Phytochemical Profile, Vasodilatory and Biphasic Effects on Intestinal Motility, and Toxicological Evaluation of the Methanol and Dichloromethane Extracts from the Aerial Parts of Ipomoea purpurea Used in Traditional Mexican Medicine
Abstract
1. Introduction
2. Results and Discussion
2.1. Phytochemical Tests of Methanolic Extract (ME-Ip) and Dichloromethane Extract (DE-Ip) of Aerial Parts of Ipomoea purpurea for the Presence of Secondary Metabolites
2.2. Total Phenolic Compounds and Antioxidant Capacity of Methanolic Extract of Aerial Parts of Ipomoea purpurea (ME-Ip)
2.3. UPLC-QTOF-MS Analysis of Methanolic Extract of Aerial Parts of Ipomoea purpurea (ME-Ip)
2.4. GC-MS Analysis of Dichloromethane Extract of Aerial Parts of Ipomoea purpurea (DE-Ip)
2.5. Vasodilator Effects of ME-Ip and DE-Ip on Isolated Rat Aorta Assay
2.6. Spasmodic and Spasmolytic Effects of ME-Ip and DE-Ip on Isolated Rat Ileum Assay
2.7. Acute Oral Toxicity Study
2.8. Hematological Cell Profile and Biochemical Profile of Experimental Subjects Treated with the ME-Ip and DE-Ip
2.9. Histopathological Assessment of Experimental Subjects Treated with the ME-Ip or DE-Ip
3. Materials and Methods
3.1. Reagents
3.2. Vegetal Material
3.3. Experimental Animals
3.4. Preparation of Dichloromethane and Methanol Extracts of I. purpurea
3.5. Phytochemical Screening
3.6. Phenolic Compound Content in Methanolic Extract
3.7. Flavonoid Content in Methanolic Extract
3.8. Determination of Antioxidant Capacity
3.9. UPLC–QTOF-MS Analysis of Methanolic Extract
3.10. GC-MS Analysis of Dichloromethane Extract of Ipomoea purpurea
3.11. Isolated Rat Aorta Assay
3.12. Isolated Rat Ileum Assay
3.13. Acute Oral Toxicity Study
3.14. Fecal Assessment
3.15. Hematological Cell Profile, Biochemical Profile and Histopathological Analysis
3.16. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AH | Arterial hypertension |
GDs | Gastrointestinal diseases |
NCD’s | Non-communicable diseases |
ME-Ip | Methanolic extract of Ipomoea purpurea |
DE-Ip | Dichloromethane extract of Ipomoea purpurea |
AOC | Antioxidant capacity |
DPPH | 1,1-diphenyl-2-picrylhydrazyl |
FRAP | Ferric reducing antioxidant power |
ALT | Alanine aminotransferase |
ACE | Angiotensin-converting enzyme |
AST | Aspartate aminotransferase |
Ach | Acetylcholine |
GAE | Gallic acid equivalents |
CAE | Catechin equivalents |
NF-κB | Nuclear factor kappa B |
COX-2 | Cyclooxygenase-2 |
ALP | Alkaline phosphatase |
UPLC-QTOF-MS | Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry |
GC-MS | Gas Chromatography–Mass Spectrometry |
Papv | Papaverine |
EC50 | Half maximal effective concentration |
Emax | Maximum effect |
References
- Barquera, S.; Rivera, J. Obesity in Mexico: Rapid epidemiological transition and food industry interference in health policies. Lancet Diabetes Endocrinol. 2020, 8, 746–747. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, M.P.; Barrientos, G.T.; Soria-Contreras, D.C.; Magid, H.S.; Kaufman, S.J. Increasing representation of epidemiologists from around the world in the society for epidemiologic research: The case of Mexico. Am. J. Epidemiol. 2022, 191, 1842–1846. [Google Scholar] [CrossRef] [PubMed]
- Barquera, S.; Hernández-Barrera, L.; Trejo, B.; Shamah, T.; Campos-Nonato, I.; Rivera-Dommarco, J. Obesidad en México, prevalencia y tendencias en adultos. Ensanut 2018-19. Salud Publica Mex. 2020, 62, 682–692. [Google Scholar] [CrossRef]
- Pavía, A.A.; Alcocer, M.A.; Ruiz, E.D.; Mayorga, J.L.; Mehta, R.; Díaz, F.A.; Aldrete, J.A.; López, N.; Cruz, I.; Chávez, A.; et al. Guía de práctica clínica mexicana para el diagnóstico y tratamiento de las dislipidemias y enfermedad cardiovascular aterosclerótica. Arch. Cardiol. Mex. 2022, 92, 1–62. [Google Scholar] [CrossRef]
- Secretaría de Salud en México, más de 30 Millones de Personas Padecen Hipertensión Arterial: Secretaría de Salud. Available online: https://www.gob.mx/salud/articulos/en-mexico-mas-de-30-millones-de-personas-padecen-hipertension-arterial-secretaria-de-salud (accessed on 10 March 2025).
- Gopar, R.; Ezquerra, A.; Chávez, N.L.; Manzur, D.; Raymundo, G.I. ¿Cómo tratar la hipertensión arterial sistémica? Estrategias de Tratamiento Actuales. Arch. Cardiol. Mex. 2021, 91, 493–499. [Google Scholar] [CrossRef]
- Carey, R.M.; Moran, A.E.; Whelton, P.K. Treatment of hypertension: A review. J. Am. Med. Assoc. 2022, 328, 1849–1861. [Google Scholar] [CrossRef]
- Lynch, S.S.; Adherencia al Tratamiento Farmacológico. Manual MSD Versión para Público General. Available online: https://www.msdmanuals.com/es/hogar/f%C3%A1rmacos-o-sustancias/factores-que-influyen-en-la-respuesta-del-organismo-a-los-f%C3%A1rmacos/adherencia-al-tratamiento-farmacol%C3%B3gico (accessed on 10 March 2025).
- Olaiz, G.A.; Gómez, E.G.; Juárez, A.; Anda, F.J.; Morales, J.E.; Carrasco, O. Panorama histórico de la enfermedad diarreica aguda en México y el futuro de su prevención. Salud Publica Mex. 2022, 62, 25–35. [Google Scholar] [CrossRef]
- Gotfried, J. Generalidades Sobre los síntomas Gastrointestinales. Manual MSD Versión para Profesionales. Available online: https://www.msdmanuals.com/es/professional/trastornos-gastrointestinales/s%C3%ADntomas-de-los-trastornos-gastrointestinales/generalidades-sobre-los-s%C3%ADntomas-gastrointestinales (accessed on 10 March 2025).
- Hani, A. Antiespasmódicos. Acta Gastroenterol. Latinoam. 2014, 44, 57–60. [Google Scholar]
- Homedes, N. Antiespasmódicos durante el embarazo, en resumen. Prescrire 2020, 40, 13–17. [Google Scholar]
- Hicks, G.A. Irritable Bowel Syndrome. In Comprehensive Medicinal Chemistry II, 2nd ed.; Taylor, J.F., Triggle, D.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 2, pp. 643–670. [Google Scholar]
- Guzik, T.J.; Nosalski, R.; Maffia, P.; Drummond, G.R. Immune and inflammatory mechanisms in hypertension. Nat. Rev. Cardiol. 2024, 21, 396–416. [Google Scholar] [CrossRef]
- Oz, H.S. Nutrients, Infectious and Inflammatory Diseases. Nutrients 2017, 9, 1085. [Google Scholar] [CrossRef]
- SEMARNAT. Plantas Medicinales de México. Available online: https://www.gob.mx/semarnat/articulos/plantas-medicinales-de-mexico (accessed on 3 December 2024).
- World Health Organization. Traditional Medicine. Available online: https://www.who.int/es/news-room/questions-and-answers/item/traditional-medicine (accessed on 11 April 2025).
- Comisión Nacional de Áreas Naturales Protegidas (CONANP). México Megadiverso. Available online: https://www.gob.mx/conanp/articulos/mexico-megadiverso-173682 (accessed on 18 February 2025).
- Loraine, S.; Mendoza, J.A. Las plantas medicinales en la lucha contra el cáncer: Relevancia para México. Rev. Mex. Cienc. Farm. 2010, 41, 18–27. [Google Scholar]
- Rzedowski, J.; Carranza, E. Sinopsis de la familia Convolvulaceae en México. J. Bot. Res. Inst. Texas 2023, 17, 271. [Google Scholar] [CrossRef]
- Carranza, G.E. Diversidad del género Ipomoea L. (Convolvulaceae) en el estado de Michoacán, México. In Flora del Bajío y de Regiones Adyacentes; Hernández, L.P., Ed.; Instituto de Ecología A.C.: Michoacán, México, 2008; pp. 283–285. [Google Scholar]
- Ahmad, M.; Alamgeer, N.; Ali, I.; Mohamed, A. Ipomoea hederacea Jacq.: A plant with promising antihypertensive and cardio-protective effects. J. Ethnopharmacol. 2020, 268, 113–584. [Google Scholar] [CrossRef]
- Jansakul, C.; Chairuk, P.; Zia-Ul-Haq, M.; Imran, I. Effect of Ipomoea hederacea Jacq. methanolic extract on blood pressure and relaxation of rat thoracic aorta: Evidence indicated the release of NO and H2S. Thai J. Pharm. Sci. 2018, 42, 58–65. [Google Scholar] [CrossRef]
- Paula, A.B.; Hayashi, L.S.; Freitas, J.C. Anti-inflammatory and antispasmodic activity of Ipomoea imperati (Vahl) Griseb (Convolvulaceae). Braz. J. Med. Biol. Res. 2003, 36, 105–112. [Google Scholar] [CrossRef]
- Javaid, A.; Ferdosi, M.; Manzoor, M.; Haider, I. Medically important compounds in Ipomoea carnea flowers. Pak. J. Weed Sci. Res. 2023, 29, 115–121. [Google Scholar]
- Manhães, F.; Chaves, A.; Da Silva, M.; De Souza, Q.; Chaves, C.; Antunes, F.; Rodrigues, R. Pharmacognosy, phytochemical analysis, and hypotensive activity of Ipomoea pes-caprae on blood pressure of normotensive rats. Rodriguésia 2020, 71, 112–119. [Google Scholar] [CrossRef]
- Hamsa, T.P.; Kuttan, G. Evaluation of the anti-inflammatory and anti-tumor effect of Ipomoea obscura (L.) and its mode of action through the inhibition of pro-inflammatory cytokines, nitric oxide and COX-2. Inflammation 2010, 34, 171–183. [Google Scholar] [CrossRef]
- Cai, C.; Chen, Y.; Zhong, S.; Ji, B.; Wang, J.; Bai, X.; Shi, G. Anti-inflammatory activity of n-butanol extract from Ipomoea stolonifera in vivo and in vitro. PLoS ONE 2014, 9, e95931. [Google Scholar] [CrossRef]
- Monsalvo, M.; Fortunato, R.; Wagner, M.; Ricco, R. Estudio farmacobotánico de Ipomoea purpurea (L.) Roth (Convolvulaceae). Dominguezia 2018, 34, 21–29. [Google Scholar]
- Srivastava, D.; Rauniyar, N. Medicinal Plants of Genus Ipomoea, 1st ed.; LAP LAMBERT Academic Publishing: Beau Bassin, Mauritius, 2020; pp. 1–76. [Google Scholar]
- Srivastava, D. Medicinal plants of the genus Ipomoea found in Uttar Pradesh, India. Res. J. Recent Sci. 2017, 6, 12–22. [Google Scholar]
- León-Rivera, I.; Herrera-Ruiz, M.; Estrada-Soto, S.; Gutiérrez, M.C.; Martínez-Duncker, I.; Navarrete-Vázquez, G.; Rios, M.Y.; Aguilar, B.; Castillo-España, P.; Aguirre-Moreno, A. Sedative, vasorelaxant, and cytotoxic effects of convolvulin from Ipomoea tyrianthina. J. Ethnopharmacol. 2011, 135, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Perusquía, M.; Mendoza, S.; Bye, R.; Linares, E.; Mata, R. Vasoactive effects of aqueous extracts from five Mexican medicinal plants on isolated rat aorta. J Ethnopharmacol. 1995, 46, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Arias-Ortíz, H.M.; López-Bedoya, A.; Bernal-Vera, M.E.; Castaño-Ramirez, E. Caracterización ecológica y fitoquímica de la batatilla Ipomoea purpurea L. Roth (Solanales, Convolvulaceae) en el municipio de Manizales. Bol. Cient. Cent. Mus. Mus. Hist. Nat. 2011, 15, 19–39. Available online: https://revistasojs.ucaldas.edu.co/index.php/boletincientifico/article/view/4606 (accessed on 26 January 2024).
- Cao, S.; Zhao, B.; Zou, Y.; Sun, Z.; Zhang, H.; Wei, S.; Ji, M. P450s mediated enhanced herbicide metabolism involved in the thifensulfuron-methyl resistance in Ipomoea purpurea L. Biochem. Physiol. 2022, 184, 105111. [Google Scholar] [CrossRef] [PubMed]
- Rafiq-Kumar, M.; Tauseef, S.M.; Abbasi, T.; Abbasi, S.A. Control of amphibious weed Ipomoea carnea by utilizing it for the extraction of volatile fatty acids as energy precursors. J. Adv. Res. 2015, 6, 73–78. [Google Scholar] [CrossRef]
- Sharma, A.; Bachheti, R.K. A review on Ipomoea carnea. Int. J. Pharma Bio Sci. 2013, 4, 363–377. [Google Scholar]
- Abbasi, T.; Anuradha, J.; Ganaie, S.U.; Abbasi, S.A. Gainful utilization of the highly intransigent weed Ipomoea in the synthesis of gold nanoparticles. J. King Saud Univ. Sci. 2015, 27, 15–22. [Google Scholar] [CrossRef]
- Rout, S.K.; Kar, D.M. Sedative, anxiolytic and anticonvulsant effects of different extracts from the leaves of Ipomoea carnea in experimental animals. Int. J. Drug Dev. Res. 2013, 5, 232–243. [Google Scholar]
- Beheshti, F.; Shabani, A.A.; Akbari, M.R.; Kokhaei, P.; Vazirian, M.; Safavi, M. Anticancer activity of Ipomoea purpurea leaves extracts in monolayer and three-dimensional cell culture. Evid. Based Complement. Alternat. Med. 2021, 14, 6666567. [Google Scholar] [CrossRef]
- Beheshti, F.M.; Safavi, M.; Eidgahi, M.R.; Kokhaei, P.; Vazirian, M.; Shabani, A.A. Phytochemical screening and in vitro antioxidant activity of extracts of Ipomoea purpurea leaves from Iran. Biologia 2023, 69, 32–39. [Google Scholar] [CrossRef]
- Vázquez-Ruiz, Z.; Toledo, E.; Vitelli-Storelli, F.; Goni, L.; de la O, V.; Bes-Rastrollo, M.; Martínez-González, M.Á. Effect of dietary phenolic compounds on incidence of cardiovascular disease in the SUN Project; 10 years of follow-up. Antioxidants 2022, 11, 783. [Google Scholar] [CrossRef]
- Negri, S.; Pietrolucci, F.; Andreatta, S.; Njoku, R.C.; Ramos, C.A.S.N.; Crimi, M.; Commisso, M.; Guzzo, F.; Avesani, L. Bioprospecting of Artemisia genus: From artemisinin to other potentially bioactive compounds. Sci. Rep. 2024, 14, 4791. [Google Scholar] [CrossRef]
- Cervantes, R.; Barragán, M.; Chaquilla, G. Antioxidant evaluation in the sweet potato purple (Ipomoea batatas L.) leaf tea. Tecnol. Marcha 2019, 32, 51–59. [Google Scholar] [CrossRef]
- Sulaiman, C.; Geetha, S.P.; Indira, B. Identification of phenolic antioxidants in Ipomoea mauritiana Jacq. using spectrophotometric and mass spectroscopic studies. Avicenna J. Phytomed. 2014, 4, 89–96. [Google Scholar]
- Meira, M.; Silva, E.P.; David, J.M.; David, J.P. Review of the genus Ipomoea: Traditional uses, chemistry and biological activities. Rev. Bras. Farmacogn. 2012, 22, 682–713. [Google Scholar] [CrossRef]
- Sousa, E.O.; Costa, J.G. Genus Lantana: Chemical aspects and biological activities. Rev. Bras. Farmacogn. 2012, 22, 1111–1180. [Google Scholar] [CrossRef]
- Liang, D.; Li, H.; Pan, Y.; Liu, Z.; Xiang, H. Transcriptome analysis of Ipomoea cairica algicidal mechanism against Phaeocystis globosa. Front. Mar. Sci. 2025, 12, 1580077. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Liu, Y.; Zhang, Y.; Wang, Y.; Peng, Y.; Ding, Y. Diosmetin-7-O-β-D-glucopyranoside suppresses endothelial-mesenchymal transformation through endoplasmic reticulum stress in cardiac fibrosis. Clin. Exp. Pharmacol. Physiol. 2023, 50, 789–805. [Google Scholar] [CrossRef]
- Hordyjewska, A.; Ostapiuk, A.; Horecka, A.; Kurzepa, J. Betulin and betulinic acid: Triterpenoids derivatives with a powerful biological potential. Phytochem. Rev. 2019, 18, 929–951. [Google Scholar] [CrossRef]
- Ono, M.; Ueguchi, T.; Murata, H.; Kawasaki, T.; Miyahara, K. Resin glycosides, XVI: Marubajalapins I–VII, new ether-soluble resin glycosides from Pharbitis purpurea. Chem. Pharm. Bull. 1992, 40, 3169–3173. [Google Scholar] [CrossRef]
- Lin, W.C.; Hsu, K.C.; You, M.F.; Lee, K.H.; Chi, C.H.; Chen, J.Y. Octanoic acid promotes clearance of antibiotic-tolerant cells and eradicates biofilms of Staphylococcus aureus isolated from recurrent bovine mastitis. Biofilm 2023, 6, 100149. [Google Scholar] [CrossRef] [PubMed]
- Boukhers, I.; Morel, S.; Kongolo, J.; Domingo, R.; Servent, A.; Ollier, L.; Kodja, H.; Petit, T.; Poucheret, P. Immunomodulatory and Antioxidant Properties of Ipomoea batatas Flour and Extracts Obtained by Green Extraction. Curr. Issues Mol. Biol. 2023, 45, 6967–6985. [Google Scholar] [CrossRef]
- Rosas-Ramírez, D.G.; Escandón-Rivera, S.; Lazcano-Pérez, F.; Arreguín-Espinosa, R. El género Ipomoea: Desde la época prehispánica hasta la actualidad. Epistemus 2025, 19, 2. [Google Scholar] [CrossRef]
- Okechukwu, P.N. Evaluation of anti-inflammatory, analgesic, antipyretic effect of eicosane, pentadecane, octacosane, and heneicosane. Asian J. Pharm. Clin. Res. 2020, 13, 123–127. [Google Scholar] [CrossRef]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef]
- Pongprayoon, U.; Baeckström, P.; Jacobsson, U.; Lindström, L.; Bohlin, L. Antispasmodic Activity of β-Damascenone and E-Phytol Isolated from Ipomoea pes-caprae. Planta Med. 1992, 58, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Kenakin, T. A Pharmacology Primer: Techniques for More Effective and Strategic Drug Discovery, 4th ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 1–350. [Google Scholar]
- Rang, H.P.; Dale, M.M.; Ritter, J.M.; Flower, R.J.; Henderson, G. Rang & Dale’s Pharmacology, 7th ed.; Elsevier: Edinburgh, UK, 2012; pp. 1–829. [Google Scholar]
- Sakurai, N.; Iizuka, T.; Nakayama, S.; Funayama, H.; Noguchi, M.; Nagai, M. Vasorelaxant activity of caffeic acid derivatives from Cichorium intybus and Equisetum arvense. Yakugaku Zasshi 2003, 123, 593–598. [Google Scholar] [CrossRef]
- Astragalus Extracts Against Paraoxon-Induced Endothelial Dysfunction in Rat Aorta. CABI Digital Library. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20113230155 (accessed on 15 May 2025).
- Qian, L.B.; Fu, J.Y.; Cai, X.; Xia, M.L. Betulinic acid inhibits superoxide anion-mediated endothelial dysfunction in rat aorta. Indian J. Pharmacol. 2012, 44, 588–592. [Google Scholar] [CrossRef]
- Oboh, G.; Agunloye, O.M.; Adefegha, S.A.; Akinyemi, A.J.; Ademiluyi, A.O. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): A comparative study. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 165–170. [Google Scholar] [CrossRef]
- Suzuki, A.; Yamamoto, M.; Jokura, H.; Yamamoto, S.; Fujii, A.; Tokimitsu, I.; Saito, I. Ferulic acid restores endothelium-dependent vasodilation in aortas of spontaneously hypertensive rats. Am. J. Hypertens. 2007, 20, 508–513. [Google Scholar] [CrossRef]
- Arctigenin’s Calcium Antagonist Action on Smooth Muscle. BVS Biblioteca Virtual en Salud. Available online: https://pesquisa.bvsalud.org/portal/resource/pt/wpr-412222 (accessed on 15 May 2025).
- Javaid, A.; Shafique, S.; Shafique, S. Herbicidal effects of extracts and residue incorporation of Datura metel against parthenium weed. Nat. Prod. Res. 2010, 24, 1426–1437. [Google Scholar] [CrossRef]
- García, M. Evaluación del Efecto Citotóxico de Extractos de Tagetes lucida Sobre Líneas Celulares Tumorales. Master’s Thesis, Universidad Autónoma de Querétaro, Santiago de Querétaro, México, 2018. [Google Scholar]
- Pongprayoon, U.; Bohlin, L.; Soonthornsaratune, P.; Wasuwat, S. Anti-inflammatory activity of Ipomoea pes-caprae (L.) R. Br. Phytoter. Res. 1991, 5, 63–66. [Google Scholar] [CrossRef]
- Jiang, F.; Li, C.G.; Rand, M.J. Mechanisms of nitric oxide-independent relaxations induced by carbachol and acetylcholine in rat isolated renal arteries. Br. J. Pharmacol. 2000, 130, 1191–1200. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, J.; Yang, B.; Zhong, Y.M. Bioavailability of caffeic acid in rats and its absorption properties in the Caco-2 cell model. Pharm. Biol. 2014, 52, 1150–1157. [Google Scholar] [CrossRef] [PubMed]
- Godugu, C.; Patel, A.R.; Doddapaneni, R.; Somagoni, J.; Singh, M. Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinic acid. PLoS ONE 2014, 9, e89919. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.M.; Şoica, C.M.; Wenz, G.A. Comparison investigation on the solubilization of betulin and betulinic acid in cyclodextrin derivatives. Nat. Prod. Commun. 2012, 7, 289–291. [Google Scholar] [CrossRef] [PubMed]
- Losada-Barreiro, S.; Celik, S.; Sezgin-Bayindir, Z.; Bravo-Fernández, S.; Bravo-Díaz, C. Carrier systems for advanced drug delivery: Improving drug solubility/bioavailability and administration routes. Pharmaceutics 2024, 16, 852. [Google Scholar] [CrossRef]
- de Alencar Silva, A.; Pereira-de-Morais, L.; Rodrigues da Silva, R.E.; de Menezes Dantas, D.; Brito Milfont, C.G.; Gomes, M.F.; Araújo, I.M.; Kerntopf, M.R.; de Menezes, I.R.A.; Barbosa, R. Pharmacological screening of the phenolic compound caffeic acid using rat aorta, uterus and ileum smooth muscle. Chem. Biol. Interact. 2020, 332, 109269. [Google Scholar] [CrossRef]
- Duangjai, A.; Rawangkan, A.; Yosboonruang, A.; Ontawong, A.; Saokaew, S.; Goh, B.H.; Suganuma, M.; Phisalprapa, P. Antispasmodic activity of light-roasted coffee extract and its potential use in gastrointestinal motility disorders. Foods 2024, 13, 2307. [Google Scholar] [CrossRef]
- Sadraei, H.; Ghanadian, M.; Asghari, G.; Sekhavati, N. Antispasmodic activity of apigenin and luteolin, two components of Dracocephalum kotschyi extract, on rat ileum contractions. J. Herbmed. Pharmacol. 2018, 7, 100–105. [Google Scholar] [CrossRef]
- Koech, P.K.; Boldizsar, I.; Dobolyi, Á.; Varro, P. Effects of dibenzylbutyrolactone lignans arctigenin and trachelogenin on the motility of isolated rat ileum. Toxicol. Rep. 2022, 9, 1222–1232. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Huang, Y.; Lu, L.; Yang, W.; Huang, T.; Lin, Z.; Lin, C.; Kwan, H.; Wong, H.L.X.; Chen, Y.; et al. Saturated long-chain fatty acid-producing bacteria contribute to enhanced colonic motility in rats. Microbiome 2018, 6, 107. [Google Scholar] [CrossRef]
- Gwynne, R.M.; Thomas, E.A.; Goh, S.M.; Sjövall, H.; Bornstein, J.C. Segmentation induced by intraluminal fatty acid in isolated guinea-pig duodenum and jejunum. J. Physiol. 2004, 556, 557–569. [Google Scholar] [CrossRef]
- Leonhardt, V.; Leal-Cardoso, J.H.; Lahlou, S.; Albuquerque, A.A.; Porto, R.S.; Celedônio, N.R.; Oliveira, A.C.; Pereira, R.F.; Silva, L.P.; Garcia-Teófilo, T.M. Antispasmodic effects of essential oil of Pterodon polygalaeflorus and its main constituent β-caryophyllene on rat isolated ileum. Fundam. Clin. Pharmacol. 2010, 24, 749–758. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Guo, L.; Sheng, Z. Bioactivity-guided isolation of potential antidiarrheal constituents from Euphorbia hirta L. and molecular docking evaluation. Front. Vet. Sci. 2024, 11, 1451615. [Google Scholar] [CrossRef]
- Todorova, V.; Ivanova, S.; Yotov, V.; Zaytseva, E.; Ardasheva, R.; Turiyski, V.; Prissadova, N.; Ivanov, K. Phytoecdysteroids: Quantification in Selected Plant Species and Evaluation of Some Effects on Gastric Smooth Muscles. Molecules 2024, 29, 5145. [Google Scholar] [CrossRef]
- Jodynis-Liebert, J.; Kujawska, M. Dosis-respuesta bifásica inducida por fitoquímicos: Evidencia experimental. J. Clin. Med. 2020, 9, 718. [Google Scholar] [CrossRef]
- Zevallos Escobar, L.E.; Arroyo Acebedo, J.L. Efecto sobre el músculo liso intestinal y toxicidad aguda oral de un extracto de chilca (Baccharis latifolia). Crescendo 2013, 4, 103–112. [Google Scholar] [CrossRef]
- Xi, X.; Wang, J.; Qin, Y.; You, Y.; Huang, W.; Zhan, J. The Biphasic Effect of Flavonoids on Oxidative Stress and Cell Proliferation in Breast Cancer Cells. Antioxidants 2022, 11, 622. [Google Scholar] [CrossRef]
- Albulescu, L.; Suciu, A.; Neagu, M.; Tanase, C.; Pop, S. Differential Biological Effects of Trifolium pratense Extracts—In Vitro Studies on Breast Cancer Models. Antioxidants 2024, 13, 1435. [Google Scholar] [CrossRef]
- McLendon, K.; Preuss, C.V. Atropine. StatPearls. 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470551/ (accessed on 15 May 2025).
- Wong, M.Y.W.; Hebbard, G.; Gibson, P.R.; Burgell, R.E. Chronic constipation and abdominal pain: Independent or closely interrelated symptoms. J. Gastroenterol. Hepatol. 2020, 35, 1294–1301. [Google Scholar] [CrossRef]
- Mehmood, M.H.; Munir, S.; Khalid, U.A.; Asrar, M.; Gilani, A.H. Antidiarrheal, antisecretory and antispasmodic activities of Matricaria chamomilla are mediated predominantly through K+-channels activation. BMC Complement. Med. Ther. 2015, 15. [Google Scholar] [CrossRef]
- Shah, A.J.; Bhulani, N.N.; Khan, S.H.; Rehman, N.U.; Gilani, A.H. Calcium-channel-blocking activity of Mentha longifolia L. explains its medicinal use in diarrhea and gut spasm. Phytother. Res. 2010, 24, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Corsetti, M.; Forestier, S.; Jiménez, M. Hyoscine butylbromide mode of action on bowel motility: From pharmacology to clinical practice. Neurogastroenterol. Motil. 2023, 35, e14451. [Google Scholar] [CrossRef]
- Pomeroy, A.R.; Rand, M.J. Anticholinergic effects and passage through the intestinal wall of N-butylhyoscine bromide. J. Pharm. Pharmacol. 1969, 21, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Mearin, F.; Ciriza, C.; Mínguez, M.; Rey, E.; Mascort, J.J.; Balboa, A.; Díaz-Rubio, M. Guía de práctica clínica: Síndrome del intestino irritable con estreñimiento y estreñimiento funcional en adultos. Rev. Esp. Enferm. Dig. 2016, 108, 332–363. [Google Scholar] [CrossRef]
- Bylund, D.B. Senna. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–14. [Google Scholar]
- Le, J.; Ji, H.; Zhou, X.; Wei, X.; Chen, Y.; Fu, Y.; Ma, Y.; Han, Q.; Sun, Y.; Gao, Y.; et al. Pharmacology, Toxicology, and Metabolism of Sennoside A, A Medicinal Plant-Derived Natural Compound. Front. Pharmacol. 2021, 12, 714586. [Google Scholar] [CrossRef]
- Hara, H.; Ise, Y.; Morimoto, N.; Shimazawa, M.; Ichihashi, K.; Ohyama, M.; Iinuma, M. Laxative effect of agarwood leaves and its mechanism. Biosci. Biotechnol. Biochem. 2008, 72, 335–345. [Google Scholar] [CrossRef]
- García, K.R.; Remes, J.M. Constipación crónica. Conceptos actuales desde la fisiopatología hasta el tratamiento. Acta Gastroenterol. Latinoam. 2021, 51, 14–18. [Google Scholar] [CrossRef]
- Vinardell, M.P. Are there alternatives to animal experimentation? RBD 2021, 51, 81–97. [Google Scholar] [CrossRef]
- Lorke, D. A new approach to practical acute toxicity testing. Arch. Toxicol. 1983, 54, 275–287. [Google Scholar] [CrossRef]
- Burkholder, T.; Foltz, C.; Karlsson, E.; Linton, C.G.; Smith, J.M. Health Evaluation of Experimental Laboratory Mice. Curr. Protoc. Mouse Biol. 2012, 2, 145–165. [Google Scholar] [CrossRef] [PubMed]
- Charles River Laboratories. CD-1® Mouse Hematology Data. Available online: https://www.criver.com/resources/cd-1-mouse-clinical-pathology-data (accessed on 15 June 2025).
- Liu, F.; Liu, Y.; Peng, Q.; Wang, G.; Tan, Q.; Ou, Z.; Xu, Q.; Liu, C.; Zuo, D.; Zhao, J. Creatinine accelerates APAP-induced liver damage by increasing oxidative stress through ROS/JNK signaling pathway. Front. Pharmacol. 2022, 13, 959497. [Google Scholar] [CrossRef] [PubMed]
- Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iran J. Pharm. Res. 2016, 15, 45–54. [Google Scholar] [CrossRef]
- El Hilaly, J.; Israili, Z.H.; Lyoussi, B. Acute and chronic toxicological studies of Ajuga iva in experimental animals. J. Ethnopharmacol. 2004, 91, 43–50. [Google Scholar] [CrossRef]
- Agbaje, E.O.; Adeneye, A.A.; Daramola, A.O. Biochemical and toxicological studies of aqueous extract of Syzygium aromaticum (L.) Merr. & Perry (Myrtaceae) in rodents. Afr. J. Trad. CAM 2009, 6, 241–254. [Google Scholar] [CrossRef]
- Ukwuani, A.N.; Abubakar, M.G.; Hassan, S.W.; Agaie, B.M. Toxicological studies of hydromethanolic leaves extract of Grewia crenata. Int. J. Pharm. Sci. Drug Res. 2012, 4, 245–249. [Google Scholar] [CrossRef]
- NOM-062-ZOO-1999; Especificaciones Técnicas para la Producción, Cuidado y uso de los Animales de Laboratorio. Dirección General de Normas: Ciudad de México, México, 2001.
- NOM-087-ECOL-SSA1-2002; Protección Ambiental–Salud Ambiental–Residuos Peligrosos Biológico-Infecciosos–Clasificación y Especificaciones de Manejo. Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT): Ciudad de México, México, 2002.
- Hinojosa Dávalos, J.; Gutiérrez Lomelí, M.; Siller López, F.; Rodríguez Sahagún, A.; Morales Del Río, J.A.; Guerrero Medina, P.J.; Del-Toro-Sánchez, C.L. Screening fitoquímico y capacidad antiinflamatoria de hojas de Tithonia tubaeformis. Rev. Cienc. Biol. Salud 2012, 15, 53–60. [Google Scholar] [CrossRef]
- Kashyap, S.; Rani, L. Phytochemical screening of primary and secondary metabolites in four species of Ipomoea (I. aquatica, I. batata, I. carnea, I. palmata)-an underutilized ethnomedicinal weeds of Jharkhand. Biospectra 2021, 16, 139–144. [Google Scholar]
- Muhamad, M.; Ai Sze, W.; Zulkifli, N.S.; Ab-Rahim, S. Qualitative Analysis on the Phytochemical Compounds and Total Phenolic Content of Cissus hastata (Semperai) Leaf Extract. Int. J. Plant Biol. 2023, 14, 53–62. [Google Scholar] [CrossRef]
- Pérez, M.; Dominguez-López, I.; Lamuela-Raventós, R.M. The Chemistry Behind the Folin–Ciocalteu Method for the Estimation of (Poly)phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. J. Agric. Food Chem. 2023, 71, 17543–17553. [Google Scholar] [CrossRef]
- Cantin, C.M.; Moreno, M.A.; Gogorcena, Y. Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J. Agric. Food Chem. 2009, 57, 4586–4592. [Google Scholar] [CrossRef]
- Kumari, D.; Singh, D.; Meena, M.; Janmeda, P.; Siddiqui, M.H. Qualitative, Quantitative, In Vitro Antioxidant Activity and Chemical Profiling of Leptadenia pyrotechnica (Forssk.) Decne Using Advanced Analytical Techniques. Antioxidants 2024, 13, 794. [Google Scholar] [CrossRef]
- Castro-Ruiz, J.E.; Rojas-Molina, A.; Luna-Vázquez, F.J.; Rivero-Cruz, F.; Garcia-Gasca, T.; Ibarra-Alvarado, C. Affinin (Spilanthol), isolated from Heliopsis longipes, induces vasodilation via activation of gasotransmitters and prostacyclin signaling pathways. Int. J. Mol. Sci. 2017, 18, 218. [Google Scholar] [CrossRef]
- Ibarra-Alvarado, C.; Rojas, A.; Mendoza, S.; Bah, M.; Gutiérrez, D.M.; Hernández-Sandoval, L.; Martínez, M. Vasoactive and antioxidant activities of plants used in Mexican traditional medicine for the treatment of cardiovascular diseases. Pharm. Biol. 2010, 48, 732–739. [Google Scholar] [CrossRef]
- Luna-Vázquez, F.J.; Ibarra-Alvarado, C.; Camacho-Corona, M.D.R.; Rojas-Molina, A.; Rojas-Molina, J.I.; García, A.; Bah, M. Vasodilator activity of compounds isolated from plants used in Mexican traditional medicine. Molecules 2018, 23, 1474. [Google Scholar] [CrossRef]
- Ventura-Martínez, R.; Rodríguez, R.; González-Trujano, M.E.; Ángeles-López, G.E.; Déciga-Campos, M.; Gómez, C. Spasmogenic and spasmolytic activities of Agastache mexicana ssp. mexicana and A. mexicana ssp. xolocotziana methanolic extracts on the guinea pig ileum. J. Ethnopharmacol. 2017, 196, 58–65. [Google Scholar] [CrossRef]
- Nasu, T.; Murase, H.; Shibata, H. Manganese ions induce tonic contraction after relaxation in a high-K+ medium in ileal longitudinal smooth muscle of guinea-pig. J. Pharm. Pharmacol. 1994, 46, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Chinedu, E.; Arome, D.; Ameh, F.S. A new method for determining acute toxicity in animal models. Int. J. Toxicol. 2013, 20, 224. [Google Scholar] [CrossRef] [PubMed]
- Watafua, M.; Ejiofor, J.I.; Musa, A.; Ahmad, M.H. Toxicological study on methanol root bark extract of Acacia sieberiana (Fabaceae) in Wistar rats. bioRxiv 2022. [Google Scholar] [CrossRef]
Type of Phytochemical Constituent | Name of the Test | Methanolic Extract of Ipomoea purpurea (ME-Ip) | Dichloromethane Extract of Ipomoea purpurea (DE-Ip) |
---|---|---|---|
Alkaloids | Mayer’s test | Absent | Absent |
Wagner’s test | Absent | Absent | |
Dragendorff’s test | Absent | Absent | |
Phenolic compounds | FeCl3 test | Present | Absent |
Flavonoids | NaOH Test | Present | Absent |
Shinoda’s test | Present | Absent | |
Terpene compounds and phytosterols | Liebermann–Burchard test | Absent | Present |
Salkowski’s test | Absent | Present | |
Tannins | FeCl3 test | Present | Absent |
Saponins | Foam test | Present | Present |
Glycosides | Kiliani Keller’s test | Present | Present |
Borntager’s test | Present | Present | |
Carbohydrates | Molish’s test | Present | Present |
Method | Result |
---|---|
Determination of total phenolic compounds (Folin-Ciocalteau method) | 38.69 ± 0.01 mg GAE/g 1 dry extract |
Determination of total flavonoids (Zhishen method) | 17.86 ± 0.01 mg CAE/g 2 dry extract |
FRAP method 3 | 12.90 ± 0.12 μmol TE/g 4 dry extract |
DPPH method 5 | 19.2 ± 2.85% 6 |
Proposed Compound | Rt (min) | [M–H]− (Parent Ion) | Theoretical Neutral Mass (Da) | Experimental Neutral Mass (Da) | Error (ppm) | MS/MS Fragments (m/z) | Relative Response |
---|---|---|---|---|---|---|---|
Caffeic acid 4-O-glucoside | 4.09 | 341.08774 | 342.0951 | 342.0950 | 0.2 | 297.03008, 235.05643 | 3931 |
Astragalin | 7.00 | 447.0933 | 448.1006 | 448.1006 | 0.0 | 283.02514, 255.02728, 446.08195 | 1456 |
Caffeic acid | 4.45 | 179.03447 | 180.04226 | 179.0345 | 2.9 | 135.04485, 133.02856, 93.03396 | 10772 |
Chlorogenic acid | 6.63 | 353.06627 | 354.09508 | 354.0952 | 0.2 | 133.02923, 191.05538, 135.04495 | 12682 |
Ferulic acid | 4.01 | 193.05000 | 194.05791 | 193.0504 | 1.4 | 177.01853, 93.03412, 137.0236 | 1190 |
N-cis-feruloyltyramine | 5.02 | 312.12398 | 313.13141 | 312.1240 | 0.5 | 135.04415, 178.05017, 297.1091 | 13242 |
Apigenin 7-O-glucoside | 6.01 | 431.0987 | 432.10565 | 432.1080 | 0.8 | 311.05594, 283.06081, 269.04455 | 92404 |
Apigenin 7-glucuronide | 5.47 | 445.0773 | 446.08401 | 445.0773 | 0.7 | 427.21744, 327.05087, 269.04547 | 2342 |
3,4-Di-O-caffeoylquinic acid | 7.72 | 515.11909 | 530.14243 | 529.1353 | 0.2 | 191.05538, 375.07003,353.08788 | 3879 |
5Z-Caffeoylquinic acid | 4.45 | 353.08827 | 354.09508 | 353.0883 | 1.3 | 135.04485, 179.03447 | 52663 |
Diosmetin 7-O-β-D-glucopyranoside | 7.95 | 461.10852 | 462.1162 | 462.1160 | 0.9 | 311.05632, 341.10154, 446.16078 | 1052 |
(−)-Arctigenin | 23.25 | 371.14895 | 372.15729 | 371.1490 | 2.9 | 269.24585, 339.15959 | 1081 |
Betulinic acid | 18.43 | 455.35226 | 456.36035 | 455.3523 | 0.8 | 275.19835, 407.17605, 425.169 | 3025 |
Type of Metabolite | Metabolite | Condensed Formula | Area (%) | Rt 1 | RIe 2 | RIb 3 | Reference |
---|---|---|---|---|---|---|---|
Carboxylic acid | Acetic acid | C2H4O2 | 0.05 | 5.784 | 601.1 | 610 | a,b |
Carboxylic acid | Octanoic acid | C8H16O2 | 1.42 | 38.456 | 1041 | 1182 | a,b |
Carboxylic acid | N-decanoic acid | C10H20O2 | 0.75 | 47.860 | 1163 | 1376 | a,b |
Carboxylic acid | Tetradecanoic acid | C14H28O2 | 0.08 | 79.902 | 1901 | 1787 | a,b |
Carboxylic acid | n-Hexadecanoic acid | C16H32O2 | 7.80 | 89.042 | 1955 | 1981 | a,b |
Carboxylic acid | Heptadecanoic acid | C17H34O2 | 0.05 | 92.453 | 1972 | 2022 | a,b |
Carboxylic acid | 8,11-Octadecadienic acid | C18H32O2 | 0.12 | 93.638 | 1977 | 2159 | a,b |
Carboxylic acid | Linolenic acid | C19H32O2 | 0.13 | 93.901 | 1977 | 2107 | a,c |
Carboxylic acid | Linoleic acid | C18H32O2 | 2.55 | 95.749 | 1989 | 2095 | a,c |
Carboxylic acid | Stearic acid | C18H36O2 | 1.99 | 96.734 | 1996 | 2157 | a,b |
Carboxylic acid | Arachidic acid | C20H40O2 | 0.78 | 101.194 | 2015 | 2359 | a,b |
Ester | Methyl palmitate | C17H34O2 | 0.07 | 87.156 | 1943 | 1913 | a,b |
Ester | Methyl 7,10,13-hexadecatrienoate | C17H28O2 | 5.23 | 96.006 | 1989 | 2352 | a,c |
Ester | Methyl eicosanoate | C21H42O2 | 0.13 | 100.499 | 2013 | 2332 | a,b |
Ester | Di-n-octyl phthalate | C24H38O4 | 0.17 | 104.052 | 2030 | 2507 | a,b |
Ester | Methyl hexacosanoate | C27H54O2 | 0.51 | 110.997 | 2061 | 2904 | a,c |
Ester | Hexadecyl hexadecanoate | C32H64O2 | 0.19 | 122.364 | 2110 | 2188 | a,b |
Ester | 4,8,12,16-Tetramethylheptadecan-4-olide | C21H40O2 | 0.35 | 100.911 | 2013 | 2364 | a,c |
Ketone | 2-Heptacosanone | C27H54O | 0.79 | 110.798 | 2059 | - | a,e |
Ketone | 2-Nonacosanone | C29H58O | 0.36 | 115.072 | 2080 | - | a,e |
Amide | Hexadecanamide | C16H33NO | 0.15 | 97.274 | 1997 | 2182 | a,c |
Amide | Tetradecanamide | C14H29NO | 0.12 | 101.632 | 2018 | 1921 | a,c |
Amide | Erucamide | C22H43NO | 0.35 | 108.545 | 2051 | 2625 | a,c |
Terpenoid | Caryophyllene | C15H24 | 0.04 | 51.445 | 1684 | 1464 | a,b |
Terpenoid | Dihydroactinidiolide | C11H16O2 | 0.15 | 61.795 | 1775 | 1519 | a,c |
Terpenoid | Spathulenol | C15H24O | 0.24 | 66.990 | 1815 | - | a,e |
Terpenoid | Caryophyllene oxide | C15H24O | 0.45 | 67.479 | 1817 | - | a,e |
Terpenoid | Isophytol | C20H40O | 0.04 | 87.954 | 1947 | 1945 | a,c |
Terpenoid | Phytane | C20H42 | 0.05 | 89.969 | 1960 | 1791 | a,c |
Terpenoid | Phytol | C20H40O | 0.35 | 94.506 | 1982 | 2119 | a,c |
Terpenoid | Squalene | C30H50 | 0.70 | 108.982 | 2052 | 2819 | a,c |
Terpenoid | γ-Tocopherol | C28H48O2 | 1.47 | 113.643 | 2074 | 2987 | a,c |
Terpenoid | α-Tocopherol | C29H50O2 | 0.42 | 115.477 | 2953 | 3111 | a,c |
Terpenoid | Campesterol | C28H48O | 0.24 | 118.663 | 2095 | - | a,e |
Terpenoid | γ-Sitosterol | C29H50O | 2.36 | 121.424 | 2104 | 3320 | a.c |
Alkene | 1-Decene | C10H20 | 0.05 | 80.893 | 1907 | 982 | a.b |
Alkene | 3,7,11,15-Tetramethyl-2-hexadecene | C20H40 | 0.18 | 83.024 | 1920 | 1830 | a,b |
Alkene | 2,6,10,14-Tetramethyl-2-hexadecene | C20H40 | 0.61 | 83.622 | 1923 | 1855 | a,c |
Alkane | Eicosane | C20H42 | 0.83 | 99.958 | 2010 | 2000 | a,b |
Alkane | Tetracosane | C24H50 | 12.75 | 102.790 | 2024 | 2400 | a,b |
Alkane | Heptacosane | C27H56 | 0.67 | 107.090 | 2045 | 2700 | a,d |
Alkane | Octacosane | C28H58 | 0.41 | 108.706 | 2051 | 2800 | a,d |
Alkane | Docosane | C22H46 | 0.37 | 109.748 | 2055 | 2200 | a.b |
Alkane | Hentriacontane | C31H 64 | 3.15 | 110.431 | 2058 | - | a,e |
Alkane | Tetratriacontane | C34H70 | 0.95 | 112.297 | 2067 | 3400 | a,c |
Alkane | Heneicosane | C21H44 | 8.68 | 120.214 | 2100 | 2100 | a,b |
Alcohol | 2-Methyl-3-buten-2-ol | C5H10O | 0.05 | 5.964 | 626 | 614 | a,c |
Phenol | 2-Methoxy-4-vinylphenol | C9H10O2 | 0.11 | 44.822 | 1615 | 1325 | a,c |
Phenol | 3-[(2-Metil-5-nitro-fenilimino)-metil]-fenol | C14H12N2O3 | 0.07 | 90.831 | 1963 | - | a,e |
Group | Time | Eye Changes 1 | Bristling Skin and Fur | Lethargy | Sleep | Stool | Coma | Tremors | Mucous Membrane | Salivation |
---|---|---|---|---|---|---|---|---|---|---|
Negative control | 0–2 h | NC | NO | NO | Normal | Firm, brown, stringy stools. | NO | NO | NC | NO |
Negative control (water) | 2–4 h | NC | NO | NO | Normal | Firm, brown, stringy stools. | NO | NO | NC | NO |
Negative control (water) | 4–6 h | NC | NO | NO | Normal | Firm, brown, stringy stools. | NO | NO | NC | NO |
Negative control (water) | 24 h | NC | NO | NO | Normal | Firm, brown, stringy stools. | NO | NO | NC | NO |
Positive control (Sennosides A and B) | 0–2 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
Positive control (Sennosides A and B) | 2–4 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
Positive control (Sennosides A and B) | 4–6 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
Positive control (Sennosides A and B) | 24 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
ME-Ip 10 mg/Kg | 0–2 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
ME-Ip 10 mg/Kg | 2–4 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
ME-Ip 10 mg/Kg | 4–6 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
ME-Ip 10 mg/Kg | 24 h | NC | NO | NO | Normal | Firm, brown, stringy stools. | NO | NO | NC | NO |
ME-Ip 100 mg/Kg | 0–2 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
ME-Ip 100 mg/Kg | 2–4 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
ME-Ip 100 mg/Kg | 4–6 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
ME-Ip 100 mg/Kg | 24 h | NC | NO | NO | Normal | Firm, brown, stringy stools. | NO | NO | NC | NO |
ME-Ip 1000 mg/Kg | 0–2 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
ME-Ip 1000 mg/Kg | 2–4 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
ME-Ip 1000 mg/Kg | 4–6 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
ME-Ip 1000 mg/Kg | 24 h | NC | NO | NO | Normal | Firm, brown, stringy stools. | NO | NO | NC | NO |
ME-Ip 5000 mg/Kg | 0–2 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
ME-Ip 5000 mg/Kg | 2–4 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
ME-Ip 5000 mg/Kg | 4–6 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
ME-Ip 5000 mg/Kg | 24 h | NC | NO | NO | Normal | Firm, brown, stringy stools. | NO | NO | NC | NO |
DE-Ip 10 mg/Kg | 0–2 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
DE-Ip 10 mg/Kg | 2–4 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
DE-Ip 10 mg/Kg | 4–6 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
DE-Ip 10 mg/Kg | 24 h | NC | NO | NO | Normal | Firm, brown, stringy stools. | NO | NO | NC | NO |
DE-Ip 100 mg/Kg | 0–2 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
DE-Ip 100 mg/Kg | 2–4 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
DE-Ip 100 mg/Kg | 4–6 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
DE-Ip 100 mg/Kg | 24 h | NC | NO | NO | Normal | Firm, brown, stringy stools. | NO | NO | NC | NO |
DE-Ip 1000 mg/Kg | 0–2 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
DE-Ip 1000 mg/Kg | 2–4 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
DE-Ip 1000 mg/Kg | 4–6 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
DE-Ip 1000 mg/Kg | 24 h | NC | NO | NO | Normal | Firm, brown, stringy stools. | NO | NO | NC | NO |
DE-Ip 5000 mg/Kg | 0–2 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
DE-Ip 5000 mg/Kg | 2–4 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
DE-Ip 5000 mg/Kg | 4–6 h | NC | O | NO | Normal | Soft, moist, light brown, semi-pasty stools. | NO | NO | NC | NO |
DE-Ip 5000 mg/Kg | 24 h | NC | NO | NO | Normal | Firm, brown, stringy stools. | NO | NO | NC | NO |
Group | Dose (mg/kg) | Day 0 | Day 7 | Day 14 |
---|---|---|---|---|
Control | 0 | 28.33 ± 0.58 | 33.67 ± 2.52 | 34.67 ± 2.52 |
ME-Ip | 10 | 31.33 ± 1.15 | 35.33 ± 0.58 | 37.33 ± 0.58 |
ME-Ip | 100 | 31.33 ± 1.15 | 33.67 ± 1.15 | 37.00 ± 1.73 |
ME-Ip | 1000 | 30.67 ± 0.58 | 32.33 ± 1.15 | 34.67 ± 2.31 |
DE-Ip | 10 | 29.67 ± 1.15 | 32.33 ± 2.31 | 33.67 ± 2.08 |
DE-Ip | 100 | 30.00 ± 3.46 | 33.00 ± 2.65 | 34.33 ± 2.52 |
DE-Ip | 1000 | 30.67 ± 2.08 | 33.67 ± 2.52 | 35.33 ± 2.08 |
Group | Control | ME-Ip (1000 mg/kg) | DE-Ip (1000 mg/kg) | |
---|---|---|---|---|
Parameter | ||||
Hematocrit (L/L) | 0.470 ± 0.07 | 0.460 ± 0.01 | 0.463 ± 0.04 | |
Hemoglobin (g/L) | 140.5 ± 18.53 | 139.5 ± 4.50 | 145.67 ± 8.66 | |
Erythrocytes (×1012/L) | 9.1 ± 1.40 | 9.0 ± 0.30 | 9.3 ± 0.53 | |
MCV (fL) | 51.5 ± 0.50 | 51.0 ± 1.00 | 49.3 ± 1.15 | |
MCHC (g/L) | 299.5 ± 5.50 | 303.0 ± 3.00 | 314.3 ± 7.50 | |
Reticulocytes (%) | – | – | – | |
Platelets (×109/L) | 335.50 ± 135.50 | 412.00 ± 118.30 | 440.00 ± 197.17 | |
Total solids (g/L) | 66.00 ± 2.00 | 68.00 ± 3.46 | 69.33 ± 1.15 |
Group | Control | ME-Ip (1000 mg/kg) | DE-Ip (1000 mg/kg) | |
---|---|---|---|---|
Parameter | ||||
Leukocytes (×109/L) | 6.63 ± 2.87 | 10.53 ± 0.83 | 9.50 ± 0.33 | |
Neutrophils (×109/L) | 2.16 ± 0.58 | 2.20 ± 0.31 | 2.57 ± 1.15 | |
Band neutrophils (×109/L) | - | - | - | |
Myelocytes (×109/L) | - | - | - | |
Lymphocytes (×109/L) | 3.68 ± 1.92 | 8.87 ± 1.30 * | 6.17 ± 1.10 | |
Monocytes (×109/L) | 0.41 ± 0.19 | 0.35 ± 0.05 | 0.27 ± 0.15 | |
Eosinophils (×109/L) | 0.05 ± 0.05 | 0.05 ± 0.05 | 0.20 ± 0.20 | |
Basophils (×109/L) | - | - | - |
Group | Control | ME-Ip (1000 mg/kg) | DE-Ip (1000 mg/kg) | |
---|---|---|---|---|
Parameter | ||||
Urea (mmol/L) | 11.24 ± 2.33 | 10.72 ± 0.05 | 11.78 ± 2.34 | |
Creatinine (μmol/L) | 34.33 ± 5.13 | 31.00 ± 7.81 | 37.00 ± 11.36 | |
ALT (U/L) | 428.25 ± 97.23 | 449.0 ± 97.58 | 491.25 ± 12.37 | |
AST (U/L) | 491.75 ± 9.57 | 476.5 ± 85.61 | 438.75 ± 52.74 | |
ALP (U/L) | 66.5 ± 20.51 | 64.0 ± 2.00 | 96.5 ± 21.76 | |
Cholesterol (mmol/L) | 2.94 ± 0.61 | 2.87 ± 0.19 | 2.75 ± 0.22 | |
Total protein (g/L) | 59.0 ± 3.00 | 59.0 ± 7.21 | 59.0 ± 2.65 |
Group | Kidney | Liver | Histological Sectionof Kidneys and Liver |
---|---|---|---|
Negative Control | |||
ME-Ip 1000 mg/Kg | |||
DE-Ip 1000 mg/Kg | |||
ME-Ip 5000 mg/Kg | |||
DE-Ip 5000 mg/Kg |
Category | Details |
---|---|
Plant Studied | Ipomoea purpurea (L.) Roth (aerial parts) |
Traditional Uses | Diuretic, purgative, and topical anti-inflammatory and soothing agent in Mexican traditional medicine |
Extracts Evaluated | Methanol (MeOH) and Dichloromethane (DCM) extracts |
Phytochemical Analysis |
|
Pharmacological Assays |
|
Toxicological Assessment |
|
Key Findings |
|
Conclusions |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Hernández, V.; Luna-Vázquez, F.J.; Carbajo-Mata, M.A.; Ibarra-Alvarado, C.; Rojas-Molina, A.; Maruri-Aguilar, B.; Vázquez-Landaverde, P.A.; Rojas-Molina, I. Phytochemical Profile, Vasodilatory and Biphasic Effects on Intestinal Motility, and Toxicological Evaluation of the Methanol and Dichloromethane Extracts from the Aerial Parts of Ipomoea purpurea Used in Traditional Mexican Medicine. Pharmaceuticals 2025, 18, 1134. https://doi.org/10.3390/ph18081134
Sánchez-Hernández V, Luna-Vázquez FJ, Carbajo-Mata MA, Ibarra-Alvarado C, Rojas-Molina A, Maruri-Aguilar B, Vázquez-Landaverde PA, Rojas-Molina I. Phytochemical Profile, Vasodilatory and Biphasic Effects on Intestinal Motility, and Toxicological Evaluation of the Methanol and Dichloromethane Extracts from the Aerial Parts of Ipomoea purpurea Used in Traditional Mexican Medicine. Pharmaceuticals. 2025; 18(8):1134. https://doi.org/10.3390/ph18081134
Chicago/Turabian StyleSánchez-Hernández, Valeria, Francisco J. Luna-Vázquez, María Antonieta Carbajo-Mata, César Ibarra-Alvarado, Alejandra Rojas-Molina, Beatriz Maruri-Aguilar, Pedro A. Vázquez-Landaverde, and Isela Rojas-Molina. 2025. "Phytochemical Profile, Vasodilatory and Biphasic Effects on Intestinal Motility, and Toxicological Evaluation of the Methanol and Dichloromethane Extracts from the Aerial Parts of Ipomoea purpurea Used in Traditional Mexican Medicine" Pharmaceuticals 18, no. 8: 1134. https://doi.org/10.3390/ph18081134
APA StyleSánchez-Hernández, V., Luna-Vázquez, F. J., Carbajo-Mata, M. A., Ibarra-Alvarado, C., Rojas-Molina, A., Maruri-Aguilar, B., Vázquez-Landaverde, P. A., & Rojas-Molina, I. (2025). Phytochemical Profile, Vasodilatory and Biphasic Effects on Intestinal Motility, and Toxicological Evaluation of the Methanol and Dichloromethane Extracts from the Aerial Parts of Ipomoea purpurea Used in Traditional Mexican Medicine. Pharmaceuticals, 18(8), 1134. https://doi.org/10.3390/ph18081134