Population Pharmacokinetic Modeling of Piperacillin/Tazobactam in Healthy Adults and Exploration of Optimal Dosing Strategies
Abstract
1. Introduction
2. Results
2.1. Participants
2.2. Population Pharmacokinetic Analysis
2.3. Dosage Simulation
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Study Design
4.3. Population PK Analysis
4.4. Dosage Simulation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARC | augmented renal clearance |
BSA | body surface area |
CC | cystatin C |
CFR | cumulative fraction of response |
CI | confidence interval |
CKD-EPI | chronic kidney disease epidemiology collaboration |
CL | total clearance |
CR | creatinine |
CrCl | creatinine clearance |
CWRES | conditional weighted residuals |
EDTA | ethylenediaminetetraacetic acid |
eGFR | estimated glomerular filtration rate |
EMA | European Medicines Agency |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
FDA | United States Food and Drug Administration |
fT>MIC | total percentage of a 24 h period during which the concentration of the free (unbound to protein) drug surpasses the minimum inhibitory concentration under steady-state conditions |
IIV | interindividual variability |
IPRED | individual predictions |
IRB | institutional review board |
LBM | lean body mass |
LC-MS/MS | liquid chromatography-tandem mass spectrometry |
MDRD | modification of diet in renal disease |
MIC | minimum inhibitory concentration |
OFV | objective function value |
PK/PD | pharmacokinetic/pharmacodynamic |
PRED | population predictions |
PTA | probability of target attainment |
Q | intercompartmental clearance between V1 and V2 |
RSE | relative standard error |
V1 | volume of distribution for the central compartment |
V2 | volume of distribution for the peripheral compartments |
Vd | volume of distribution |
VPC | visual predictive check |
Vss | steady-state volume of distribution |
WT | weight |
Appendix A
Parameter | Covariate | Model | Base OFV | New OFV | ΔOFV | p-Value |
---|---|---|---|---|---|---|
Forward step 1 | ||||||
CL | CrCl a | Power | 174.727 | 160.469 | −14.258 | 0.000159 |
CL | eGFR, CKD-EPIMDRD b | Power | 174.727 | 161.245 | −13.482 | 0.000241 |
CL | eGFR, CKD-EPICR c | Power | 174.727 | 158.832 | −15.895 | 0.000067 |
CL | eGFR, CKD-EPICC d | Power | 174.727 | 163.464 | −11.263 | 0.000791 |
CL | eGFR, CKD-EPICR-CC e | Power | 174.727 | 160.766 | −13.961 | 0.000187 |
V2 | Body mass index | Power | 174.727 | 160.808 | −13.919 | 0.000191 |
V2 | Body surface area | Power | 174.727 | 159.964 | −14.763 | 0.000122 |
V2 | Height | Power | 174.727 | 164.425 | −10.302 | 0.001329 |
V2 | Weight | Power | 174.727 | 164.619 | −10.108 | 0.001476 |
V2 | Body mass index | Power | 174.727 | 161.257 | −13.470 | 0.000242 |
V2 | Weight | Power | 174.727 | 159.464 | −15.263 | 0.000094 |
Forward step 2 | ||||||
V2 | Body mass index | Power | 158.832 | 145.594 | −13.238 | 0.000274 |
V2 | Body surface area | Power | 158.832 | 144.621 | −14.211 | 0.000163 |
V2 | Height | Power | 158.832 | 149.630 | −9.202 | 0.002418 |
V2 | Weight | Power | 158.832 | 150.497 | −8.335 | 0.003890 |
V2 | Lean body mass | Power | 158.832 | 146.621 | −12.211 | 0.000475 |
V2 | Weight | Power | 158.832 | 144.107 | −14.725 | 0.000124 |
Forward step 3 | ||||||
Q | Body surface area | Power | 144.107 | 131.553 | −12.554 | 0.000395 |
Q | Lean body mass | Power | 144.107 | 128.937 | −15.170 | 0.000098 |
Q | Weight | Power | 144.107 | 132.535 | −11.572 | 0.000670 |
V2 | Weight | Exponential | 144.107 | 143.488 | −0.619 | 0.000000 |
Forward step 4 | ||||||
Q | Body surface area | Power | 143.488 | 130.285 | −13.203 | 0.000280 |
Q | Lean body mass | Power | 143.488 | 128.690 | −14.798 | 0.000120 |
Q | Weight | Power | 143.488 | 130.687 | −12.801 | 0.000346 |
Backward step 1 | ||||||
CL | eGFR, CKD-EPICR c | None | 128.690 | 145.105 | 16.414 | 0.000051 |
Q | Lean body mass | None | 128.690 | 143.488 | 14.798 | 0.000120 |
V2 | Weight | Power | 128.690 | 128.937 | 0.246 | 0.000000 |
Parameter | Covariate | Model | Base OFV | New OFV | ΔOFV | p-Value |
---|---|---|---|---|---|---|
Forward step 1 | ||||||
CL | CrCl a | Power | −157.083 | −168.790 | −11.707 | 0.000623 |
CL | eGFR, CKD-EPIMDRD b | Power | −157.083 | −167.523 | −10.440 | 0.001233 |
CL | eGFR, CKD-EPICR c | Power | −157.083 | −168.795 | −11.712 | 0.000621 |
CL | eGFR, CKD-EPICC d | Power | −157.083 | −165.252 | −8.169 | 0.004260 |
CL | eGFR, CKD-EPICR-CC e | Power | −157.083 | −166.989 | −9.906 | 0.001647 |
CL | Weight | Power | −157.083 | −164.717 | −7.634 | 0.005727 |
CL | Body surface area | Power | −157.083 | −164.675 | −7.592 | 0.005861 |
V1 | Height | Power | −157.083 | −164.183 | −7.100 | 0.007710 |
V2 | Body mass index | Power | −157.083 | −167.052 | −9.969 | 0.001592 |
V2 | Body surface area | Power | −157.083 | −167.924 | −10.841 | 0.000993 |
V2 | Lean body mass | Power | −157.083 | −168.305 | −11.222 | 0.000808 |
V2 | Weight | Power | −157.083 | −168.610 | −11.527 | 0.000686 |
Forward step 2 | ||||||
V1 | Height | Power | −168.795 | −176.628 | −7.833 | 0.005129 |
V2 | Body mass index | Power | −168.795 | −179.349 | −10.554 | 0.001159 |
V2 | Body surface area | Power | −168.795 | −181.942 | −13.147 | 0.000288 |
V2 | Height | Power | −168.795 | −176.106 | −7.312 | 0.006850 |
V2 | Lean body mass | Power | −168.795 | −181.863 | −13.068 | 0.000300 |
V2 | Weight | Power | −168.795 | −182.092 | −13.297 | 0.000266 |
Forward step 3 | ||||||
Q | Body surface area | Power | −182.092 | −192.224 | −10.132 | 0.001457 |
Q | Lean body mass | Power | −182.092 | −191.539 | −9.447 | 0.002115 |
Q | Weight | Power | −182.092 | −191.719 | −9.627 | 0.001917 |
V2 | Weight | Exponential | −182.092 | −182.631 | −0.539 | 0.000000 |
Forward step 4 | ||||||
Q | Body surface area | Power | −182.631 | −192.957 | −10.326 | 0.001312 |
Q | Lean body mass | Power | −182.631 | −191.840 | −9.209 | 0.002409 |
Q | Weight | Power | −182.631 | −192.795 | −10.164 | 0.001432 |
V1 | Height | Power | −182.631 | −189.746 | −7.115 | 0.007645 |
Backward step 1 | ||||||
CL | eGFR, CKD-EPICR c | None | −192.957 | −179.223 | 13.733 | 0.000211 |
Q | Body surface area | None | −192.957 | −182.631 | 10.326 | 0.001312 |
V2 | Weight | Power | −192.957 | −192.224 | 0.733 | 0.000000 |
Backward step 2 | ||||||
CL | eGFR, CKD-EPICR c | None | −182.631 | −169.313 | 13.318 | 0.000263 |
V2 | Weight | Power | −182.631 | −182.092 | 0.539 | 0.000000 |
MIC | Target: 50%fT>MIC | Target: 100%fT>MIC | |||
---|---|---|---|---|---|
0.5 h Infusion | 3 h Infusion | 0.5 h Infusion | 3 h Infusion | CI | |
BSA adjusted eGFR: 0–20 mL/min | |||||
0.5 | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 4 g (100) |
1 | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 4 g (100) |
2 | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 4 g (100) |
4 | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 4 g (100) |
8 | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 4 g (100) |
16 | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (98.3) | 2 g q12h (100) | 4 g (100) |
32 | 2 g q12h (100) | 2 g q12h (100) | 2 g q8h (100) | 2 g q12h (91.5) | 4 g (100) |
64 | 2 g q12h (94.1) | 2 g q12h (96.6) | 2 g q6h (100) | 2 g q8h (94.1) | 4 g (100) |
128 | 2 g q6h (96.6) | 2 g q6h (100) | 4 g q6h (100) | 4 g q8h (94.1) | 8 g (100) |
BSA adjusted eGFR: 20–40 mL/min | |||||
0.5 | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 4 g (100) |
1 | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 4 g (100) |
2 | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (94.6) | 2 g q12h (100) | 4 g (100) |
4 | 2 g q12h (100) | 2 g q12h (100) | 2 g q8h (100) | 2 g q8h (100) | 4 g (100) |
8 | 2 g q12h (100) | 2 g q12h (100) | 2 g q8h (96.8) | 2 g q8h (100) | 4 g (100) |
16 | 2 g q12h (98.9) | 2 g q12h (100) | 2 g q6h (100) | 2 g q6h (100) | 4 g (100) |
32 | 2 g q8h (100) | 2 g q8h (100) | 4 g q6h (100) | 2 g q6h (95.7) | 4 g (100) |
64 | 4 g q8h (100) | 2 g q6h (100) | 6 g q6h (89.2) | 4 g q6h (95.7) | 8 g (100) |
128 | 6 g q6h (100) | 4 g q6h (100) | 6 g q6h (40.9) | 6 g q6h (66.7) | 16 g (100) |
BSA adjusted eGFR: 40–90 mL/min | |||||
0.5 | 2 g q12h (99.3) | 2 g q12h (100) | 2 g q6h (99.3) | 2 g q8h (97.2) | 4 g (100) |
1 | 2 g q12h (91.5) | 2 g q12h (100) | 2 g q6h (91.5) | 2 g q6h (100) | 4 g (100) |
2 | 2 g q8h (100) | 2 g q12h (99.3) | 4 g q6h (91.5) | 2 g q6h (99.3) | 4 g (100) |
4 | 2 g q8h (96.8) | 2 g q8h (100) | 6 g q6h (83.1) | 4 g q6h (99.3) | 4 g (100) |
8 | 2 g q6h (98.9) | 2 g q8h (100) | 6 g q6h (64.8) | 6 g q6h (97.2) | 4 g (100) |
16 | 4 g q6h (98.9) | 2 g q6h (100) | 6 g q6h (44.0) | 6 g q6h (75.4) | 8 g (100) |
32 | 6 g q6h (91.2) | 4 g q6h (100) | 6 g q6h (20.1) | 6 g q6h (46.1) | 12 g (100) |
64 | 6 g q6h (54.6) | 6 g q6h (100) | – | 6 g q6h (17.6) | 20 g (96.1) |
128 | 6 g q6h (14.8) | 6 g q6h (42.6) | – | – | 24 g (42.6) |
BSA adjusted eGFR: 90–130 mL/min | |||||
0.5 | 2 g q8h (100) | 2 g q12h (98.7) | 6 g q6h (83.6) | 2 g q6h (98.7) | 4 g (100) |
1 | 2 g q8h (93.5) | 2 g q8h (100) | 6 g q6h (45.7) | 4 g q6h (98.7) | 4 g (100) |
2 | 2 g q6h (100) | 2 g q8h (100) | 6 g q6h (19.0) | 6 g q6h (93.5) | 4 g (100) |
4 | 4 g q6h (100) | 2 g q8h (100) | – | 6 g q6h (53.0) | 4 g (100) |
8 | 6 g q6h (96.1) | 2 g q6h (100) | – | 6 g q6h (15.5) | 4 g (98.7) |
16 | 6 g q6h (51.3) | 2 g q6h (98.7) | – | – | 8 g (98.7) |
32 | – | 4 g q6h (98.7) | – | – | 16 g (98.7) |
64 | – | 6 g q6h (40.9) | – | – | 24 g (39.2) |
128 | – | – | – | – | – |
BSA adjusted eGFR: 130–180 mL/min | |||||
0.5 | 2 g q6h (100) | 2 g q8h (100) | – | 6 g q6h (93.4) | 4 g (100) |
1 | 4 g q6h (100) | 2 g q8h (100) | – | 6 g q6h (52.7) | 4 g (100) |
2 | 6 g q6h (99.6) | 2 g q8h (96.3) | – | 6 g q6h (14.3) | 4 g (100) |
4 | 6 g q6h (69.6) | 2 g q6h (100) | – | – | 4 g (100) |
8 | 6 g q6h (20.1) | 2 g q6h (100) | – | – | 8 g (100) |
16 | – | 4 g q6h (100) | – | – | 12 g (98.2) |
32 | – | 6 g q6h (98.2) | – | – | 24 g (98.2) |
64 | – | – | – | – | – |
128 | – | – | – | – | – |
MIC | Target: 50%fT>4MIC | Target: 100%fT>4MIC | |||
---|---|---|---|---|---|
0.5 h Infusion | 3 h Infusion | 0.5 h Infusion | 3 h Infusion | CI | |
BSA adjusted eGFR: 0–20 mL/min | |||||
0.5 | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 4 g (100) |
1 | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 4 g (100) |
2 | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (100) | 4 g (100) |
4 | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (98.3) | 2 g q12h (100) | 4 g (100) |
8 | 2 g q12h (100) | 2 g q12h (100) | 2 g q8h (100) | 2 g q12h (91.5) | 4 g (100) |
16 | 2 g q12h (94.1) | 2 g q12h (96.6) | 2 g q6h (100) | 2 g q8h (94.1) | 4 g (100) |
32 | 2 g q6h (96.6) | 2 g q6h (100) | 4 g q6h (100) | 4 g q8h (94.1) | 8 g (100) |
64 | 4 g q6h (96.6) | 4 g q6h (100) | 6 g q6h (94.1) | 6 g q6h (100) | 16 g (100) |
128 | 6 g q6h (80.5) | 6 g q6h (88.1) | 6 g q6h (63.6) | 6 g q6h (71.2) | 24 g (88.1) |
BSA adjusted eGFR: 20–40 mL/min | |||||
0.5 | 2 g q12h (100) | 2 g q12h (100) | 2 g q12h (94.6) | 2 g q12h (100) | 4 g (100) |
1 | 2 g q12h (100) | 2 g q12h (100) | 2 g q8h (100) | 2 g q8h (100) | 4 g (100) |
2 | 2 g q12h (100) | 2 g q12h (100) | 2 g q8h (96.8) | 2 g q8h (100) | 4 g (100) |
4 | 2 g q12h (98.9) | 2 g q12h (100) | 2 g q6h (100) | 2 g q6h (100) | 4 g (100) |
8 | 2 g q8h (100) | 2 g q8h (100) | 4 g q6h (100) | 2 g q6h (95.7) | 4 g (100) |
16 | 4 g q8h (100) | 2 g q6h (100) | 6 g q6h (89.2) | 4 g q6h (95.7) | 8 g (100) |
32 | 6 g q6h (100) | 4 g q6h (100) | 6 g q6h (40.9) | 6 g q6h (66.7) | 16 g (100) |
64 | 6 g q6h (44.1) | 6 g q6h (58.1) | – | 6 g q6h (23.7) | 24 g (58.1) |
128 | – | – | – | – | – |
BSA adjusted eGFR: 40–90 mL/min | |||||
0.5 | 2 g q8h (100) | 2 g q12h (99.3) | 4 g q6h (91.5) | 2 g q6h (99.3) | 4 g (100) |
1 | 2 g q8h (96.8) | 2 g q8h (100) | 6 g q6h (83.1) | 4 g q6h (99.3) | 4 g (100) |
2 | 2 g q6h (98.9) | 2 g q8h (100) | 6 g q6h (64.8) | 6 g q6h (97.2) | 4 g (100) |
4 | 4 g q6h (98.9) | 2 g q6h (100) | 6 g q6h (44.0) | 6 g q6h (75.4) | 8 g (100) |
8 | 6 g q6h (91.2) | 4 g q6h (100) | 6 g q6h (20.1) | 6 g q6h (46.1) | 12 g (100) |
16 | 6 g q6h (54.6) | 6 g q6h (100) | – | 6 g q6h (17.6) | 20 g (96.1) |
32 | 6 g q6h (14.8) | 6 g q6h (42.6) | – | – | 24 g (42.6) |
64 | – | – | – | – | – |
128 | – | – | – | – | – |
BSA adjusted eGFR: 90–130 mL/min | |||||
0.5 | 2 g q6h (100) | 2 g q8h (100) | 6 g q6h (19) | 6 g q6h (93.5) | 4 g (100) |
1 | 4 g q6h (100) | 2 g q8h (100) | – | 6 g q6h (53.0) | 4 g (100) |
2 | 6 g q6h (96.1) | 2 g q6h (100) | – | 6 g q6h (15.5) | 4 g (98.7) |
4 | 6 g q6h (51.3) | 2 g q6h (98.7) | – | – | 8 g (98.7) |
8 | – | 4 g q6h (98.7) | – | – | 16 g (98.7) |
16 | – | 6 g q6h (40.9) | – | – | 24 g (39.2) |
32 | – | – | – | – | – |
64 | – | – | – | – | – |
128 | – | – | – | – | – |
BSA adjusted eGFR: 130–180 mL/min | |||||
0.5 | 6 g q6h (99.6) | 2 g q8h (96.3) | – | 6 g q6h (14.3) | 4 g (100) |
1 | 6 g q6h (69.6) | 2 g q6h (100) | – | – | 4 g (100) |
2 | 6 g q6h (20.1) | 2 g q6h (100) | – | – | 8 g (100) |
4 | – | 4 g q6h (100) | – | – | 12 g (98.2) |
8 | – | 6 g q6h (98.2) | – | – | 24 g (98.2) |
16 | – | – | – | – | – |
32 | – | – | – | – | – |
64 | – | – | – | – | – |
128 | – | – | – | – | – |
References
- U.S. Food and Drug Administration. Zosyn. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=050750 (accessed on 7 July 2024).
- European Medicines Agency. Tazocin. Available online: https://www.ema.europa.eu/en/medicines/human/referrals/tazocin (accessed on 10 August 2024).
- Ng, T.M.; Khong, W.X.; Harris, P.N.; De, P.P.; Chow, A.; Tambyah, P.A.; Lye, D.C. Empiric Piperacillin-Tazobactam versus Carbapenems in the Treatment of Bacteraemia Due to Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae. PLoS ONE 2016, 11, e0153696. [Google Scholar] [CrossRef]
- Babich, T.; Naucler, P.; Valik, J.K.; Giske, C.G.; Benito, N.; Cardona, R.; Rivera, A.; Pulcini, C.; Abdel Fattah, M.; Haquin, J.; et al. Ceftazidime, Carbapenems, or Piperacillin-tazobactam as Single Definitive Therapy for Pseudomonas aeruginosa Bloodstream Infection: A Multisite Retrospective Study. Clin. Infect. Dis. 2020, 70, 2270–2280. [Google Scholar] [CrossRef]
- De Bus, L.; Depuydt, P.; Steen, J.; Dhaese, S.; De Smet, K.; Tabah, A.; Akova, M.; Cotta, M.O.; De Pascale, G.; Dimopoulos, G.; et al. Antimicrobial de-escalation in the critically ill patient and assessment of clinical cure: The DIANA study. Intensive Care Med. 2020, 46, 1404–1417. [Google Scholar] [CrossRef]
- Bryson, H.M.; Brogden, R.N. Piperacillin/tazobactam. A review of its antibacterial activity, pharmacokinetic properties and therapeutic potential. Drugs 1994, 47, 506–535. [Google Scholar] [CrossRef]
- Johnson, C.A.; Halstenson, C.E.; Kelloway, J.S.; Shapiro, B.E.; Zimmerman, S.W.; Tonelli, A.; Faulkner, R.; Dutta, A.; Haynes, J.; Greene, D.S.; et al. Single-dose pharmacokinetics of piperacillin and tazobactam in patients with renal disease. Clin. Pharmacol. Ther. 1992, 51, 32–41. [Google Scholar] [CrossRef]
- Roberts, J.A.; Lipman, J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit. Care Med. 2009, 37, 840–851. [Google Scholar] [CrossRef]
- Craig, W.A. Pharmacokinetic/pharmacodynamic parameters: Rationale for antibacterial dosing of mice and men. Clin. Infect. Dis. 1998, 26, 1–12. [Google Scholar] [CrossRef]
- Drusano, G.L. Antimicrobial pharmacodynamics: Critical interactions of ‘bug and drug’. Nat. Rev. Microbiol. 2004, 2, 289–300. [Google Scholar] [CrossRef]
- Mouton, J.W.; Dudley, M.N.; Cars, O.; Derendorf, H.; Drusano, G.L. Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: An update. J. Antimicrob. Chemother. 2005, 55, 601–607. [Google Scholar] [CrossRef]
- Asin-Prieto, E.; Rodriguez-Gascon, A.; Troconiz, I.F.; Soraluce, A.; Maynar, J.; Sanchez-Izquierdo, J.A.; Isla, A. Population pharmacokinetics of piperacillin and tazobactam in critically ill patients undergoing continuous renal replacement therapy: Application to pharmacokinetic/pharmacodynamic analysis. J. Antimicrob. Chemother. 2014, 69, 180–189. [Google Scholar] [CrossRef]
- Sime, F.B.; Hahn, U.; Warner, M.S.; Tiong, I.S.; Roberts, M.S.; Lipman, J.; Peake, S.L.; Roberts, J.A. Using Population Pharmacokinetic Modeling and Monte Carlo Simulations To Determine whether Standard Doses of Piperacillin in Piperacillin-Tazobactam Regimens Are Adequate for the Management of Febrile Neutropenia. Antimicrob. Agents Chemother. 2017, 61, 10.1128. [Google Scholar] [CrossRef]
- Ishihara, N.; Nishimura, N.; Ikawa, K.; Karino, F.; Miura, K.; Tamaki, H.; Yano, T.; Isobe, T.; Morikawa, N.; Naora, K. Population Pharmacokinetic Modeling and Pharmacodynamic Target Attainment Simulation of Piperacillin/Tazobactam for Dosing Optimization in Late Elderly Patients with Pneumonia. Antibiotics 2020, 9, 113. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Antimicrobial Wild Type Distributions of Microorganisms. Available online: https://mic.eucast.org/ (accessed on 27 March 2024).
- Gonzalez-Sales, M.; Holford, N.; Bonnefois, G.; Desrochers, J. Wide size dispersion and use of body composition and maturation improves the reliability of allometric exponent estimates. J. Pharmacokinet. Pharmacodyn. 2022, 49, 151–165. [Google Scholar] [CrossRef]
- Daniel, K.P.; Krop, L.C. Piperacillin-Tazobactam: A new beta-lactam-beta-lactamase inhibitor combination. Pharmacotherapy 1996, 16, 149–162. [Google Scholar] [CrossRef]
- Bulitta, J.B.; Duffull, S.B.; Kinzig-Schippers, M.; Holzgrabe, U.; Stephan, U.; Drusano, G.L.; Sorgel, F. Systematic comparison of the population pharmacokinetics and pharmacodynamics of piperacillin in cystic fibrosis patients and healthy volunteers. Antimicrob. Agents Chemother. 2007, 51, 2497–2507. [Google Scholar] [CrossRef]
- Bulitta, J.B.; Kinzig, M.; Jakob, V.; Holzgrabe, U.; Sorgel, F.; Holford, N.H. Nonlinear pharmacokinetics of piperacillin in healthy volunteers--implications for optimal dosage regimens. Br. J. Clin. Pharmacol. 2010, 70, 682–693. [Google Scholar] [CrossRef]
- Felton, T.W.; Ogungbenro, K.; Boselli, E.; Hope, W.W.; Rodvold, K.A. Comparison of piperacillin exposure in the lungs of critically ill patients and healthy volunteers. J. Antimicrob. Chemother. 2018, 73, 1340–1347. [Google Scholar] [CrossRef]
- Roberts, J.A.; Kirkpatrick, C.M.; Roberts, M.S.; Dalley, A.J.; Lipman, J. First-dose and steady-state population pharmacokinetics and pharmacodynamics of piperacillin by continuous or intermittent dosing in critically ill patients with sepsis. Int. J. Antimicrob. Agents 2010, 35, 156–163. [Google Scholar] [CrossRef]
- Udy, A.A.; Lipman, J.; Jarrett, P.; Klein, K.; Wallis, S.C.; Patel, K.; Kirkpatrick, C.M.; Kruger, P.S.; Paterson, D.L.; Roberts, M.S.; et al. Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance? Crit. Care 2015, 19, 28. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kim, H.S.; Park, S.; Kim, H.I.; Lee, S.H.; Lee, D.H. Population pharmacokinetics of piperacillin/tazobactam in critically ill Korean patients and the effects of extracorporeal membrane oxygenation. J. Antimicrob. Chemother. 2022, 77, 1353–1364. [Google Scholar] [CrossRef]
- Chen, R.; Qian, Q.; Sun, M.R.; Qian, C.Y.; Zou, S.L.; Wang, M.L.; Wang, L.Y. Population Pharmacokinetics and Pharmacodynamics of Piperacillin/Tazobactam in Patients with Nosocomial Infections. Eur. J. Drug Metab. Pharmacokinet. 2016, 41, 363–372. [Google Scholar] [CrossRef]
- Patel, N.; Scheetz, M.H.; Drusano, G.L.; Lodise, T.P. Identification of optimal renal dosage adjustments for traditional and extended-infusion piperacillin-tazobactam dosing regimens in hospitalized patients. Antimicrob. Agents Chemother. 2010, 54, 460–465. [Google Scholar] [CrossRef]
- Felton, T.W.; Hope, W.W.; Lomaestro, B.M.; Butterfield, J.M.; Kwa, A.L.; Drusano, G.L.; Lodise, T.P. Population pharmacokinetics of extended-infusion piperacillin-tazobactam in hospitalized patients with nosocomial infections. Antimicrob. Agents Chemother. 2012, 56, 4087–4094. [Google Scholar] [CrossRef]
- Cies, J.J.; Shankar, V.; Schlichting, C.; Kuti, J.L. Population pharmacokinetics of piperacillin/tazobactam in critically ill young children. Pediatr. Infect. Dis. J. 2014, 33, 168–173. [Google Scholar] [CrossRef]
- Roberts, J.A.; Paul, S.K.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Kaukonen, K.M.; Koulenti, D.; Martin, C.; Montravers, P.; et al. DALI: Defining antibiotic levels in intensive care unit patients: Are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin. Infect. Dis. 2014, 58, 1072–1083. [Google Scholar] [CrossRef]
- Beranger, A.; Benaboud, S.; Urien, S.; Moulin, F.; Bille, E.; Lesage, F.; Zheng, Y.; Genuini, M.; Gana, I.; Renolleau, S.; et al. Piperacillin Population Pharmacokinetics and Dosing Regimen Optimization in Critically Ill Children with Normal and Augmented Renal Clearance. Clin. Pharmacokinet. 2019, 58, 223–233. [Google Scholar] [CrossRef]
- Lonsdale, D.O.; Kipper, K.; Baker, E.H.; Barker, C.I.S.; Oldfield, I.; Philips, B.J.; Johnston, A.; Rhodes, A.; Sharland, M.; Standing, J.F. beta-Lactam antimicrobial pharmacokinetics and target attainment in critically ill patients aged 1 day to 90 years: The ABDose study. J. Antimicrob. Chemother. 2020, 75, 3625–3634. [Google Scholar] [CrossRef]
- Chongcharoenyanon, T.; Wacharachaisurapol, N.; Anugulruengkitt, S.; Maimongkol, P.; Anunsittichai, O.; Sophonphan, J.; Chatsuwan, T.; Puthanakit, T. Comparison of piperacillin plasma concentrations in a prospective randomised trial of extended infusion versus intermittent bolus of piperacillin/tazobactam in paediatric patients. Int. J. Infect. Dis. 2021, 108, 102–108. [Google Scholar] [CrossRef]
- Udy, A.A.; Baptista, J.P.; Lim, N.L.; Joynt, G.M.; Jarrett, P.; Wockner, L.; Boots, R.J.; Lipman, J. Augmented renal clearance in the ICU: Results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations*. Crit. Care Med. 2014, 42, 520–527. [Google Scholar] [CrossRef]
- Klastrup, V.; Thorsted, A.; Storgaard, M.; Christensen, S.; Friberg, L.E.; Obrink-Hansen, K. Population Pharmacokinetics of Piperacillin following Continuous Infusion in Critically Ill Patients and Impact of Renal Function on Target Attainment. Antimicrob. Agents Chemother. 2020, 64, 10.1128. [Google Scholar] [CrossRef]
- Colman, S.; Stove, V.; De Waele, J.J.; Verstraete, A.G. Measuring Unbound Versus Total Piperacillin Concentrations in Plasma of Critically Ill Patients: Methodological Issues and Relevance. Ther. Drug Monit. 2019, 41, 325–330. [Google Scholar] [CrossRef]
- Al-Shaer, M.H.; Alghamdi, W.A.; Graham, E.; Peloquin, C.A. Meropenem, Cefepime, and Piperacillin Protein Binding in Patient Samples. Ther. Drug Monit. 2020, 42, 129–132. [Google Scholar] [CrossRef]
- El-Haffaf, I.; Guilhaumou, R.; Velly, L.; Marsot, A. Impact of piperacillin unbound fraction variability on dosing recommendations in critically ill patients. Br. J. Clin. Pharmacol. 2023, 89, 1502–1508. [Google Scholar] [CrossRef]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F.; Chronic Kidney Disease Epidemiology, C. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef]
Parameters | Total (n = 12) | Female (n = 4) | Male (n = 8) |
---|---|---|---|
Demographic characteristics | |||
Age, years | 36.0 (26.0–50.0) | 29.5 (26.0–36.0) | 39.0 (32.0–50.0) |
Height, cm | 168 (158–182) | 163 (158–167) | 171 (160–182) |
Weight, kg | 61.7 (45.8–88.5) | 56.1 (45.8–59.5) | 69.1 (54.5–88.5) |
Lean body mass, kg | 50.1 (36.6–65.9) | 42.6 (36.6–44.8) | 55.2 (45.1–65.9) |
Body surface area, m2 | 1.71 (1.44–2.07) | 1.60 (1.44–1.66) | 1.81 (1.56–2.07) |
Body mass index, kg/m2 | 21.5 (18.3–29.7) | 21.0 (18.3–21.5) | 23.5 (21.3–29.7) |
Laboratory characteristics | |||
Protein, g/dL | 7.45 (7.00–8.30) | 7.45 (7.30–8.30) | 7.45 (7.00–7.70) |
Albumin, g/dL | 4.80 (4.60–5.20) | 4.90 (4.70–5.20) | 4.80 (4.60–5.20) |
Cystatin C, mg/dL | 0.765 (0.620–1.01) | 0.700 (0.620–0.740) | 0.830 (0.660–1.01) |
Creatinine, mg/dL | 0.860 (0.590–1.08) | 0.690 (0.590–0.750) | 0.965 (0.800–1.08) |
Blood urea nitrogen, mg/dL | 14.1 (9.70–23.0) | 12.2 (9.70–16.9) | 14.7 (10.5–23.0) |
Alanine aminotransferase, U/L | 17.0 (3.00–74.0) | 10.5 (3.00–15.0) | 20.0 (10.0–74.0) |
Aspartate aminotransferase, U/L | 21.0 (17.0–50.0) | 20.0 (17.0–21.0) | 24.0 (17.0–50.0) |
Gamma-glutamyl transferase, U/L | 17.0 (9.00–69.0) | 12.5 (9.00–37.0) | 26.0 (15.0–69.0) |
Renal functions | |||
CrCl (mL/min) a | 105 (76.2–146) | 105 (85.0–122) | 106 (76.2–146) |
BSA adjusted eGFRMDRD (mL/min) b | 93.2 (73.3–120) | 90.5 (81.5–111) | 95.4 (73.3–120) |
BSA adjusted eGFRCKD-EPI_CR (mL/min) c | 108 (86.2–136) | 108 (98.9–115) | 110 (86.2–136) |
BSA adjusted eGFRCKD-EPI_CC (mL/min) d | 110 (86.2–145) | 108 (104–112) | 113 (86.2–145) |
BSA adjusted eGFRCKD-EPI_CRCC (mL/min) e | 111 (89.6–145) | 110 (104–118) | 116 (89.6–145) |
Parameter | Estimates | RSE (%) [Shrinkage, %] | Bootstrap Median (95% CI) |
---|---|---|---|
Structural model | |||
CL = θ1 × (CE /108.25) θ2 | |||
θ1 (L/h) | 11.2 | 3.40 | 11.2 (10.5–12.1) |
θ2 | 1.16 | 13.1 | 1.15 (0.811–1.59) |
V1 = θ3 | |||
θ3 (L) | 6.24 | 8.99 | 6.19 (5.27–7.57) |
Q = θ4 × (LBM/50.08) θ5 | |||
θ4 (L/h) | 4.32 a | ||
θ5 | 2.50 | 13.9 | 2.45 (1.39–3.56) |
V2 = θ6 × exp (θ7 × (WT − 61.7)) | |||
θ6 (L) | 2.59 | 3.11 | 2.59 (2.28–2.74) |
θ7 | 0.0288 | 8.38 | 0.0284 (0.0208–0.0371) |
Interindividual variability | |||
CL (%) | 7.17 | 30.3 [18.7] | 6.08 (0–10.5) |
V1 (%) | 18.4 | 28.7 [19.1] | 17.5 (0–29.9) |
Residual variability | |||
Proportional error (%) | 13.4 | 12.2 [9.48] | 13.1 (9.39–16.0) |
Parameter | Estimates | RSE (%) [Shrinkage, %] | Bootstrap Median (95% CI) |
---|---|---|---|
Structural model | |||
CL = θ1 × (CE /108.25) θ2 | |||
θ1 (L/h) | 12.4 | 3.26 | 12.3 (11.6–13.3) |
θ2 | 0.857 | 13.1 | 0.858 (0.602–1.21) |
V1 = θ3 | |||
θ3 (L) | 9.03 | 6.40 | 9.02 (8.05–10.4) |
Q = θ4 | |||
θ4 (L/h) | 4.39 a | ||
V2 = θ5 × exp (θ6 × (WT − 61.7)) | |||
θ5 (L) | 3.21 | 5.48 | 3.23 (2.68–3.48) |
θ6 | 0.0145 | 16.9 | 0.0142 (0.0106–0.0238) |
Interindividual variability | |||
CL (%) | 6.95 | 29.0 [7.37] | 6.17 (0.403–9.94) |
Residual variability | |||
Proportional error (%) | 13.5 | 9.57 [6.06] | 13.2 (10.4–15.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.J.; Kang, G.; Zang, D.Y.; Lee, D.H. Population Pharmacokinetic Modeling of Piperacillin/Tazobactam in Healthy Adults and Exploration of Optimal Dosing Strategies. Pharmaceuticals 2025, 18, 1124. https://doi.org/10.3390/ph18081124
Lee YJ, Kang G, Zang DY, Lee DH. Population Pharmacokinetic Modeling of Piperacillin/Tazobactam in Healthy Adults and Exploration of Optimal Dosing Strategies. Pharmaceuticals. 2025; 18(8):1124. https://doi.org/10.3390/ph18081124
Chicago/Turabian StyleLee, Yun Jung, Gaeun Kang, Dae Young Zang, and Dong Hwan Lee. 2025. "Population Pharmacokinetic Modeling of Piperacillin/Tazobactam in Healthy Adults and Exploration of Optimal Dosing Strategies" Pharmaceuticals 18, no. 8: 1124. https://doi.org/10.3390/ph18081124
APA StyleLee, Y. J., Kang, G., Zang, D. Y., & Lee, D. H. (2025). Population Pharmacokinetic Modeling of Piperacillin/Tazobactam in Healthy Adults and Exploration of Optimal Dosing Strategies. Pharmaceuticals, 18(8), 1124. https://doi.org/10.3390/ph18081124