Method-Driven Physicochemical Profiling of Aconitum pendulum Bush Polysaccharides and Optimization of Extraction Protocols
Abstract
:1. Introduction
2. Results and Discussion
2.1. Infrared Analysis
2.2. Thermogravimetric Analysis
2.3. SEM Analysis
2.4. DPPH Radical Scavenging Activity
2.5. Effect of Single Factor on the Extraction Rate of DT
2.6. Determination of Response Surface Optimization Hot Water Extraction and Results
2.7. Model Building and ANOVA
2.8. Response Surface and Contour Analysis
2.9. Optimal Process Validation
3. Materials and Methods
3.1. Materials
3.2. Pretreatment of the Sample
3.3. Hot Water Extraction
3.4. FT-IR Characterization
3.5. In Vitro Antioxidant Activity Test
3.6. Thermal Analysis
3.7. Scanning Electron Microscopy (SEM)
3.8. Determination of Sugar Content
3.9. DPPH Scavenging Activity Assay
3.10. Single Factor Experiment
3.10.1. Examination of Liquid–Solid Ratio
3.10.2. Examination of Extraction Time
3.10.3. Examination of Extraction Runs
3.11. Optimization of Experimental Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meng, X.; Huang, X.J.; Dong, Y.; Xu, X.Y.; Liu, S.Q.; Wu, Z.Y.; Li, J.; Chen, X. Influence and Mechanism of Toxicity-efficacy Relationship Between the Combination of Terminalia chebula Retz and Aconitum pendulum Bush. on Pentobarbital Sodium-induced H9c2 Myocardial Cells. Chin. J. Mod. Appl. Pharm. 2023, 40, 1037–1049. [Google Scholar] [CrossRef]
- Cao, R.; Niu, J.T.; Jin, H.; Chen, H.G.; Li, Y.F. Research progress on processing method of Aconitum pendulum Busch and the processing principle of “reducing toxicity and retaining effectiveness”. J. Gansu Univ. Chin. Med. 2024, 41, 81–85. [Google Scholar] [CrossRef]
- Lin, L.; Gao, S.F.; Che, H.G.; Liu, L.; Jin, L.; Guo, Y.H. Study on Quality Standard Improvement of Aconitum pendulum Based on Medicinal Materials Characterization and Chromatographic Technique. Mod. Chin. Med. 2020, 22, 1804–1810. [Google Scholar] [CrossRef]
- Yang, L.H.; Lin, L.M.; Wang, Z.M.; Li, C.; Li, Z. Advance on chemical compounds of Tibetan medicinal plants of Aconitum genus. China J. Chin. Mater. Medica 2016, 41, 362–376. [Google Scholar]
- Liu, Y.; Li, M.; Fu, X.; Zhang, Y.; Tang, C. An Integrated Strategy of UPLC-Q-TOF/MS and HPTLC/PAD-DESI-MSI for the Analysis of Chemical Variations: A Case Study of Tibetan Medicine Tiebangchui. J. Pharm. Anal. 2024, 14, 100907. [Google Scholar] [CrossRef]
- Fu, Y.P.; Li, C.Y.; Zou, Y.F.; Peng, X.; Paulsen, B.S.; Wangensteen, H.; Inngjerdingen, K.T. Bioactive polysaccharides in different plant parts of Aconitum carmichaelii. J. Sci. Food Agric. 2024, 104, 746–758. [Google Scholar] [CrossRef]
- Li, S.; Li, R.; Xu, Y.X.; Baa, J.P.A.; Gao, J.H.; Shu, J.Q.; Jing, L.J.; Meng, X.L.; Wen, C.B.; Gan, Y.X.; et al. Traditional Chinese Medicine Aconiti Radix Cocta Improves Rheumatoid Arthritis via Suppressing COX-1 and COX-2. Evid. Based Complement Altern. Med. 2021, 2021, 5523870. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, F.; Wang, Y.; Wu, J.; Wang, R.; Wei, S.; Li, X.; Xu, N.; Wang, Y.; Li, Y. Functional metabolomics combined with network pharmacology reveals the mechanism of alleviating rheumatoid arthritis with Yiyi Fuzi powder. J. Ethnopharmacol. 2025, 348, 119842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Nie, S.; Wu, R.; Chen, X.; Huang, P. Extraction, purification, structural characterization, and bioactivities of Radix Aconiti Lateralis Preparata (Fuzi) polysaccharides: A review. Int. J. Biol. Macromol. 2025, 292, 139285. [Google Scholar] [CrossRef]
- Yiasmin, M.N.; Easdani, M.; Ahammed, S.; Siddiquy, M.; Hasan, K.M.M.; Cao, W.; Chen, N.; Asaduzzaman, M.; Liu, C.; Liu, Y.; et al. Effects of hydrothermal treatment and low pH on the fermentation characteristics of polysaccharides based water-soluble Maitake with Lactobacillus acidophilus and L. plantarum. Food Chem. 2025, 481, 143933. [Google Scholar] [CrossRef]
- Tang, Y.; He, X.; Liu, G.; Wei, Z.; Sheng, J.; Sun, J.; Li, C.; Xin, M.; Li, L.; Yi, P. Effects of Different Extraction Methods on the Structural, Antioxidant and Hypoglycemic Properties of Red Pitaya Stem Polysaccharide. Food Chem. 2023, 405, 134804. [Google Scholar] [CrossRef]
- Han, X.; Liu, H.; Zhang, Y.; Zhang, Y.; Song, Z.; Yang, L.; Liu, X.; Yang, L.; Wu, M.; Tan, L. The Effects of Different Extraction Methods on the Structure and Antioxidant Properties of Bletilla striata Polysaccharide. Prep. Biochem. Biotechnol. 2025, 55, 392–402. [Google Scholar] [CrossRef]
- Qiu, K.; Li, Z.; Long, Y.; Lu, Z.; Zhu, W. Study on extraction methods of polysaccharides from a processed product of Aconitum carmichaeli Debx. RSC Adv. 2021, 11, 21259–21268. [Google Scholar] [CrossRef]
- Li, S.; Yu, L.; Li, C.; Wang, N.; Lai, X.; Liu, Y.; Zhang, Y. Optimization of Processing Technology for Tiebangchui with Zanba Based on CRITIC Combined with Box-Behnken Response Surface Method. J. Vis. Exp. 2023, 195, e65139. [Google Scholar] [CrossRef]
- Yu, L.; Li, S.; Tan, X.; Wang, C.; Lai, X.; Liu, Y.; Zhang, Y. Optimization of Processing of Tiebangchui with Highland Barley Wine Based on the Box-Behnken Design Combined with the Entropy Method. J. Vis. Exp. 2023, 195, e65154. [Google Scholar] [CrossRef]
- Zhou, Z.; Gao, H.M.; Pei, Z.Q.; Sha, M.X.; Li, C.Y.; Zhang, Y.; Su, J.S.; Liu, Y.; Meng, X.L. Unveiling the processing mechanism of Hezi-decoction-processed Tiebangchui: A synthesis approach using UPLC-Q-TOF-MS-based metabolomics and DESI-MSI. Front. Pharmacol. 2025, 16, 1534748. [Google Scholar] [CrossRef]
- Shi, J.Y.; Wang, Y.J.; Bao, Q.W.; Qin, Y.M.; Li, P.P.; Wu, Q.Q.; Xia, C.K.; Wu, D.L.; Xie, S.Z. Polygonatum cyrtonema Hua Polysaccharide Alleviates Ulcerative Colitis via Gut Microbiota-Independent Modulation of Inflammatory Immune Response. Carbohydr. Polym. 2025, 356, 123387. [Google Scholar] [CrossRef]
- Humayun, S.; Rjabovs, V.; Justine, E.E.; Darko, C.N.S.; Howlader, M.M.; Reile, I.; Sim, J.H.; Kim, Y.-J.; Tuvikene, R. Immunomodulatory Activity of Red Algal Galactans and Their Partially Depolymerized Derivatives in RAW264.7 Macrophages. Carbohydr. Polym. 2025, 347, 122741. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, J.; Ren, J.; Xu, M.; Jiang, Z.; Zhang, X.; Li, B.; Yuan, L.; Jiao, L. A Neutral Heteropolysaccharide from Halenia elliptica D. Don: Extraction, Structural Characterization, Antioxidant and Antiaging Activities. Carbohydr. Polym. 2023, 322, 121330. [Google Scholar] [CrossRef]
- Chen, W.; Cheng, H.; Chen, L.; Zhan, X.; Xia, W. Synthesis, Characterization, and Biological Evaluation of Novel Selenium-Containing Chitosan Derivatives. Carbohydr. Polym. 2022, 284, 119185. [Google Scholar] [CrossRef]
- Guan, J.; Guo, P.; Chen, M.; Wang, W.; Chen, X.; Li, Q.; He, Y.; Liang, J.; Yu, N.; Gao, P.; et al. Ultrasound-assisted extraction, purification, sulfation of Perilla leaves polysaccharide and hypoglycemic and hypolipidemic activities. Ultrason. Sonochem. 2025, 117, 107269. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Zhang, K.; Guo, Z.; Xu, G.; Huang, L.; Wang, L.; Li, J. Ultrasound-Assisted Enzyme Extraction, Physicochemical Properties and Antioxidant Activity of Polysaccharides from Cordyceps militaris Solid Medium. Molecules 2024, 29, 4560. [Google Scholar] [CrossRef]
- Khainskaya, K.; Hileuskaya, K.; Nikalaichuk, V.; Ladutska, A.; Akhmedov, O.; Abrekova, N.; You, L.; Shao, P.; Odonchimeg, M. Chitosan-gallic acid conjugate with enhanced functional properties and synergistic wound healing effect. Carbohydr. Res. 2025, 553, 109496. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Cao, X.; Yang, L.; Liu, H. Glutathione responsive curcumin delivery via amino acid covalently grafted cyclodextrin metal organic framework coated with soy hull polysaccharides. Food Chem. 2025, 480, 143914. [Google Scholar] [CrossRef]
- Manju, V.V.; Hegde, V.N.; Divakara, S.; Somashekar, R.; Sofia, R.S.; Namratha. Investigation of the structural, dielectric and elasto-mechanical properties of tamarind, coir, and mesta fibres. Food Chem. 2025, 474, 143043. [Google Scholar] [CrossRef]
- Jiang, H.; Gao, L.; Hu, X.; Fu, J.; Zhang, J. Identification and Nutrient Composition of a Wild Pleurotus pulmonarius train from Tibet, and the Antioxidant and Cytotoxic Activities of Polysaccharides from This Fungus. Foods. 2025, 14, 1198. [Google Scholar] [CrossRef]
- Bai, L.; Xu, D.; Zhou, Y.M.; Zhang, Y.B.; Zhang, H.; Chen, Y.B.; Cui, Y.L. Antioxidant Activities of Natural Polysaccharides and Their Derivatives for Biomedical and Medicinal Applications. Antioxidants 2022, 11, 2491. [Google Scholar] [CrossRef]
Run | A: Extraction Time (h) | B: Extraction Runs | C: Liquid–Solid Ratio (mL/g) | Extraction Rate (%) |
---|---|---|---|---|
1 | −1 | −1 | 0 | 43.5 |
2 | 1 | −1 | 0 | 44.3 |
3 | −1 | 1 | 0 | 51.2 |
4 | 1 | 1 | 0 | 60.4 |
5 | −1 | 0 | −1 | 48.3 |
6 | 1 | 0 | −1 | 48.9 |
7 | −1 | 0 | 1 | 48.7 |
8 | 1 | 0 | 1 | 58.1 |
9 | 0 | −1 | −1 | 43.8 |
10 | 0 | 1 | −1 | 50.4 |
11 | 0 | −1 | 1 | 48.1 |
12 | 0 | 1 | 1 | 59.3 |
13 | 0 | 0 | 0 | 57.3 |
14 | 0 | 0 | 0 | 57.1 |
15 | 0 | 0 | 0 | 56.4 |
16 | 0 | 0 | 0 | 57.8 |
17 | 0 | 0 | 0 | 55.8 |
Source of Variation | Sum of Squares | Degree of Freedom | Mean Square | F Value | p Value | Significance |
---|---|---|---|---|---|---|
Model | 523.68 | 9 | 58.19 | 47.43 | <0.0001 | ** |
A | 50 | 1 | 50 | 40.75 | 0.0004 | ** |
B | 216.32 | 1 | 216.32 | 176.32 | <0.0001 | ** |
C | 64.98 | 1 | 64.98 | 52.96 | 0.0002 | ** |
AB | 17.64 | 1 | 17.64 | 14.38 | 0.0068 | ** |
AC | 19.36 | 1 | 19.36 | 15.78 | 0.0054 | ** |
BC | 5.29 | 1 | 5.29 | 4.31 | 0.0765 | * |
A2 | 43.52 | 1 | 43.52 | 35.47 | 0.0006 | ** |
B2 | 61.28 | 1 | 61.28 | 49.95 | 0.0002 | ** |
C2 | 29.9 | 1 | 29.9 | 24.37 | 0.0017 | ** |
Residual | 8.59 | 7 | 1.23 | |||
Lack of Fit | 6.12 | 3 | 2.04 | 3.31 | 0.1391 | |
Pure Error | 2.47 | 4 | 0.617 | |||
Total | 532.26 | 16 | ||||
R2 | 0.9839 | |||||
Radj2 | 0.9631 |
Factor | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
A: Runs | 2 | 3 | 4 |
B: Time/h | 2 | 2.5 | 3 |
C: Liquid–solid ratio/mL/g | 15 | 20 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, M.; Zhao, L.; Shi, C.; Song, Y.; Yu, Q.; Li, M.; Yang, X.; Liu, Y.; Xu, T.; Zhang, Y. Method-Driven Physicochemical Profiling of Aconitum pendulum Bush Polysaccharides and Optimization of Extraction Protocols. Pharmaceuticals 2025, 18, 760. https://doi.org/10.3390/ph18050760
Meng M, Zhao L, Shi C, Song Y, Yu Q, Li M, Yang X, Liu Y, Xu T, Zhang Y. Method-Driven Physicochemical Profiling of Aconitum pendulum Bush Polysaccharides and Optimization of Extraction Protocols. Pharmaceuticals. 2025; 18(5):760. https://doi.org/10.3390/ph18050760
Chicago/Turabian StyleMeng, Mingkun, Linlin Zhao, Chunqiao Shi, Yuying Song, Qingya Yu, Mengjia Li, Xing Yang, Yue Liu, Tong Xu, and Yi Zhang. 2025. "Method-Driven Physicochemical Profiling of Aconitum pendulum Bush Polysaccharides and Optimization of Extraction Protocols" Pharmaceuticals 18, no. 5: 760. https://doi.org/10.3390/ph18050760
APA StyleMeng, M., Zhao, L., Shi, C., Song, Y., Yu, Q., Li, M., Yang, X., Liu, Y., Xu, T., & Zhang, Y. (2025). Method-Driven Physicochemical Profiling of Aconitum pendulum Bush Polysaccharides and Optimization of Extraction Protocols. Pharmaceuticals, 18(5), 760. https://doi.org/10.3390/ph18050760