Characterization of the Compounds Present in Bougainvillea x buttiana (var. Rose) with Healing Activity in a Murine Model
Abstract
:1. Introduction
2. Results
2.1. Preparation and Fractionation of Acetonic Extract of Bracts from Bougainvillea x buttiana
2.2. Yield of Fraction Groups from Bougainvillea x buttiana
2.3. Preliminary Phytochemical Study of Fractions Using Semi-Quantitative Analysis in Reversed-Phase Thin-Layer Chromatography (TLC)
2.4. Topical Evaluation of the Acetonic Extract Obtained from Bougainvillea x buttiana
2.5. Comparison of Topical Treatment of Hydrogel + Crude Extract with Each of the 11 Fractions
2.6. Determination of Healing Speed
2.7. Histological Evaluation of F-2 Treatment
2.8. Effect of F-2 Treatment on Cytokine Production and Equilibration of Pro-Inflammatory and Anti-Inflammatory Cytokines
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Collection and Identification of Vegetal Material
4.3. Preparation of the Acetonic Extract of Bougainvillea x buttiana (AEBxbR)
4.4. Primary Fractionation Using Open-Column Chromatography of Acetonic Extract
4.5. Topical Evaluation of Healing Activity: Animals and Treatments
4.5.1. Animals
4.5.2. Surgical Procedure for the Realization of Skin Wounds
4.5.3. Treatment with Hydrogel Application
4.5.4. Macroscopic Assessment of Wound Contraction
4.5.5. Determination of Healing Speed
4.6. Histopathological Study with Hematoxylin–Eosin (HE) Staining
4.7. Determination of Cytokines Using the ELISA Method
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BSA | Bovine serum albumin |
AEBxbR | Acetone extract Bougainvillea x buttiana (var. Rose) |
DCM | Dichloromethane |
F-1 | Fraction 1 |
F-2 | Fraction 2 |
F-3 | Fraction 3 |
F-4 | Fraction 4 |
F-5 | Fraction 5 |
F-6 | Fraction 6 |
F-7 | Fraction 7 |
F-8 | Fraction 8 |
F-9 | Fraction 9 |
F-10 | Fraction 10 |
F-11 | Fraction 11 |
IL-1 | Interleukin-1 |
IL-4 | Interleukin-4 |
IL-5 | Interleukin-5 |
IL-6 | Interleukin-6 |
IL-10 | Interleukin-10 |
IFN-γ | Interferon-γ |
TLC | Thin-layer chromatography |
TNF-α | Tumor necrosis factor-α |
References
- Buendia, A.; Mazuecos, J.; Camacho, F. Anatomía y fisiología de la piel. Man Dermatol. Sección I Temas Gen. 2018, 1, 2–27. [Google Scholar]
- Johnstone, C.C.; Farley, C.; Hendy, C. The physiological basics of wound healing. Nurs. Standars 2005, 19, 59–65. [Google Scholar] [CrossRef]
- Dongoh, H.; Kim, H.Y.; Lee, H.I.; Shim, I.; Hahm, D.H. Wound healing activity of gamma-aminobutyric acid (GABA) in rats. J. Microbiol. Biotechnol. 2007, 17, 1661–1669. [Google Scholar]
- Bravo, M.G.; Rivero, N.A.; Pozos, S.G.; Flores, J.K.; Ramírez, J.T.; Acosta, J.B.; Cama, V.F. Cicatrización de heridas cutáneas y papel de los miofibroblastos/Cutaneous wound healing and role of myofibroblast. Panor. Cuba Salud 2018, 13, 505–510. [Google Scholar]
- Ross, R.; Everett, N.B.; Tyler, R. Wound healing and collagen formation. VI. The origin of the wound fibroblast studied in parabiosis. J. Cell Biol. 1970, 44, 645–654. [Google Scholar] [CrossRef]
- Rossaneis, M.A.; Haddad, M.C.F.L.; Mathias, T.A.; Marcon, S.S. Differences in foot self-care and lifestyle between men and women with diabetes mellitus. Rev. Lat.-Am. Enferm. 2016, 24, 1–8. [Google Scholar] [CrossRef]
- Crowe, M.J.; Doetschman, T.; Greenhalgh, D.G. Delayed wound healing in immunodeficient TGF-β1 knockout mice. J. Investig. Dermatol. 2000, 115, 3–11. [Google Scholar] [CrossRef]
- Ramíres Hernández, G.A. Fisiología de la cicatrización cutánea. EMC-Dermatología 2010, 2, 69–78. [Google Scholar] [CrossRef]
- Badiu, D.; Vasile, M.; Teren, O. Regulation of Wound Healing by Growth Factor and Cytokines in Wound Healing: Process, Phases, and Promoting; Middleton, J.E., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2011; pp. 73–93. [Google Scholar]
- Imhof, B.A.; Aurrand-Lions, M. Adhesion mechanisms regulating the migration of monocytes. Nat. Rev. Immunol. 2004, 4, 432–444. [Google Scholar] [CrossRef]
- Stout, R.D. Editorial: Macrophage functional phenotypes: No alternatives in dermal wound healing? J. Leukoc Biol. 2010, 87, 19–21. [Google Scholar] [CrossRef]
- Saenz de Santa Maria, M.L. Manifestaciones cutáneas de las enfermedades sistémicas Cutaneous manifestations of systemic diseases. Dep. Dermatol. Clin. Las Condes 2011, 22, 749–756. [Google Scholar]
- Eming, S.A.; Krieg, T.; Davidson, J.M. Inflammation in wound repair: Molecular and cellular mechanisms. J. Investig. Dermatol. 2007, 127, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Avellaneda-Oviedo, E.M.; González-Rodríguez, A.; González-Porto, A. Injertos en heridas. Heridas Cicatrización 2018, 8, 6–15. [Google Scholar]
- García Alonso, I. Traumatismos Mecánicos Abiertos: Las Heridas. pp. 1–7. Available online: http://www.oc.lm.ehu.eus/Departamento/OfertaDocente/PatologiaQuirurgica/Contenidos/Apoyo/cap%206%20Heridas.pdf (accessed on 1 February 2025).
- Singer, A.J.; Clark, R.A.F. Wound healing. N. Engl. J. Med. 1999, 341, 738–746. [Google Scholar] [CrossRef]
- Perdomo Perez, E.; Perez Rodriguez, M.F.; Benítez Gil, D.; Ruiz Perdomo, C. Los detritos en el proceso para una correcta preparación del lecho de la herida. Gerokomos 2018, 29, 141–144. [Google Scholar]
- Pechersky, A.V.; Pechersky, V.I.; Shpilenya, E.S.; Gaziev, A.H.; Semiglazov, V.F. Regeneration and Cicatrization. J. Stem Cells 2016, 11, 89–97. [Google Scholar] [CrossRef]
- Delavary, B.M.; van der Veer, W.M.; van Egmond, M.; Niessen, F.B.; Beelen, R.H.J. Macrophages in skin injury and repair. Immunobiology 2011, 216, 753–762. [Google Scholar] [CrossRef]
- Martin-Aragon, S.; Marcos Pasero, H. Tratamiento de las cicatrices. Rev. Esp. Cicatr. Farm. Prof. (Cicatr. Heridas) 2008, 22, 39–43. [Google Scholar]
- Heisler, E.V.; Budó, M.L.D.; Schimith, M.D.; Badke, M.R.; Ceolin, S.; Heck, R.M. Uso de plantas medicinales en el cuidado de la salud: La producción científica de tesis y disertaciones de enfermería brasileña TT—Use of medicinal plants in health care: Scientific production of theses and dissertation Brazilian nursing. Enferm. Glob. 2015, 14, 390–403. Available online: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1695-61412015000300018&lang=pt (accessed on 2 March 2025). [CrossRef]
- Escamilla Perez, B.E.; Moreno Casasola, P. Plantas Medicinales. D.R. © Instituto de Ecología A. C. (INECOL): Xalapa, Mexico, 2015; pp. 1–108. ISBN 978-607-7579-44-1. printed in México. [Google Scholar]
- Pastar, I.; Stojadinovixc, O.; Yin, N.C.; Ramirez, H. Epitheliazation in wound healing: A comprhensive Review. Adv. Wound Care 2014, 3, 445–464. [Google Scholar] [CrossRef]
- Landen, N.X.; Li, D.; Stahle, M. Transition from inflammation to proliferation: A critical step during wound healing. Cell Mol. Life Sci. 2016, 73, 3861–3885. [Google Scholar] [CrossRef] [PubMed]
- Derakhshanfar, A.; Moayedi, J.; Derakhshanfar, G.; Poostforoosh Fard, A. The role of Iranian medicinal plants in experimental surgical skin wound healing: An integrative review. Iran. J. Basic Med. Sci. 2019, 22, 590–600. [Google Scholar] [PubMed]
- Nugroho, R.A.; Utami, D.; Aryani, R.; Nur, F.M.; Sari, Y.P.; Manurung, H. In vivo wound healing activity of ethanolic extract of Terminalia catappa L. leaves in mice (Mus musculus). J. Phys. Conf. Ser. 2019, 1277, 012031. [Google Scholar] [CrossRef]
- Fallah-Mehrjardi, M.; Foroughi, M.; Banitaba, S.H. Polyethylene glycol-bis (N-methylimidazolium) dihydroxide as an efficient and recyclable basic phase-transfer catalyst for the synthesis of 4H-pyran derivatives in aqueous media. Asian J. Green Chem. 2020, 4, 75–86. [Google Scholar] [CrossRef]
- Muralidhar, A.; Babu, K.S.; Sankar, T.R.; Reddanna, P.; Latha, J. Wound healing activity of flavonoid fraction isolated from the stem bark of Butea monosperma (Lam) in albino wistar rats. Eur. J. Exp. Biol. 2013, 3, 1–6. [Google Scholar]
- Nagori, B.P.; Solanki, R. Role of medicinal plants in wound healing. Res. J. Med. Plant 2011, 5, 392–405. [Google Scholar] [CrossRef]
- Paco, K.; Ponce-Soto, L.A.; Lopez-Ilasaca, M.; Aguilar, J.L. Determinación del efecto cicatrizante de Piper aduncum (Matico) en fibroblastos humanos. Rev. Peru Med. Exp. Salud Publica 2016, 33, 438–447. [Google Scholar] [CrossRef]
- James, O.; Victoria, I.A. Excision and incision wound healing potential of Saba florida (Benth) leaf extract in Rattus novergicus. Int. J. Pharm. Biomed. Res. 2010, 1, 101–107. [Google Scholar]
- Scapagnini, G.; Marchegiani, A.; Rossi, G.; Zago, M.; Jowarska, J.; Wael, M.; Campbell, S.E.; Schiffman, Z.; Buonamici, E.; Garvao, R.; et al. Management of All Three Phases of Wound Healing Through the Induction of Fluorescence Biomodulation Using Fluorescence Light Energy. In Proceedings of the Photonic Diagnosis and Treatment of Infections and Inflammatory Diseases II, San Francisco, CA, USA, 4–5 February 2019; Volume 10863. [Google Scholar] [CrossRef]
- Arteaga Figueroa, L.; Abarca-Vargas, R.; García Alanis, C.; Petricevich, V.L. Comparison between Peritoneal Macrophage Activation by Bougainvillea x buttiana Extract and LPS and/or Interleukins. Biomed. Res. Int. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Abarca-vargas, R.; Malacara, C.F.P.; Petricevich, V.L. Characterization of Chemical Compounds with Antioxidant and Cytotoxic Activities in Bougainvillea x buttiana Holttum and Standl, (var. Rose) Extracts. Antioxidants 2016, 5, 45. [Google Scholar] [CrossRef]
- Guerrero, R.V.; Vargas, R.A.; Petricevich, V.L. Chemical Compounds and Biological Activity of an Extract From Bougainvillea x buttiana (var. Rose) Holttum and Standl. Int. J. Pharm. Pharm. Sci. 2017, 9, 42. [Google Scholar] [CrossRef]
- Vargas, R.A.; Guerrero, R.V.; Petricevich, V.L. Evaluation of Anti-Arthritic Potential of Partitioned Extracts of Bougainvillea x buttiana (var. Rose) Holttum and Standl. Int. J. Pharm. Pharm. Sci. 2018, 10, 117. [Google Scholar] [CrossRef]
- Abarca-Vargas, R.; Petricevich, V.L. Bougainvillea Genus: A Review on Phytochemistry, Pharmacology, and Toxicology. Evid.-Based Complement Altern Med. 2018, 2018, 1–17. [Google Scholar] [CrossRef]
- Lopez, A.; Gonzalez, E.; Ruiz, J.; Rivera, J. Inmunidad e inflamación en el proceso quirúrgico. Rev. Fac. Med. 2018, 61, 7–15. Available online: http://www.scielo.org.mx/pdf/facmed/v61n4/2448-4865-facmed-61-04-7.pdf (accessed on 1 January 2025).
- Senet, P. Fisiología de la cicatrización cutánea. EMC—Dermatología 2008, 42, 1–10. [Google Scholar] [CrossRef]
- Kimiko Sakata, R.; Machado Issy, A.; Roberto Gerola, L.; Salomão, R. Citocinas y dolor. Rev. Bras. Anestesiol. 2011, 61, 137–142. [Google Scholar]
- Ávila, A.; Amaya, M.; Martínez, J.D.; Moreno, J. Panorama actual de las alternativas en el tratamiento de la cicatriz hipertrófica y queloide. Dermatol. Rev. Mex. 2014, 58, 247–261. [Google Scholar]
- Cintron-Machón, G.; Poveda-Xatruch, J. La cicatrización queloide. Acta Med. Costarric. 2008, 50, 87–93. [Google Scholar] [CrossRef]
- Hernández, C.A.; Toro, A.M. Enfoque y manejo de cicatrices hipertróficas y queloides. Rev. Asoc. Colomb Dermatol. 2011, 19, 218–228. [Google Scholar]
- de Pablo Sánchez, R.; Monserrat Sanz, J.; Prieto Martín, A.; Reyes Martín, E.; Álvarez de Mon Soto, M.; Sánchez García, M. Balance entre citocinas pro y antiinflamatorias en estados sépticos. Med. Intensiv. 2005, 29, 151–158. [Google Scholar] [CrossRef]
- Meyes García, M.G.; García Tamayo, F. Citocinas, inflamación y conducta. Rev. Espec. Ciencias. Salud 2005, 8, 4–13. [Google Scholar]
- Montoya Ruiz, C.; Rugeles López, M.T.; Jaimes Barragan, F.A.; Velilla Hernandez, P.A. Variaciones alélicas en los genes de citocinas proinflamatorias y antiinflamatorias, y su asociación con la susceptibilidad y el curso clínico de la sepsis. Iatreia Medellin 2013, 26, 67–76. [Google Scholar] [CrossRef]
- González-Costa, M.; González, A.A.P. La inflamación desde una perspectiva inmunológica: Desafío a la Medicina en el siglo XXl. Rev. Habanera Cienc. Medicas 2019, 6, 1–15. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2019000100030 (accessed on 2 February 2025).
- NOM-062-ZOO-1999; Especificaciones Técnicas Para la Producción, Cuidado y Uso de Animales de Laboratorio. Norma Oficial Mexicana (NOM): Mexico City, Mexico, 2001.
- Martinez, M.C.; Buzaleh, A.M.; Batle, A.M.d.C. Efecto de los Anestésicos Enflurano e Isoflurano en Ratones con Niveles Inducidos y Deprimidos de Citocromo P450; de drogas Resumen; SciELO: São Paulo city, Argentina, 2005. [Google Scholar]
- González Muñoz, C.E.; Ríos, C.C.; Valdez, C. Tiempo de cicatrización por segunda intención de piel, comparando la criocirugía con la cirugía convencional. Rev. Fac. Med.—Univ. Fr. Marroqui 2009, 9, 1–32. [Google Scholar]
- Bei, Z.; Zheng, J. Recent advances in the application of functional hydrogels in skin wound healing. MedComm—Biomater. Appl. 2024, 3, 1–26. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P.X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34–47. [Google Scholar] [CrossRef]
- Ramsey, I.I.I.E.; Lu, Z.; Rangoonwala, A.; Rykhus, R. Multiple Baseline Radar Interferometry Applied to Coastal Land Cover Classification and Change Analyses. GIScience Remote Sens. 2008, 43, 283–309. [Google Scholar] [CrossRef]
Fraction Group | Weight (mg) | Yield (%) |
---|---|---|
F-1 | 186.6 | 6.22 |
F-2 | 233.8 | 7.79 |
F-3 | 197.9 | 6.60 |
F-4 | 192.3 | 6.41 |
F-5 | 244.0 | 8.13 |
F-6 | 207.2 | 6.91 |
F-7 | 206.0 | 6.87 |
F-8 | 256.8 | 8.56 |
F-9 | 219.8 | 7.33 |
F-10 | 222.2 | 7.41 |
F-11 | 225.7 | 7.52 |
Total | 2392.3 | 79.74 |
Eluent System | Fraction | Rf Values | Color | Area (cm2) |
---|---|---|---|---|
Water– acetonitrile (10:90) | Rutin | 0.95 | Red | 0.15 ± 0.02 |
F-1 | - | - | - | |
F-2 | 0.79; 0.91 | Red | 0.20 ± 0.03 | |
F-3 | 0.88 | Green | - | |
F-4 | 0.80; 0.88 | Yellow | - | |
Water– acetonitrile (70:30) | Rutin | 0.32 | Orange | 0.20 ± 0.03 |
F-5 | 0.20; 0.25; 0.58 | Green; Orange; Blue | - | |
F-6 | 0.19; 0.25; 0.31 | Red; Green; Orange | 0.10 ± 0.03 | |
F-7 | 0.20; 0.25; 0.30 | Red, Green, Orange | 0.12 ± 0.03 | |
F-8 | 0.21; 0.26; 0.33; 0.38 | Green; Orange | 0.33 ± 0.02 | |
F-9 | 0.23; 0.27 | Green; Orange | - | |
F-10 | 0.10; 0.20; 0.25; 0.33; 0.39 | Gray; Green; Orange | 0.33 ± 0.02 | |
F-11 | - | - | - | |
AEBxbR | 0.21; 0.27; 0.33; 0.40; 0.59 | Red; Gray; Green; Orange; Blue | 0.10 ± 0.04 |
Semi-Quantitative Method | Negative Control | Positive Control KitosCell® | F-2 |
---|---|---|---|
Day 2 | |||
Inflammatory infiltrate | +++ | ++ | ++ |
Day 6 | |||
Layer granulation | +++ | ++ | ++ |
Ulceration | +++ | ++ | + |
Angiogenesis | - | - | ++ |
Day 9 | |||
Chronic inflammation | +++ | ++ | + |
Scab | ++ | + | + |
Collagen fibers | - | ++ | +++ |
Fibrosis | - | - | ++ |
Day 12 | |||
Fibrosis | +++ | - | + |
Scab | ++ | ++ | + |
Re-epithelialization, partial | - | + | ++ |
Day 14 | |||
Re-epithelialization, total | + | + | +++ |
Epithelium retraction | + | - | - |
Fibrosis | +++ | ++ | ++ |
Compound | Amount |
---|---|
Propilenglycol | 1 mL |
Trietanolamine | 0.15 mL |
Water | 10 mL |
AEBxbR | 1 mg/kg |
Fractions | 1 mg/kg |
Experimental Group | Treatment | |
---|---|---|
1 | Negative control | Without treatment |
2 | Positive control | KitosCell® |
3 | Vehicle | Hydrogel |
4 | Hydrogel with | AEBxbR crude extract (1 mg/kg) |
5 | Hydrogel with | Fractions 1 up to 11 (1 mg/kg) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Cuevas, L.; Cedillo-Cortezano, M.; Guerrero, B.N.E.; Abarca-Vargas, R.; Petricevich, V.L. Characterization of the Compounds Present in Bougainvillea x buttiana (var. Rose) with Healing Activity in a Murine Model. Pharmaceuticals 2025, 18, 752. https://doi.org/10.3390/ph18050752
Martínez-Cuevas L, Cedillo-Cortezano M, Guerrero BNE, Abarca-Vargas R, Petricevich VL. Characterization of the Compounds Present in Bougainvillea x buttiana (var. Rose) with Healing Activity in a Murine Model. Pharmaceuticals. 2025; 18(5):752. https://doi.org/10.3390/ph18050752
Chicago/Turabian StyleMartínez-Cuevas, Luís, Mayra Cedillo-Cortezano, Blanca Nury Echeverria Guerrero, Rodolfo Abarca-Vargas, and Vera L. Petricevich. 2025. "Characterization of the Compounds Present in Bougainvillea x buttiana (var. Rose) with Healing Activity in a Murine Model" Pharmaceuticals 18, no. 5: 752. https://doi.org/10.3390/ph18050752
APA StyleMartínez-Cuevas, L., Cedillo-Cortezano, M., Guerrero, B. N. E., Abarca-Vargas, R., & Petricevich, V. L. (2025). Characterization of the Compounds Present in Bougainvillea x buttiana (var. Rose) with Healing Activity in a Murine Model. Pharmaceuticals, 18(5), 752. https://doi.org/10.3390/ph18050752