; Salem, T.A.; Yürüten Özdemir, K.; Sönmez, A.Y.; Bilen, S.; Güney, K. Antioxidant enzyme activities and immune responses in rainbow trout (Onchorhynchus mykiss) juveniles fed diets supplemented with dandelion (Taraxacum officinalis) and lichen (Usnea barbata) extracts. Fish Physiol. Biochem. 2021, 47, 1053–1062. [Google Scholar] [CrossRef]
- Yoo, K.; Hwang, I.K.; Moon, B. Comparative flavonoids contents of selected herbs and associations of their radical scavenging activity with antiproliferative actions in V79-4 cells. J. Food Sci. 2009, 74, C419–C425. [Google Scholar] [CrossRef] [PubMed]
- Jedrejek, D.; Lis, B.; Rolnik, A.; Stochmal, A.; Olas, B. Comparative phytochemical, cytotoxicity, antioxidant and haemostatic studies of Taraxacum officinale root preparations. Food Chem. Toxicol. 2019, 126, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Menghini, L.; Genovese, S.; Epifano, F.; Tirillini, B.; Ferrante, C.; Leporini, L. Antiproliferative, protective and antioxidant effects of artichoke, dandelion, turmeric and rosemary extracts and their formulation. Int. J. Immunopathol. Pharmacol. 2010, 23, 601–610. [Google Scholar] [CrossRef] [PubMed]
- KaKamal, F.Z.; Lefter, R.; Mihai, C.T.; Farah, H.; Ciobica, A.; Ali, A.; Radu, L.; Mavroudis, L.; Ech-Chahad, A. Chemical Composition, Antioxidant and Antiproliferative Activities of Taraxacum officinale Essential Oil. Molecules 2022, 27, 6477. [Google Scholar] [CrossRef]
- Williams, C.A.; Goldstone, F.; Greenham, J. Flavonoids, cinnamic acids and coumarins from the different tissues and medicinal preparations of Taraxacum officinale. Phytochemistry 1996, 42, 121–127. [Google Scholar] [CrossRef]
- Yoon, H.S.; Park, C.M. Alleviated Oxidative Damage by Taraxacum officinale through the Induction of Nrf2-MAPK/PI3K Mediated HO-1 Activation in Murine Macrophages RAW 264.7 Cell Line. Biomolecules 2019, 9, 288. [Google Scholar] [CrossRef]
- Koh, Y.J.; Cha, D.S.; Ko, J.S.; Park, H.J.; Choi, H.D. Anti-inflammatory effect of Taraxacum officinale leaves on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells. J. Med. Food 2010, 13, 870–878. [Google Scholar] [CrossRef]
- Dong, L.; Dongzhi, Z.; Jin, Y.; Kim, Y.C.; Lee, D.S.; Huang, S.; Panichayupakaranant, P.; Li, B. Taraxacum officinale Wigg. Attenuates Inflammatory Responses in Murine Microglia through the Nrf2/HO-1 and NF-κB Signaling Pathways. Am. J. Chin. Med. 2020, 48, 445–462. [Google Scholar] [CrossRef]
- Hu, G.; Wang, J.; Hong, D.; Zhang, T.; Duan, H.; Mu, X.; Yang, Z. Effects of aqueous extracts of Taraxacum Officinale on expression of tumor necrosis factor-alpha and intracellular adhesion molecule 1 in LPS-stimulated RMMVECs. BMC Complement. Altern. Med. 2017, 17, 38. [Google Scholar] [CrossRef]
- Chen, W.; Fan, H.; Liang, R.; Zhang, R.; Zhang, J.; Zhu, J. Taraxacum officinale extract ameliorates dextran sodium sulphate-induced colitis by regulating fatty acid degradation and microbial dysbiosis. J. Cell. Mol. Med. 2019, 23, 8161–8172. [Google Scholar] [CrossRef]
- Abdel-Magied, N.; Abdel Fattah, S.M.; Elkady, A.A. Differential effect of Taraxacum officinale L. (dandelion) root extract on hepatic and testicular tissues of rats exposed to ionizing radiation. Mol. Biol. Rep. 2019, 46, 4893–4907. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, E. Hepatoprotective properties of Dandelion: Recent update. J. Appl. Pharm. Sci. 2016, 6, 202–205. [Google Scholar] [CrossRef]
- Racz Kotilla, E.; Racz, G.; Solomon, A. The action of Taraxacum officinale extracts on the body weight and diuresis of laboratory animals. Planta Med. 1974, 26, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Lal, B. Ethnobotanical notes on some medicinal and aromatic plants of Himachal Pradesh. Indian J. Tradit. Knowl. 2005, 4, 424–428. [Google Scholar]
- Brondz, I. Analytical Methods in the Quality Control of Scientific Publications Part III: Publishers’ Ethics and Editors’ Complicity. Int. J. Anal. Mass Spectrom. Cromatogr. 2014, 2, 77–102. [Google Scholar] [CrossRef]
- Cai, L.; Wan, D.; Yi, F.; Luan, L. Purification, Preliminary Characterization and Hepatoprotective Effects of Polysaccharides from Dandelion Root. Molecules 2017, 22, 1409. [Google Scholar] [CrossRef]
- You, Y.; Yoo, S.; Yoon, H.G.; Park, J.; Lee, Y.H.; Kim, S.; Oh, K.-T.; Lee, J.; Cho, H.Y.; Jun, W. In vitro and in vivo hepatoprotective effects of the aqueous extract from Taraxacum officinale (dandelion) root against alcohol-induced oxidative stress. Food Chem. Toxicol. 2010, 48, 1632–1637. [Google Scholar] [CrossRef]
- Yang, Y.; Ying, G.; Wu, S.; Wu, F.; Chen, Z. In vitro inhibition effects of hepatitis B virus by dandelion and taraxasterol. Infect. Agent. Cancer 2020, 15, 44. [Google Scholar] [CrossRef]
- Lin, W.; Gu, B.; Gu, Y.; Zhao, R.; Huang, Y.; Fan, R.; Rong, W.; Liu, Z. Taraxasterol protects against acetaminophen-induced hepatotoxicity by reducing liver inflammatory response and ameliorating oxidative stress in mice. Int. Immunopharmacol. 2024, 138, 112580. [Google Scholar] [CrossRef]
- Bao, T.; Ke, Y.; Wang, Y.; Wang, W.; Li, Y.; Wang, Y.; Kui, X.; Zhou, Q.; Zhou, H.; Zhang, C.; et al. Taraxasterol suppresses the growth of human liver cancer by upregulating Hint1 expression. J. Mol. Med. 2018, 96, 661–672. [Google Scholar] [CrossRef]
- Sang, R.; Ge, B.; Li, H.; Zhou, H.; Yan, K.; Wang, W.; Cui, Q.; Zhang, X. Taraxasterol alleviates aflatoxin B1-induced liver damage in broiler chickens via regulation of oxidative stress, apoptosis and autophagy. Ecotoxicol. Environ. Saf. 2023, 251, 114546. [Google Scholar] [CrossRef] [PubMed]
- Hfaiedh, M.; Brahmi, D.; Zourgui, L. Hepatoprotective effect of Taraxacum officinale leaf extract on sodium dichromate-induced liver injury in rats. Environ. Toxicol. 2016, 31, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, L.; Wang, J.; Li, J.; Ding, J.; He, X. Protective Effect of Dandelion Leaf Water Extracts on APAP-Induced Liver Injury in Rats and Its Mechanism. Cell Mol. Biol. 2022, 68, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Davaatseren, M.; Hur, H.J.; Yang, H.J.; Hwang, J.T.; Park, J.H.; Kim, H.J.; Kim, M.S.; Kim, M.J.; Kwon, D.Y.; Sung, M.J. Dandelion leaf extract protects against liver injury induced by methionine- and choline-deficient diet in mice. J. Med. Food 2013, 16, 26–33. [Google Scholar] [CrossRef]
- Davaatseren, M.; Hur, H.J.; Yang, H.J.; Hwang, J.-T.; Park, J.H.; Kim, H.-J.; Kim, M.J.; Kwon, D.Y.; Sung, M.J. Taraxacum official (dandelion) leaf extract alleviates high-fat diet-induced nonalcoholic fatty liver. Food Chem. Toxicol. 2013, 58, 30–36. [Google Scholar] [CrossRef]
- Nzekwe, S.; Morakinyo, A.; Oguntibeju, O.; Ayeleso, A. Effect of Taraxacum officinale Leaf Extract on Liver Antioxidant Status in Streptozotocin-Induced Diabetic Male Wistar Rats. Afr. J. Biomed. Res. 2020, 23, 421–428. [Google Scholar]
- Favari, L.; Arce-Díaz, C.; Ortíz-Martínez, J.; Pablo-Pérez, S.; Soto, C.; Meléndez-Camargo, M.E. Efectos hepatoprotector y antioxidante de Taraxacum officinale en el daño hepático agudo inducido por el tetracloruro de carbono en la rata. Rev. Mex. Cienc. Farm. 2013, 44, 53–61. [Google Scholar]
- Esatbeyoglu, T.; Obermair, B.; Dorn, T.; Siems, K.; Rimbach, G.; Birringer, M. Sesquiterpene Lactone Composition and Cellular Nrf2 Induction of Taraxacum officinale Leaves and Roots and Taraxinic Acid β-d-Glucopyranosyl Ester. J. Med. Food 2017, 20, 71–78. [Google Scholar] [CrossRef]
- Yi, R.K.; Song JLe Lim, Y.I.; Kim, Y.K.; Park, K.Y. Preventive Effect of the Korean Traditional Health Drink (Taemyeongcheong) on Acetaminophen-Induced Hepatic Damage in ICR Mice. Prev. Nutr. Food Sci. 2015, 20, 52–59. [Google Scholar] [CrossRef]
- Zheng, Y.; Lei, L.; Liang, S.; Ai, J.; Deng, X.; Li, Y.; Zhang, T.P.; Pu, S.B.; Ren, Y.S. Protective Effect of Fresh/Dry Dandelion Extracts on APAP-Overdose-Induced Acute Liver Injury. Chin. J. Integr. Med. 2022, 28, 683–692. [Google Scholar] [CrossRef]
- Ren, Y.S.; Zheng, Y.; Duan, H.; Lei, L.; Deng, X.; Liu, X.Q.; Mei, Z.N.; Deng, X.K. Dandelion polyphenols protect against acetaminophen-induced hepatotoxicity in mice via activation of the Nrf-2/HO-1 pathway and inhibition of the JNK signaling pathway. Chin. J. Nat. Med. 2020, 18, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Macía, M.J.; García, E.; Vidaurre, P.J. An ethnobotanical survey of medicinal plants commercialized in the markets of La Paz and El Alto, Bolivia. J. Ethnopharmacol. 2005, 97, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Kania-Dobrowolska, M.; Baraniak, J. Dandelion (Taraxacum officinale L.) as a Source of Biologically Active Compounds Supporting the Therapy of Co-Existing Diseases in Metabolic Syndrome. Foods 2022, 11, 2858. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Cetto, A.; Heinrich, M. Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J. Ethnopharmacol. 2005, 99, 325–348. [Google Scholar] [CrossRef]
- Park, C.M.; Youn, H.J.; Chang, H.K.; Song, Y.S. TOP1 and 2, polysaccharides from Taraxacum officinale, attenuate CCl4-induced hepatic damage through the modulation of NF-κB and its regulatory mediators. Food Chem. Toxicol. 2010, 48, 1255–1261. [Google Scholar] [CrossRef]
- Ren, F.; Zhang, Y.; Qin, Y.; Shang, J.; Wang, Y.; Wei, P.; Guo, J.; Jia, H.; Zhao, T. Taraxasterol prompted the anti-tumor effect in mice burden hepatocellular carcinoma by regulating T lymphocytes. Cell Death Discov. 2022, 8, 264. [Google Scholar] [CrossRef]
- Bhosale, P.B.; Abusaliya, A.; Kim, H.H.; Ha, S.E.; Park, M.Y.; Jeong, S.H.; Vetrivel, P.; Heo, J.D.; Kim, J.; Won, C.K.; et al. Apigetrin Promotes TNFα-Induced Apoptosis, Necroptosis, G2/M Phase Cell Cycle Arrest, and ROS Generation through Inhibition of NF-κB Pathway in Hep3B Liver Cancer Cells. Cells 2022, 11, 2734. [Google Scholar] [CrossRef]
- Cheemerla, S.; Balakrishnan, M. Global Epidemiology of Chronic Liver Disease. Clin. Liver Dis. 2021, 17, 365–370. [Google Scholar] [CrossRef]
- Sarin, S.K.; Choudhury, A.; Sharma, M.K.; Maiwall, R.; Al Mahtab, M.; Rahman, S.; Saigal, S.; Saraf, N.; Soin, A.S.; Devarbhavi, H.; et al. Acute-on-chronic liver failure: Consensus recommendations of the Asian Pacific association for the study of the liver (APASL): An update. Hepatol. Int. 2019, 13, 353. [Google Scholar] [CrossRef]
- Lee, C.H.; Park, S.W.; Kim, Y.S.; Kang, S.S.; Kim, J.A.; Lee, S.H.; Lee, S.M. Protective mechanism of glycyrrhizin on acute liver injury induced by carbon tetrachloride in mice. Biol. Pharm. Bull. 2007, 30, 1898–1904. [Google Scholar] [CrossRef]
- Hong, M.; Li, S.; Tan, H.Y.; Wang, N.; Tsao, S.W.; Feng, Y. Current Status of Herbal Medicines in Chronic Liver Disease Therapy: The Biological Effects, Molecular Targets and Future Prospects. Int. J. Mol. Sci. 2015, 16, 28705–28745. [Google Scholar] [CrossRef] [PubMed]
- Taraxaci Radix (Dandelion Root)—ESCOP n.d. Available online: https://www.escop.com/downloads/taraxaci-radix-dandelion-root-escop-2024/ (accessed on 13 October 2024).
- Domitrović, R.; Jakovac, H.; Romić, Ž.; Rahelić, D.; Tadić, Ž. Antifibrotic activity of Taraxacum officinale root in carbon tetrachloride-induced liver damage in mice. J. Ethnopharmacol. 2010, 130, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Huseini, F.H.; Mahmoudabady, Z.A. The Effects of Taraxacum officinale L. and Berberis vulgaris L. Root Extracts on Carbon Tetrachloride Induced Liver Toxicity in Rats. J. Med. Plants 2010, 9, 45–52. [Google Scholar]
- Al-Malki, A.L.; Abo-Golayel, M.K.; Abo-Elnaga, G.; Al-Beshri, H. Hepatoprotective effect of dandelion (Taraxacum officinale) against induced chronic liver cirrhosis. J. Med. Plants Res. 2013, 7, 1494–1505. [Google Scholar] [CrossRef]
- Ahmad, D.; Gulfraz, M.; Ahmad, M.S.; Nazir, H.; Gul, H.; Asif, S. Protective action of Taraxacum officinale on CCl4 induced hepatotoxicity in rats. Afr. J. Pharm. Pharmacol. 2014, 8, 775–780. [Google Scholar] [CrossRef]
- Ahmed Hamza, A.; Gamel Mohamed, M.; Mohamed Lashin, F.; Amin, A. Dandelion prevents liver fibrosis, inflammatory response, and oxidative stress in rats. J. Basic Appl. Zool. 2020, 81, 43. [Google Scholar] [CrossRef]
- Moreau, R.; Tonon, M.; Krag, A.; Angeli, P.; Berenguer, M.; Berzigotti, A.; Fernandez, J.; Francoz, C.; Gustot, T.; Jalan, R.; et al. EASL Clinical Practice Guidelines on acute-on-chronic liver failure. J. Hepatol. 2023, 79, 461–491. [Google Scholar] [CrossRef]
- Ohno, R.; Kaneko, H.; Suzuki, Y.; Okada, A.; Matsuoka, S.; Ueno, K.; Fujiu, K.; Michihata, N.; Jo, T.; Takeda, N.; et al. Association of Metabolic Dysfunction-Associated Fatty Liver Disease With Risk of HF and AF. JACC Asia 2023, 3, 908–921. [Google Scholar] [CrossRef]
- Pipitone, R.M.; Ciccioli, C.; Infantino, F.; La Mantia, C.; Parisi, S.; Tulone, A.; Pennisi, G.; Grimaudo, S.; Petta, S. MAFLD: A multisystem disease. Ther. Adv. Endocrinol. Metab. 2023, 14, 1–23. [Google Scholar] [CrossRef]
- Targher, G.; Byrne, C.D.; Tilg, H. MASLD: A systemic metabolic disorder with cardiovascular and malignant complications. Gut 2024, 73, 691–702. [Google Scholar] [CrossRef]
- Bhopale, K.K.; Srinivasan, M.P. Therapeutics for Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD). Livers 2023, 3, 597–617. [Google Scholar] [CrossRef]
- Sangro, P.; de la Torre Aláez, M.; Sangro, B.; D’Avola, D. Metabolic dysfunction–associated fatty liver disease (MAFLD): An update of the recent advances in pharmacological treatment. J. Physiol. Biochem. 2023, 79, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Videla, L.A.; Valenzuela, R.; Zúñiga-Hernández, J.; Del Campo, A. Relevant Aspects of Combined Protocols for Prevention of N(M)AFLD and Other Non-Communicable Diseases. Mol. Nutr. Food Res. 2024, 68, 2400062. [Google Scholar] [CrossRef] [PubMed]
- Tanasa, M.V.; Negreanu-Pirjol, T.; Olariu, L.; Negreanu-Pirjol, B.S.; Lepadatu, A.C.; Anghel, L.; Rosoiu, N. Bioactive Compounds from Vegetal Organs of Taraxacum Species (Dandelion) with Biomedical Applications: A Review. Int. J. Mol. Sci. 2025, 26, 450. [Google Scholar] [CrossRef]
- Li, J.; Luo, J.; Chai, Y.; Guo, Y.; Tianzhi, Y.; Bao, Y. Hypoglycemic effect of Taraxacum officinale root extract and its synergism with Radix Astragali extract. Food Sci. Nutr. 2021, 9, 2075–2085. [Google Scholar] [CrossRef]
- Tan, X.; Sun, Z.; Chen, S.; Chen, S.; Huang, Z.; Zhou, C.; Zou, C.; Liu, Q.; Ye, H.; Lin, H.; et al. Effects of dietary dandelion extracts on growth performance, body composition, plasma biochemical parameters, immune responses and disease resistance of juvenile golden pompano Trachinotus ovatus. Fish Shellfish Immunol. 2017, 66, 198–206. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; Gao, J.; Huang, J.; Yang, Y.; Xu, Y.; Liu, S.; Yu, W. Characterization, antioxidant and immunomodulatory effects of selenized polysaccharides from dandelion roots. Carbohydr. Polym. 2021, 260, 117796. [Google Scholar] [CrossRef]
- He, Y.; Jiang, K.; Zhao, X. Taraxasterol protects hippocampal neurons from oxygen-glucose deprivation-induced injury through activation of Nrf2 signalling pathway. Artif. Cells Nanomed. Biotechnol. 2020, 48, 252–258. [Google Scholar] [CrossRef]
- Sang, R.; Yu, Y.; Ge, B.; Xu, L.; Wang, Z.; Zhang, X. Taraxasterol from Taraxacum prevents concanavalin A-induced acute hepatic injury in mice via modulating TLRs/NF-κB and Bax/Bc1-2 signalling pathways. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3929–3937. [Google Scholar] [CrossRef]
- Li, Z.; Lian, Y.; Wei, R.; Jin, L.; Cao, H.; Zhao, T.; Ma, X.; Zhong, M.; Gao, Y.; Zhang, K. Effects of taraxasterol against ethanol and high-fat diet-induced liver injury by regulating TLR4/MyD88/NF-κB and Nrf2/HO-1 signaling pathways. Life Sci. 2020, 262, 118546. [Google Scholar] [CrossRef]
- He, H.; Xu, B.; Ge, P.; Gao, Y.; Wei, M.; Li, T.; Zhang, R.; Li, B.; Cao, H.; Zhang, K. The effects of taraxasterol on liver fibrosis revealed by RNA sequencing. Int. Immunopharmacol. 2023, 114. [Google Scholar] [CrossRef] [PubMed]
- Cisneros-Garza, L.E.; González-Huezo, M.S.; Moctezuma-Velázquez, C.; Ladrón de Guevara-Cetina, L.; Vilatobá, M.; García-Juárez, I.; Alvarado-Reyes, R.; Álvarez-Treviño, G.A.; Allende-Pérez, S.; Bornstein-Quevedo, L.; et al. II Consenso Mexicano de Carcinoma Hepatocelular. Parte I: Epidemiología y diagnóstico. Rev. Gastroenterol. Mex. 2022, 87, 216–234. [Google Scholar] [CrossRef]
- Aguirre-Maldonado, I.; Herrera-López, E.E.; López-Zenteno, F.; Ramírez-Nava, J.C.; López-Hernández, N.A.; Arellanes-Robledo, J.; Yauner-Pozo, L.; Román-García, R.; Montero, H.; Aguilera-Alexander, A.; et al. Intriguing hepatoprotective effects of sucrose on hepatocellular carcinoma pathogenesis. Sci. Rep. 2024, 14, 23689. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, W.; Jiang, L.; Chen, Y. Recent advances in systemic therapy for hepatocellular carcinoma. Biomark. Res. 2022, 10, 3. [Google Scholar] [CrossRef]
- Denisow-Pietrzyk, M.; Pietrzyk, Ł.; Denisow, B. Asteraceae species as potential environmental factors of allergy. Environ. Sci. Pollut. Res. 2019, 26, 6290–6300. [Google Scholar] [CrossRef]
- Clare, B.A.; Conroy, R.S.; Spelman, K. The diuretic effect in human subjects of an extract of Taraxacum officinale folium over a single day. J. Altern. Complement. Med. 2009, 15, 929–934. [Google Scholar] [CrossRef]
- Lis, B.; Jedrejek, D.; Rywaniak, J.; Soluch, A.; Stochmal, A.; Olas, B. Flavonoid Preparations from Taraxacum officinale L. Fruits—A Phytochemical, Antioxidant and Hemostasis Studies. Molecules 2020, 25, 5402. [Google Scholar] [CrossRef]
- Petrović, S. Biljni i tradicionalni biljni lekovi, monografije EU i lista EU. Arh. Farm. 2019, 69, 221–269. [Google Scholar] [CrossRef]
- Pawlików, M.; Aebisher, D.; Bartusik-Aebisher, D. Dandelion. In The Biochemical Guide to Toxins; Nova Science Pub Inc: Hauppauge, NY, USA, 2024; pp. 217–220. [Google Scholar] [CrossRef]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Neurol. 2014, 4, 66193. [Google Scholar] [CrossRef]
Organic Compounds | Chemical Structure (Example) | Part of the Plant | Biological Activity | Example of Protective Effects | Refs. |
---|---|---|---|---|---|
Inulin (carbohydrate) | Root | Improves intestinal microbiota, anti-inflammatory, stimulates the elimination of pathogens. | An important carbohydrate such as inulin eliminates pathogens in the gastrointestinal tract and stimulates the suppression of obesity, cancer, and osteoporosis. In addition, presents diuretic activity increases choleretic function, anti-inflammatory action, and improves the intestinal microbiota. | [23,24] | |
Taraxacina (sesquiterpene lactones) | Root and aerial part | Anti-inflammatory, antimicrobial. | Anti-inflammatory and antimicrobial properties with greater effectiveness against Gram-positive strains. Appetite stimulator, hepato-renal drainer, and anti-inflammatory potential. | [10,24,25] | |
Luteolin chlorogenic acid and caffeic acid (Phenolic acids and flavonoids) | Root and aerial part | Anti-inflammatory, antioxidant, reduces lipid peroxidation and cellular damage. | The bioactive compounds present in T. officinale, such as luteolin, chlorogenic acid, caffeic acid, and terpenoids, exhibit notable anti-inflammatory, antioxidant, and hepatoprotective properties. These compounds contribute to liver and digestive system health by activating the Nrf2 transcription pathway in human hepatocytes, enhancing antioxidant defense mechanisms. They reduce oxidative stress by decreasing lipid peroxidation, protein carbonylation, and ROS production, particularly under ethanol-induced damage. Additionally, they downregulate the expression of inflammatory cytokines such as TNF-α and IL-6 and inhibit the nuclear translocation of NF-κB, a key regulator of inflammation. Some studies also suggest antihyperglycemic effects and potential antiviral activity against HBV through modulation of PTBP1 and SIRT1 expression levels | [6,14,26,27,28,29] | |
Taraxasterol (pentacyclic triterpene) | Root | Antioxidant, anti-inflammatory, antitumor. | Antihyperglycemic and anti-inflammatory properties. Decreased expression level of PTBP1 and SIRT1 proteins and may inhibit HBV and be a possible anti-HBV drug. In addition, it has antioxidant effects by reducing the production of ROS against oxidative damage caused by ethanol after improving the antioxidant enzymes present in the liver, in turn reporting an anti-inflammatory effect by reducing the production of TNF-α and IL-6 molecules. | [30,31] |
Etiology | Associated Pathology/ Syndrome | Effect | Origin of the Extract | In Vivo/In Vitro Model | Refs. |
---|---|---|---|---|---|
T1DM | Anti-diabetic/antioxidant | Leaf extract | Sprague-Dawley Rats (Males) | ||
T2DM | Anti-diabetic/hypoglycemic | Full extract | T2DM patients; Albino Rabbits (males); INS-1 Cell Line; Sprague-Dawley Rats (Male) | [32,33,34,35] | |
Leaf extract | IR-HepG2 Cell Line; inhibitory activity of α-amylase and α-glucosidase | ||||
Metabolic disease | Leaf and root extract | Albino Rabbits (Male) | |||
Obesity | Anti-obesity | Leaf extract | BALB/c Mice (Male) | [36] | |
antihypertensive/antioxidant | Leaf and root extract | Wistar Rats and Swiss Mice (males and females) | [2] | ||
hypolipidemic/antioxidant | Leaf and root extract | Albino Rabbits (Males) | [37] | ||
Osteoporosis | anti-apoptotic/antioxidant/anti-inflammatory | Full extract Leaf extract | C57BL/6 Mice (Male) Albino Rats (Females) | [37] | |
[38,39] | |||||
Pathogenic microorganism | Bacterial infection | Antimicrobial | Full extract | S. aureus, E. coli, and L. monocytogenes; E. coli, S. aureus, K. pneumoniae, and P. mirabilis | [25] |
Oxidative induction | Antioxidant | Full extract | V79-4 Cell Line and Chinese hamster (Males); Oncorhynchus mykiss; MAC-T Cell Line; Wistar Rats (Males) | [40,41,42,43] | |
Extract leaves and petals | Human Blood | [29] | |||
Oxidative stress | Cancerous cells | Antioxidant/hemostatic | Root extract | Human Blood | [44] |
antioxidant/antiproliferative | Full extract | HepG2 Cell Line | [45] | ||
Essential oil | Swiss Albino Mice (Males) and HeLa Cell Line | [46] | |||
Inflammation | Induction of inflammation | Anti-inflammatory | Extract of flowers, roots, leaves, and bracts | * Chemical characterization of the compounds | [47] |
Leaf extract | RAW 264 Cell Line; C57BL/6 Mice (Male); Sprague-Dawley Rats (Male); Guinea Pigs (Females) | [48,49,50,51] | |||
Full extract | C57BL/6 Mice (Male) | [52] |
Etiology | Associated Pathology/Syndrome | Effect | Origin of the Extract | In Vivo/In Vitro Model | Refs. |
---|---|---|---|---|---|
Root extract | Wistar Rats (Males); Traditional Medicine (Humans); Rats and Mice; ICR Mice (Male); HepG2/2E1 Cell Line | [24,53,54,55,56,57,58,59] | |||
Taraxacol | ICR Mice; HepG cells 2.2.15. C57BL/6 Mice (Male). Chickens | [60,61,62,63] | |||
Induction of liver injury | Leaf extract | Wistar Rats (Males); Sprague-Dawley Rats (Male); Albino Mice (Male); C57BL/6 Mice (Male); C2C12 Cell Line | [40,64,65,66,67,68,69] | ||
Liver disease | Root extract Root and leaf extract | Sprague-Dawley Rats (Male); C57BL/6 Mice (Male); Huh7 hepatoma Cell Line | [27,70] | ||
Hepatoprotection | Full extract | ICR Mice (Male); Kunming Rats (Male); Traditional Medicine (Humans); Sprague-Dawley Rats (Male) | [71,72] | ||
Polyphenol extract | Kunming Rats (Male) | [73] | |||
Infusion of leaves | Traditional Medicine (Humans) | [74,75,76] | |||
Hepatocellular carcinoma | Polysaccharides | Rats Sprague–Dawley (Male) | [77,78] | ||
Taraxacol | Human HCC Cell Lines (HepG2 and Huh7) and mouse HCC H22 Cell Line. Mouse BALB/c Kunming Mice | [62] | |||
Apigenin | Hep3B Cell Line | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera Vielma, F.; Quiñones San Martin, M.; Muñoz-Carrasco, N.; Berrocal-Navarrete, F.; González, D.R.; Zúñiga-Hernández, J. The Role of Dandelion (Taraxacum officinale) in Liver Health and Hepatoprotective Properties. Pharmaceuticals 2025, 18, 990. https://doi.org/10.3390/ph18070990
Herrera Vielma F, Quiñones San Martin M, Muñoz-Carrasco N, Berrocal-Navarrete F, González DR, Zúñiga-Hernández J. The Role of Dandelion (Taraxacum officinale) in Liver Health and Hepatoprotective Properties. Pharmaceuticals. 2025; 18(7):990. https://doi.org/10.3390/ph18070990
Chicago/Turabian StyleHerrera Vielma, Francisca, Matías Quiñones San Martin, Nicolás Muñoz-Carrasco, Fernanda Berrocal-Navarrete, Daniel R. González, and Jessica Zúñiga-Hernández. 2025. "The Role of Dandelion (Taraxacum officinale) in Liver Health and Hepatoprotective Properties" Pharmaceuticals 18, no. 7: 990. https://doi.org/10.3390/ph18070990
APA StyleHerrera Vielma, F., Quiñones San Martin, M., Muñoz-Carrasco, N., Berrocal-Navarrete, F., González, D. R., & Zúñiga-Hernández, J. (2025). The Role of Dandelion (Taraxacum officinale) in Liver Health and Hepatoprotective Properties. Pharmaceuticals, 18(7), 990. https://doi.org/10.3390/ph18070990