Lp(a)-Lowering Agents in Development: A New Era in Tackling the Burden of Cardiovascular Risk?
Abstract
:1. Introduction
2. Literature Search Strategy
3. Pelacarsen (TQJ230)
4. Olpasiran (AMG890)
5. Zerlasiran (SLN360)
6. Lepodisiran (LY3819469)
7. Muvalaplin (LY3473329)
8. Discussion
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gomez-Delgado, F.; Raya-Cruz, M.; Katsiki, N.; Delgado-Lista, J.; Perez-Martinez, P. Residual cardiovascular risk: When should we treat it? Eur. J. Intern. Med. 2024, 120, 17–24. [Google Scholar] [CrossRef]
- Shah, N.P.; Pajidipati, N.J.; McGarrah, R.W.; Navar, A.M.; Vemulapalli, S.; Blazing, M.A.; Shah, S.H.; Hernandez, A.F.; Patel, M.R. Lipoprotein(a): An Update on a Marker of Residual Risk and Associated Clinical Manifestations. Am. J. Cardiol. 2020, 126, 94–102. [Google Scholar] [CrossRef]
- Kronenberg, F.; Mora, S.; Stroes, E.S.G.; Ference, B.A.; Arsenault, B.J.; Berglund, L.; Dweck, M.R.; Koschinsky, M.; Lambert, G.; Mach, F.; et al. Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: A European Atherosclerosis Society consensus statement. Eur. Heart J. 2022, 43, 3925–3946. [Google Scholar] [CrossRef] [PubMed]
- Katsiki, N.; Al-Rasadi, K.; Mikhailidis, D.P. Lipoprotein(a) and Cardiovascular Risk: The Show Must go on. Curr. Med. Chem. 2017, 24, 989–1006. [Google Scholar] [CrossRef]
- Kolovou, G.D.; Katsiki, N.; Mikhailidis, D.P. Editorial: Lipoprotein(a), More than Just Cholesterol? Curr. Med. Chem. 2017, 24, 952–956. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Soffer, G.; Ginsberg, H.N.; Berglund, L.; Duell, P.B.; Heffron, S.P.; Kamstrup, P.R.; Lloyd-Jones, D.M.; Marcovina, S.M.; Yeang, C.; Koschinsky, M.L.; et al. Lipoprotein(a): A Genetically Determined, Causal, and Prevalent Risk Factor for Atherosclerotic Cardiovascular Disease: A Scientific Statement From the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 2022, 42, e48–e60. [Google Scholar] [CrossRef] [PubMed]
- Tromp, T.R.; Ibrahim, S.; Nurmohamed, N.S.; Peter, J.; Zuurbier, L.; Defesche, J.C.; Reeskamp, L.F.; Hovingh, G.K.; Stroes, E.S.G. Use of Lipoprotein(a) to improve diagnosis and management in clinical familial hypercholesterolemia. Atherosclerosis 2023, 365, 27–33. [Google Scholar] [CrossRef]
- Kronenberg, F.; Mora, S.; Stroes, E.S.G.; Ference, B.A.; Arsenault, B.J.; Berglund, L.; Dweck, M.R.; Koschinsky, M.L.; Lambert, G.; Mach, F.; et al. Frequent questions and responses on the 2022 lipoprotein(a) consensus statement of the European Atherosclerosis Society. Atherosclerosis 2023, 374, 107–120. [Google Scholar] [CrossRef]
- Arnold, N.; Blaum, C.; Goßling, A.; Brunner, F.J.; Bay, B.; Zeller, T.; Ferrario, M.M.; Brambilla, P.; Cesana, G.; Leoni, V.; et al. Impact of Lipoprotein(a) Level on Low-Density Lipoprotein Cholesterol- or Apolipoprotein B-Related Risk of Coronary Heart Disease. J. Am. Coll. Cardiol. 2024, 84, 165–177. [Google Scholar] [CrossRef]
- Willeit, P.; Yeang, C.; Moriarty, P.M.; Tschiderer, L.; Varvel, S.A.; McConnell, J.P.; Tsimikas, S. Low-Density Lipoprotein Cholesterol Corrected for Lipoprotein(a) Cholesterol, Risk Thresholds, and Cardiovascular Events. J. Am. Heart Assoc. 2020, 9, e016318. [Google Scholar] [CrossRef]
- Bittner, V.A.; Szarek, M.; Aylward, P.E.; Bhatt, D.L.; Diaz, R.; Edelberg, J.M.; Fras, Z.; Goodman, S.G.; Halvorsen, S.; Hanotin, C.; et al. Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome. J. Am. Coll. Cardiol. 2020, 75, 133–144. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EASGuidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Reiner, Ž.; Surma, S.; Bajraktari, G.; Bielecka-Dabrowa, A.; Bunc, M.; Bytyçi, I.; Ceska, R.; Cicero, A.F.G.; Dudek, D.; et al. 2024 Recommendations on the Optimal Use of Lipid-Lowering Therapy in Established Atherosclerotic Cardiovascular Disease and Following Acute Coronary Syndromes: A Position Paper of the International Lipid Expert Panel (ILEP). Drugs 2024, 84, 1541–1577. [Google Scholar] [CrossRef] [PubMed]
- Katsiki, N.; Filippatos, T.; Vlachopoulos, C.; Panagiotakos, D.; Milionis, H.; Tselepis, A.; Garoufi, A.; Rallidis, L.; Richter, D.; Nomikos, T.; et al. Executive summary of the Hellenic Atherosclerosis Society guidelines for the diagnosis and treatment of dyslipidemias-2023. Atheroscler. Plus 2024, 55, 74–92. [Google Scholar] [CrossRef]
- Corral, P.; Matta, M.G.; Aguilar-Salinas, C.; Mehta, R.; Berg, G.; Ruscica, M.; Schreier, L. Lipoprotein(a) throughout life in women. Am. J. Prev. Cardiol. 2024, 20, 100885. [Google Scholar] [CrossRef]
- Sosnowska, B.; Stepinska, J.; Mitkowski, P.; Bielecka-Dabrowa, A.; Bobrowska, B.; Budzianowski, J.; Burchardt, P.; Chlebus, K.; Dobrowolski, P.; Gasior, M.; et al. Recommendations of the Experts of the Polish Cardiac Society (PCS) and the Polish Lipid Association (PoLA) on the diagnosis and management of elevated lipoprotein(a) levels. Arch. Med. Sci. 2024, 20, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Kamstrup, P.R.; Neely, R.D.G.; Nissen, S.; Landmesser, U.; Haghikia, A.; Costa-Scharplatz, M.; Abbas, C.; Nordestgaard, B.G. Lipoprotein(a) and cardiovascular disease: Sifting the evidence to guide future research. Eur. J. Prev. Cardiol. 2024, 31, 903–914. [Google Scholar] [CrossRef]
- Pearson, G.J.; Thanassoulis, G.; Anderson, T.J.; Barry, A.R.; Couture, P.; Dayan, N.; Francis, G.A.; Genest, J.; Grégoire, J.; Grover, S.A.; et al. 2021 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in Adults. Can. J. Cardiol. 2021, 37, 1129–1150. [Google Scholar] [CrossRef]
- Koschinsky, M.L.; Bajaj, A.; Boffa, M.B.; Dixon, D.L.; Ferdinand, K.C.; Gidding, S.S.; Gill, E.A.; Jacobson, T.A.; Michos, E.D.; Safarova, M.S.; et al. A focused update to the 2019 NLA scientific statement on use of lipoprotein(a) in clinical practice. J. Clin. Lipidol. 2024, 18, e308–e319. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.P.; Jacobson, T.A.; Jones, P.H.; Koschinsky, M.L.; McNeal, C.J.; Nordestgaard, B.G.; Orringer, C.E. Use of Lipoprotein(a) in clinical practice: A biomarker whose time has come. A scientific statement from the National Lipid Association. J. Clin. Lipidol. 2019, 13, 374–392. [Google Scholar] [CrossRef]
- Sosnowska, B.; Toth, P.P.; Razavi, A.C.; Remaley, A.T.; Blumenthal, R.S.; Banach, M. 2024: The Year in Cardiovascular Disease—The Year of Lipoprotein(a)—Research Advances and New Findings. Arch. Med. Sci. 2025. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Ballantyne, C.M. Existing and emerging strategies to lower Lipoprotein(a). Atherosclerosis 2022, 349, 110–122. [Google Scholar] [CrossRef]
- Franchini, M.; Capuzzo, E.; Liumbruno, G.M. Lipoprotein apheresis for the treatment of elevated circulating levels of lipoprotein(a): A critical literature review. Blood Transfus. 2016, 14, 413–418. [Google Scholar]
- Kaur, G.; Abdelrahman, K.; Berman, A.N.; Biery, D.W.; Shiyovich, A.; Huck, D.; Garshick, M.; Blankstein, R.; Weber, B. Lipoprotein(a): Emerging insights and therapeutics. Am. J. Prev. Cardiol. 2024, 18, 100641. [Google Scholar] [CrossRef] [PubMed]
- Banach, M.; Surma, S.; Kapłon-Cieślicka, A.; Mitkowski, P.; Dzida, G.; Tomasik, T.; Mastalerz-Migas, A. Position paper of the Polish Expert Group on the use of pitavastatin in the treatment of lipid disorders in Poland endorsed by the Polish Lipid Association. Arch. Med. Sci. 2023, 20, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Nurmohamed, N.S.; Kraaijenhof, J.M.; Stroes, E.S.G. Lp(a): A New Pathway to Target? Curr. Atheroscler. Rep. 2022, 24, 831–838. [Google Scholar] [CrossRef]
- Awad, K.; Mikhailidis, D.P.; Katsiki, N.; Muntner, P.; Banach, M.; Lipid and Blood Pressure Meta-Analysis Collaboration (LBPMC) Group. Effect of Ezetimibe Monotherapy on Plasma Lipoprotein(a) Concentrations in Patients with Primary Hypercholesterolemia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Drugs 2018, 78, 453–462. [Google Scholar] [CrossRef]
- Dai, H.; Zhu, Y.; Chen, Z.; Yan, R.; Liu, J.; He, Z.; Zhang, L.; Zhang, F.; Yan, S. Impact of alirocumab/evolocumab on lipoprotein(a) concentrations in patients with familial hypercholesterolaemia: A systematic review and meta-analysis of randomized controlled trials. Endokrynol. Pol. 2023, 74, 234–242. [Google Scholar] [CrossRef]
- Katsiki, N.; Vrablik, M.; Banach, M.; Gouni-Berthold, I. Inclisiran, Low-Density Lipoprotein Cholesterol and Lipoprotein(a). Pharmaceuticals 2023, 16, 577. [Google Scholar] [CrossRef]
- Blanchard, V.; Chemello, K.; Hollstein, T.; Hong-Fong, C.C.; Schumann, F.; Grenkowitz, T.; Nativel, B.; Coassin, S.; Croyal, M.; Kassner, U.; et al. The size of apolipoprotein(a) is an independent determinant of the reduction in lipoprotein(a) induced by PCSK9 inhibitors. Cardiovasc. Res. 2022, 118, 2103–2111. [Google Scholar] [CrossRef]
- Fogacci, F.; Di Micoli, V.; Sabouret, P.; Giovannini, M.; Cicero, A.F.G. Lifestyle and Lipoprotein(a) Levels: Does a Specific Counseling Make Sense? J. Clin. Med. 2024, 13, 751. [Google Scholar] [CrossRef]
- Enkhmaa, B.; Petersen, K.S.; Kris-Etherton, P.M.; Berglund, L. Diet and Lp(a): Does Dietary Change Modify Residual Cardiovascular Risk Conferred by Lp(a)? Nutrients 2020, 12, 2024. [Google Scholar] [CrossRef]
- Momtazi-Borojeni, A.A.; Katsiki, N.; Pirro, M.; Banach, M.; Rasadi, K.A.; Sahebkar, A. Dietary natural products as emerging lipoprotein(a)-lowering agents. J. Cell Physiol. 2019, 234, 12581–12594. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, A.; Yang, X.; Ditmarsch, M.; Davidson, M.; Kastelein, J.; Tsimikas, S. Obicetrapib Demonstrates Significant Reductions of Lp(a) on Top of High-Intensity Statins. J. Clin. Lipidol. 2024, 18, e563–e564. [Google Scholar] [CrossRef]
- Nicholls, S.; Nelson, A.; Ditmarsch, M.; Kastelein, J.; Ballantyne, C.; Ray, K.; Navar, A.M.; Nissen, S.E.; Harada-Shiba, M.; Curcio, D.L.; et al. 4171281 Safety and Efficacy of Obicetrapib in Patients with Heterozygous Familial Hypercholesterolemia. Circulation 2024, 150. [Google Scholar] [CrossRef]
- Burgess, S.; Ference, B.A.; Staley, J.R.; Freitag, D.F.; Mason, A.M.; Nielsen, S.F.; Willeit, P.; Young, R.; Surendran, P.; Karthikeyan, S.; et al. Association of LPA Variants with Risk of Coronary Disease and the Implications for Lipoprotein(a)-Lowering Therapies: A Mendelian Randomization Analysis. JAMA Cardiol. 2018, 3, 619–627. [Google Scholar] [CrossRef]
- Tsimikas, S.; Moriarty, P.M.; Stroes, E.S. Emerging RNA Therapeutics to Lower Blood Levels of Lp(a): JACC Focus Seminar 2/4. J. Am. Coll. Cardiol. 2021, 77, 1576–1589. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, Y.; Liang, G.; Tian, Z.; Zhang, Y.; Liu, Z.; Ji, X. The therapeutic prospects of N-acetylgalactosamine-siRNA conjugates. Front. Pharmacol. 2022, 13, 1090237. [Google Scholar] [CrossRef]
- Katzmann, J.L.; Packard, C.J.; Chapman, M.J.; Katzmann, I.; Laufs, U. Targeting RNA with Antisense Oligonucleotides and Small Interfering RNA: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 563–579. [Google Scholar] [CrossRef]
- Swerdlow, D.I.; Rider, D.A.; Yavari, A.; Wikström Lindholm, M.; Campion, G.V.; Nissen, S.E. Treatment and prevention of lipoprotein(a)-mediated cardiovascular disease: The emerging potential of RNA interference therapeutics. Cardiovasc. Res. 2022, 118, 1218–1231. [Google Scholar] [CrossRef]
- Doerfler, A.M.; Park, S.H.; Assini, J.M.; Youssef, A.; Saxena, L.; Yaseen, A.B.; De Giorgi, M.; Chuecos, M.; Hurley, A.E.; Li, A.; et al. LPA disruption with AAV-CRISPR potently lowers plasma apo(a) in transgenic mouse model: A proof-of-concept study. Mol. Ther. Methods Clin. Dev. 2022, 27, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Anchouche, K.; Thanassoulis, G. Lp(a): A Rapidly Evolving Therapeutic Landscape. Curr. Atheroscler. Rep. 2024, 27, 7. [Google Scholar] [CrossRef]
- Tsimikas, S.; Viney, N.J.; Hughes, S.G.; Singleton, W.; Graham, M.J.; Baker, B.F.; Burkey, J.L.; Yang, Q.; Marcovina, S.M.; Geary, R.S.; et al. Antisense therapy targeting apolipoprotein(a): A randomised, double-blind, placebo-controlled phase 1 study. Lancet 2015, 386, 1472–1483. [Google Scholar] [CrossRef] [PubMed]
- Viney, N.J.; van Capelleveen, J.C.; Geary, R.S.; Xia, S.; Tami, J.A.; Yu, R.Z.; Marcovina, S.M.; Hughes, S.G.; Graham, M.J.; Crooke, R.M.; et al. Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): Two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet 2016, 388, 2239–2253. [Google Scholar] [CrossRef]
- Tsimikas, S.; Karwatowska-Prokopczuk, E.; Gouni-Berthold, I.; Tardif, J.C.; Baum, S.J.; Steinhagen-Thiessen, E.; Shapiro, M.D.; Stroes, E.S.; Moriarty, P.M.; Nordestgaard, B.G.; et al. Lipoprotein(a) Reduction in Persons with Cardiovascular Disease. N. Engl. J. Med. 2020, 382, 244–255. [Google Scholar] [CrossRef]
- Assessing the Impact of Lipoprotein (a) Lowering with Pelacarsen (TQJ230) on Major Cardiovascular Events in Patients with CVD (Lp(a)HORIZON). Available online: https://clinicaltrials.gov/study/NCT04023552 (accessed on 15 March 2025).
- Cho, L.; Nicholls, S.J.; Nordestgaard, B.G.; Landmesser, U.; Tsimikas, S.; Blaha, M.J.; Leitersdorf, E.; Lincoff, A.M.; Lesogor, A.; Manning, B.; et al. Design and Rationale of Lp(a)HORIZON Trial: Assessing the Effect of Lipoprotein(a) Lowering with Pelacarsen on Major Cardiovascular Events in Patients with CVD and Elevated Lp(a). Am. Heart J. 2025, 287, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Koren, M.J.; Moriarty, P.M.; Baum, S.J.; Neutel, J.; Hernandez-Illas, M.; Weintraub, H.S.; Florio, M.; Kassahun, H.; Melquist, S.; Varrieur, T.; et al. Preclinical development and phase 1 trial of a novel siRNA targeting lipoprotein(a). Nat. Med. 2022, 28, 96–103. [Google Scholar] [CrossRef]
- O’Donoghue, M.L.; Rosenson, R.S.; Gencer, B.; López, J.A.G.; Lepor, N.E.; Baum, S.J.; Stout, E.; Gaudet, D.; Knusel, B.; Kuder, J.F.; et al. Small Interfering RNA to Reduce Lipoprotein(a) in Cardiovascular Disease. N. Engl. J. Med. 2022, 387, 1855–1864. [Google Scholar] [CrossRef]
- Rosenson, R.S.; López, J.A.G.; Gaudet, D.; Baum, S.J.; Stout, E.; Lepor, N.E.; Park, J.G.; Murphy, S.A.; Knusel, B.; Wang, J.; et al. Olpasiran, Oxidized Phospholipids, and Systemic Inflammatory Biomarkers: Results From the OCEAN(a)-DOSE Trial. JAMA Cardiol. 2025, 10, 482–486. [Google Scholar] [CrossRef]
- Olpasiran Trials of Cardiovascular Events and Lipoprotein(a) Reduction (OCEAN(a))—Outcomes Trial. Available online: https://clinicaltrials.gov/study/NCT05581303 (accessed on 15 March 2025).
- Nissen, S.E.; Wolski, K.; Balog, C.; Swerdlow, D.I.; Scrimgeour, A.C.; Rambaran, C.; Wilson, R.J.; Boyce, M.; Ray, K.K.; Cho, L.; et al. Single Ascending Dose Study of a Short Interfering RNA Targeting Lipoprotein(a) Production in Individuals with Elevated Plasma Lipoprotein(a) Levels. JAMA 2022, 327, 1679–1687. [Google Scholar] [CrossRef]
- Nissen, S.E.; Wolski, K.; Watts, G.F.; Koren, M.J.; Fok, H.; Nicholls, S.J.; Rider, D.A.; Cho, L.; Romano, S.; Melgaard, C.; et al. Single Ascending and Multiple-Dose Trial of Zerlasiran, a Short Interfering RNA Targeting Lipoprotein(a): A Randomized Clinical Trial. JAMA 2024, 331, 1534–1543. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.E.; Wang, Q.; Nicholls, S.J.; Navar, A.M.; Ray, K.K.; Schwartz, G.G.; Szarek, M.; Stroes, E.S.G.; Troquay, R.; Dorresteijn, J.A.N.; et al. Zerlasiran—A Small-Interfering RNA Targeting Lipoprotein(a): A Phase 2 Randomized Clinical Trial. JAMA 2024, 332, 1992–2002. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.E.; Linnebjerg, H.; Shen, X.; Wolski, K.; Ma, X.; Lim, S.; Michael, L.F.; Ruotolo, G.; Gribble, G.; Navar, A.M.; et al. Lepodisiran, an Extended-Duration Short Interfering RNA Targeting Lipoprotein(a): A Randomized Dose-Ascending Clinical Trial. JAMA 2023, 330, 2075–2083. [Google Scholar] [CrossRef]
- Nissen, S.E.; Ni, W.; Shen, X.; Wang, Q.; Navar, A.M.; Nicholls, S.J.; Wolski, K.; Michael, L.; Haupt, A.; Krege, J.H.; et al. Lepodisiran—A Long-Duration Small Interfering RNA Targeting Lipoprotein(a). N. Engl. J. Med. 2025, 392, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- A Study to Investigate the Effect of Lepodisiran on the Reduction of Major Adverse Cardiovascular Events in Adults with Elevated Lipoprotein(a)—ACCLAIM-Lp(a). Available online: https://clinicaltrials.gov/study/NCT06292013 (accessed on 15 March 2025).
- Hooper, A.J.; Fernando, P.M.S.; Burnett, J.R. Potential of muvalaplin as a lipoprotein(a) inhibitor. Expert. Opin. Investig. Drugs 2024, 33, 5–7. [Google Scholar] [CrossRef]
- Diaz, N.; Perez, C.; Escribano, A.M.; Sanz, G.; Priego, J.; Lafuente, C.; Barberis, M.; Calle, L.; Espinosa, J.F.; Priest, B.T.; et al. Discovery of potent small-molecule inhibitors of lipoprotein(a) formation. Nature 2024, 629, 945–950. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Nissen, S.E.; Fleming, C.; Urva, S.; Suico, J.; Berg, P.H.; Linnebjerg, H.; Ruotolo, G.; Turner, P.K.; Michael, L.F. Muvalaplin, an Oral Small Molecule Inhibitor of Lipoprotein(a) Formation: A Randomized Clinical Trial. JAMA 2023, 330, 1042–1053. [Google Scholar] [CrossRef]
- Swearingen, C.A.; Sloan, J.H.; Rhodes, G.M.; Siegel, R.W.; Bivi, N.; Qian, Y.; Konrad, R.J.; Boffa, M.; Koschinsky, M.; Krege, J.; et al. Measuring Lp(a) particles with a novel isoform-insensitive immunoassay illustrates efficacy of muvalaplin. J. Lipid Res. 2024, 66, 100723. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Ni, W.; Rhodes, G.M.; Nissen, S.E.; Navar, A.M.; Michael, L.F.; Haupt, A.; Krege, J.H. Oral Muvalaplin for Lowering of Lipoprotein(a): A Randomized Clinical Trial. JAMA 2025, 333, 222–231. [Google Scholar] [CrossRef]
- Nicholls, S.J. Therapeutic Potential of Lipoprotein(a) Inhibitors. Drugs 2024, 84, 637–643. [Google Scholar] [CrossRef]
- Madsen, C.M.; Kamstrup, P.R.; Langsted, A.; Varbo, A.; Nordestgaard, B.G. Lipoprotein(a)-Lowering by 50 mg/dL (105 nmol/L) May Be Needed to Reduce Cardiovascular Disease 20% in Secondary Prevention: A Population-Based Study. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 255–266. [Google Scholar] [CrossRef] [PubMed]
Scientific Society | Recommendations |
---|---|
American Cardiology College (ACC) and American Heart Association (AHA) [6] |
|
European Atherosclerosis Society (EAS) [3] |
|
Canadian Cardiovascular Society (CCS) [18] |
|
Polish Cardiac Society (PCS) and the Polish Lipid Association (PoLA) [16] |
|
National Lipid Association (NLA) [19,20] |
|
Hellenic Atherosclerosis Society [14] |
|
Agent | Phase 1 | Phase 2 | Phase 3 |
---|---|---|---|
Pelacarsen (TQJ230) |
Baseline to day 30: single doses of pelacarsen (50–400 mg) did not decrease Lp(a) concentrations Baseline to day 36: dose-dependent Lp(a) reductions by 39.6(±10.3)% in the 100-mg group, 59(±19.7)% in the 200-mg group and 77.8(±9.4)% in the 300-mg group |
Baseline to day 85/99: Lp(a) reductions by 66.8(±20.6)% in cohort A and 71.6(±13.0%) in cohort B mean difference from placebo: −62.8 (95%CI −71.9 to −53.8) nmol/L in cohort A and −67.7 (95%CI −80.8 to −54.5) nmol/L in cohort B LDL-C reduction: mean difference from placebo: −13.0 (95%CI −20.2 to −5.7) mmol/L in cohort A and −23.9 (95%CI −34.2 to −13.5) mmol/L in cohort B apoB reduction: mean difference from placebo: −11.3 (95%CI −17.2 to −5.4) mg/dL in cohort A and −18.5 (95%CI −27.0 to −10.0) mgl/dL in cohort B oxidized phospholipids associated with apoB reduction: mean difference from placebo: −35.2 (95%CI −43.1 to −27.2) nmol/L in cohort A and −42.5 (95%CI −54.0 to −31.0) nmol/L in cohort B oxidized phospholipids associated with apo(a) reduction: mean difference from placebo: −26.6 (95%CI −40.3 to −13.0) nmol/L in cohort A and −36.7 (95%CI −56.4 to −16.9) nmol/L in cohort B
Baseline to day 30 (single dosing): dose-dependent Lp(a) reductions by 26.2(±5.4)% in the 10-mg group, 33.2(±17.5)% in the 20-mg group, 43.5(±14.3)% in the 40-mg group, 78.6(±21.2)% in the 80-mg group and 85.3(±7.1)% in the 120-mg group mean difference from placebo: −24.8 (95%CI −67.1 to −3.1) nmol/L in the 10-mg group, −35.1 (95%CI −78.8 to −2.2) nmol/L in the 20-mg group, −48.2 (95%CI −78.4 to −10.9) nmol/L in the 40-mg group, −82.5 (95%CI −109.2 to −50.5) nmol/L in the 80-mg group and −84.5 (95%CI −112.6 to −65.2) nmol/L in the 120-mg group LDL-C reduction: mean difference from placebo: −6.2 (95%CI −34.3 to +7.8) mmol/L in the 10-mg group, −0.6 (95%CI −24.4 to +23.1) mmol/L in the 20-mg group, −7.9 (95%CI −31.6 to +20.7) mmol/L in the 40-mg group, −8.0 (95%CI −34.3 to +1.7) mmol/L in the 80-mg group and −26.7 (95%CI −55.5 to −11.3) mmol/L in the 120-mg group. apoB reduction: mean difference from placebo: −4.9 (95%CI −17.2 to +4.5) mg/dL in the 10-mg group, −1.3 (95%CI −19.3 to +13.1) mg/dL in the 20-mg group, −10.3 (95%CI −24.4 to +1.9) mg/dL in the 40-mg group, −9.2 (95%CI −26.2 to +0.0) mg/dL in the 80-mg group and −17.1 (95%CI −31.8 to −2.5) mg/dL in the 120-mg group. oxidized phospholipids associated with apoB reduction: mean difference from placebo: −13.1 (95%CI −46.4 to +13.9) nmol/L in the 10-mg group, −10.7 (95%CI −49.0 to +33.4) nmol/L in the 20-mg group, −14.3 (95%CI −47.8 to +10.7) nmol/L in the 40-mg group, −18.3 (95%CI −44.3 to +9.7) nmol/L in the 80-mg group and −18.0 (95%CI −46.4 to +9.4) nmol/L in the 120-mg group. oxidized phospholipids associated with apo(a) reduction: mean difference from placebo: −25.4 (95%CI −152.8 to +150.7) nmol/L in the 10-mg group, −28.4 (95%CI −152.0 to +66.5) nmol/L in the 20-mg group, −11.8 (95%CI −134.4 to +61.3) nmol/L in the 40-mg group, −43.9 (95%CI −119.3 to +23.1) nmol/L in the 80-mg group and −40.9 (95%CI −143.9 to −7.5) nmol/L in the 120-mg group. Baseline to day 36 (multiple dosing): dose-dependent Lp(a) reductions by 65.7(±21.8)% in the 10-mg group, 80.1(±13.7)% in the 20-mg group and 92.4(±6.5)% in the 40-mg group mean difference from placebo: −59.4 (95%CI −79.1 to −33.5) nmol/L in the 10-mg group, −72.3 (95%CI −87.7 to −51.6) nmol/L in the 20-mg group and −82.4 (95%CI −99.8 to −67.7) nmol/L in the 40-mg group LDL-C reduction: mean difference from placebo: −10.6 (95%CI −24.1 to +10.1) mmol/L in the 10-mg group, −5.7 (95%CI −30.3 to +2.3) mmol/L in the 20-mg group and −13.7 (95%CI −28.1 to −4.4) mmol/L in the 40-mg group apoB reduction: mean difference from placebo: −6.8 (95%CI −14.4 to +23.6) mg/dL in the 10-mg group, −7.4 (95%CI −20.7 to +1.7) mg/dL in the 20-mg group and −13.6 (95%CI −23.1 to −1.1) mg/dL in the 40-mg group oxidized phospholipids associated with apoB reduction: mean difference from placebo: −31.9 (95%CI −54.4 to −13.6) nmol/L in the 10-mg group, −24.1 (95%CI −44.4 to −6.0) nmol/L in the 20-mg group and −39.8 (95%CI −58.0 to −23.8) nmol/L in the 40-mg group oxidized phospholipids associated with apo(a) reduction: mean difference from placebo: −28.9 (95%CI −60.3 to −6.6) nmol/L in the 10-mg group, −49.0 (95%CI −97.9 to −16.2) nmol/L in the 20-mg group and −77.9 (95%CI −106.3 to −53.2) nmol/L in the 40-mg group
Baseline to 6 months: dose-dependent Lp(a) reductions: by 95.9(±94.4) nmol/L at a dose of 20 mg every 4 weeks, 116.9(±71.7) nmol/L at 40 mg every 4 weeks, 130.3(±66.1) nmol/L at 20 mg every 2 weeks, 149.5(±67.4) nmol/L at 60 mg every 4 weeks, and 187.8(±80.3) nmol/L at 20 mg every week dose-dependent mean percent reductions in Lp(a) from baseline: 35% at a dose of 20 mg every 4 weeks, 56% at 40 mg every 4 weeks, 58% at 20 mg every 2 weeks, 72% at 60 mg every 4 weeks, and 80% at 20 mg every week, as compared with 6% for the pooled placebo group oxidized phospholipids associated with apo(a) reduction: −16.8(±14.3) nmol/L at a dose of 20 mg every 4 weeks, −24.5(±20.1) nmol/L at 40 mg every 4 weeks, −25.9(±17.2) nmol/L at 20 mg every 2 weeks, −33.3(±16.8) nmol/L at 60 mg every 4 weeks, and −41.6(±16.5) nmol/L at 20 mg every week mean percent reductions in oxidized phospholipids on apo(a): 28% at a dose of 20 mg every 4 weeks, 49% at 40 mg every 4 weeks, 45% at 20 mg every 2 weeks, 63% at 60 mg every 4 weeks, and 70% at 20 mg every week, as compared with a 20% decrease in the placebo group. oxidized phospholipids associated with apoB reduction: −8.0(±10.3) nmol/L at a dose of 20 mg every 4 weeks, −11.3(±11.0) nmol/L at 40 mg every 4 weeks, −12.2(±7.9) nmol/L at 20 mg every 2 weeks, −14.9(±10.3) nmol/L at 60 mg every 4 weeks, and −20.1(±8.5) nmol/L at 20 mg every week mean percent reductions in oxidized phospholipids on apoB: 37% at a dose of 20 mg every 4 weeks, 57% at 40 mg every 4 weeks, 64% at 20 mg every 2 weeks, 79% at 60 mg every 4 weeks, and 88% at 20 mg every week, as compared with a 14% increase in the placebo group. |
|
Olpasiran (AMG890) |
Baseline to day 43–71: Lp(a) reduction: 71 to 97% |
Dosing: subcutaneous administration of olpasiran (10 mg every 12 weeks, 75 mg every 12 weeks, 225 mg every 12 weeks, or 225 mg every 24 weeks) or placebo Baseline to 36 weeks: placebo-adjusted mean % changes in Lp(a): −70.5% (95%CI, −75.1 to −65.9) in the 10-mg group, −97.4% (95%CI, −102.0 to −92.8) in the 75-mg dose group, −101.1% (95%CI, −105.8 to −96.5) in the 225-mg dose group given every 12 weeks, and −100.5% (95%CI, −105.2 to −95.8) in the 225-mg dose administered every 24 weeks placebo-adjusted percent change in LDL-C: −23.7% (95%CI, −35.3 to −12.2) in the 10-mg group, −22.6% (95%CI, −34.1 to −11.0) in the 75-mg dose group, −23.1% (95%CI, −34.8 to −11.4) in the 225-mg dose group given every 12 weeks, and −24.8% (95%CI, −36.5 to −13.0) in the 225-mg dose administered every 24 weeks placebo-adjusted percent change in apoB concentration: −18.9% (95%CI, −26.3 to −11.5) in the 10-mg group, −16.7% (95%CI, −24.1 to −9.3) in the 75-mg dose group, −17.6% (95%CI, −25.1 to −10.1) in the 225-mg dose group given every 12 weeks, and −18.8% (95%CI, −26.3 to −11.2) in the 225-mg dose administered every 24 weeks placebo-adjusted mean % change in OxPL-apoB from baseline: −51.6% (95%CI, −64.9% to −38.2%) for the 10-mg Q12W dose, −89.7% (95%CI, −103.0% to −76.4%) for the 75-mg Q12W dose, −92.3% (95%CI, −105.6% to −78.9%) for the 225-mg Q12W dose, and −93.7% (95%CI, −107.1% to −80.3%) for the Q24W dose Baseline to 48 weeks: placebo-adjusted mean % change in Lp(a): −68.5% (95%CI, −74.3 to −62.7) in the 10-mg group, −96.1% (95%CI, −101.9 to −90.3) in the 75-mg dose group, −100.9% (95%CI, −106.7 to −95.0) in the 225-mg dose group given every 12 weeks, and −85.9% (95%CI, −91.8 to −80.1) in the 225-mg dose administered every 24 weeks placebo-adjusted mean % change in OxPL-apoB from baseline: −50.8% (95%CI, −64.9% to −38.2%) for the 10-mg Q12W dose, −100.2% (95%CI, −103.0% to −76.4%) for the 75-mg Q12W dose, −104.7% (95%CI, −105.6% to −78.9%) for the 225-mg Q12W dose, and −85.8% (95%CI, −107.1% to −80.3%) for the Q24W dose |
|
Zerlasiran (SLN360) |
Baseline to day 150: maximal median changes in Lp(a) levels: −20 (IQR, −61 to 3) nmol/L in the placebo group, −89 (IQR, −119 to −61) nmol/L in the 30-mg group, −185 (IQR, −226 to −163) nmol/L in the 100-mg group, −268 (IQR, −292 to −189) nmol/L in the 300-mg group, and −227 (IQR, −270 to −174) nmol/L in the 600-mg group maximal median percentage changes in Lp(a) levels: −10% (IQR, −16% to 1%) in the placebo group, −46% (IQR, −64% to −40%) in the 30-mg group, −86% (IQR, −92% to −82%) in the 100-mg group, −96% (IQR, −98% to −89%) in the 300-mg group, and −98% (IQR, −98% to −97%) in the 600-mg group maximum reduction in mean apoB level: 24% at 30 days after the 600-mg dose and 19% measured 14 days after the 300-mg dose maximum reduction in mean oxidized LDL level: 20% in the 600-mg dose group and 11% in the 300-mg dose group maximum LDL-C reduction: 26% in the 600-mg dose group
+ individuals who received 2 doses of placebo, zerlasiran 200 mg at a 4-week interval or 300 mg or 450 mg at an 8-week interval Baseline to 365 days: After a single dose, maximal median Lp(a) changes: +14% (IQR, +13% to +15%) for the placebo group, −30% (IQR, −51% to −18%) for the 300 mg of zerlasiran group, and −29% (IQR, −39% to −7%) for the 600-mg dose group After 2 doses, maximal median Lp(a) changes: +7% (IQR, −4% to +21%) for the placebo group, −97% (IQR, −98% to −95%) for the 200 mg of zerlasiran group, −98% (IQR, −99% to −97%) for the 300 mg of zerlasiran group, and −99% (IQR, −99% to −98%) for the 450 mg of zerlasiran group maximal median change in LDL-C levels: +17% (IQR, −2% to +29%) observed at 150 days after placebo administration, −35% (IQR, −45% to −26%) at 60 days for the 200-mg dose group, −47% (IQR, −64% to −12%) at 30 days for the 300-mg dose group, and −28% (IQR, −38% to −26%) at 90 days for the 450-mg dose group. maximal median change in apoB: +12% (IQR, +2% to +17%) at 150 days after placebo administration, −26% (IQR, −35% to −8%) at 43 days for the 200-mg dose group, −28% (IQR, −37% to −21%) at 90 days for the 300-mg dose group, and −23% (IQR, −34% to −22%) at 90 days for the 450-mg dose group |
Dosing: subcutaneous administration of placebo (3 doses every 16 weeks or 2 doses every 24 weeks) or zerlasiran (2 doses of 450 mg every 24 weeks, 3 doses of 300 mg every 16 weeks or 2 doses of 300 mg every 24 weeks) Baseline to 36 weeks: Median percent change in Lp(a) levels: −94.5% (IQR, −97.3% to −84.2%) for the 450 mg every 24 weeks group, −96.4% (IQR, −97.7% to −92.3%) for the 300 mg every 16 weeks group, and −90.0% (IQR, −93.7% to −81.3%) for the 300 mg every 24 weeks group. placebo-adjusted time-averaged percent change from baseline in Lp(a): −85.6% (95%CI, −90.9% to −80.3%) for the 450 mg every 24 weeks group, −82.8% (95%CI, −88.2% to −77.4%) for the 300 mg every 16 weeks group, and −81.3% (95%CI, −86.7% to −76.0%) for the 300 mg every 24 weeks group. placebo-adjusted time-averaged percent change from baseline in LDL-C: −25.1% (95%CI, −46.9% to −3.3%) for the 450 mg every 24 weeks group, −31.9% (95%CI, −54.1% to −9.7%) for 300 mg every 16 weeks group and −29.7% (95%CI, −51.6% to −7.8%) for the 300 mg every 24 weeks group placebo-adjusted time-averaged percent change from baseline in apoB: −15.0% (95%CI, −20.1% to −9.8%) for the 450 mg every 24 weeks group, −13.3% (95%CI, −18.6% to −8.1%) for 300 mg every 16 weeks group and −9.9% (95%CI, −15.0% to −4.7%) for the 300 mg every 24 weeks group Baseline to 48 weeks: placebo-adjusted time-averaged percent change from baseline in Lp(a): −83.0% (95%CI, −88.4% to −77.5%) for the 450 mg every 24 weeks group, −83.1% (95%CI, −88.7% to −77.6%) for the 300 mg every 16 weeks group, and −78.7% (95%CI, −84.2% to −73.2%) for the 300 mg every 24 weeks group. placebo-adjusted time-averaged percent change from baseline in LDL-C: −26.0% (95%CI, −44.7% to −7.2%) for the 450 mg every 24 weeks group, −29.8% (95%CI, −48.9% to −10.8%) for 300 mg every 16 weeks group and −27.4% (95%CI, −46.2% to −8.6%) for the 300 mg every 24 weeks group placebo-adjusted time-averaged percent change from baseline in apoB: −14.0% (95%CI, −19.2% to −8.8%) for the 450 mg every 24 weeks group, −12.4% (95%CI, −17.6% to −7.1%) for 300 mg every 16 weeks group and −8.6% (95%CI, −13.9% to −3.4%) for the 300 mg every 24 weeks group Baseline to 60 weeks: placebo-adjusted time-averaged percent change from baseline in Lp(a): −77.1% (95%CI, −83.1% to −71.2%) for the 450 mg every 24 weeks group, −79.2% (95%CI, −85.3% to −73.1%) for the 300 mg every 16 weeks group, and −71.8% (95%CI, −77.8% to −65.8%) for the 300 mg every 24 weeks group. placebo-adjusted time-averaged percent change from baseline in LDL-C: −24.1% (95%CI, −43.9% to −4.2%) for the 450 mg every 24 weeks group, −28.7% (95%CI, −48.9% to −8.5%) for 300 mg every 16 weeks group and −26.2% (95%CI, −46.1% to −6.2%) for the 300 mg every 24 weeks group placebo-adjusted time-averaged percent change from baseline in apoB: −12.6% (95%CI, −18.0% to −7.2%) for the 450 mg every 24 weeks group, −11.3% (95%CI, −16.8% to −5.7%) for 300 mg every 16 weeks group and −7.2% (95%CI, −12.6% to −1.7%) for the 300 mg every 24 weeks group | No trial |
Lepodisiran (LY3819469) |
Baseline to 48 weeks: maximal median change in Lp(a) concentration: −5% (IQR, −16% to 11%) in the placebo group, −41% (IQR, −47% to −20%) in the 4-mg group, −59% (IQR, −66% to −53%) in the 12-mg group, −76% (IQR, −76% to −75%) in the 32-mg group, −90% (IQR, −94% to −85%) in the 96-mg group, −96% (IQR, −98% to −95%) in the 304-mg group, and −97% (IQR, −98% to −96%) in the 608-mg dose group. |
Baseline to 180 days: placebo-adjusted time-averaged % change in Lp(a) levels: −40.8% (95%CI, −55.8 to −20.6), −75.2 % (95%CI, −80.4 to −68.5) and −93.9% (95%CI, −95.1 to −92.5) in the 16-mg, 96-mg lepodosiran group, and in the pooled 400-mg groups, respectively |
|
Muvalaplin (LY3473329) |
or multiple ascending muvalaplin doses ranging from 30 mg to 800 mg, or placebo, administered daily Baseline to 14 days: placebo-controlled Lp(a) reduction: 63% to 65% at doses of 100 mg or more |
Dosing: orally administered muvalaplin at dosages of 10 mg, 60 mg or 240 mg daily, or placebo Baseline to 12 weeks: placebo-adjusted Lp(a) reductions: 47.6% (95%CI, 35.1% to 57.7%) in the 10-mg group, 81.7% (95%CI, 78.1% to 84.6%) in the 60-mg group and 85.8% (95%CI, 83.1% to 88.0%) in the 240-mg group, using an intact lipoprotein(a) assay and 40.4% (95%CI, 28.3% to 50.5%) in the 10-mg group, 70.0% (95%CI, 65.0% to 74.2%) in the 60-mg group and 68.9% (95%CI, 63.8% to 73.3%) in the 240-mg group, using an apolipoprotein(a)-based assay. dose-dependent placebo-adjusted apoB changes: −8.9% (95%CI, −18.8% to 2.2%), −13.1% (95%CI, −20.9% to −4.4%), and −16.1% (95%CI, −23.7% to −7.8%) at 10 mg, 60 mg, and 240 mg group, respectively | No trial |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsiki, N.; Vrablik, M.; Banach, M.; Gouni-Berthold, I. Lp(a)-Lowering Agents in Development: A New Era in Tackling the Burden of Cardiovascular Risk? Pharmaceuticals 2025, 18, 753. https://doi.org/10.3390/ph18050753
Katsiki N, Vrablik M, Banach M, Gouni-Berthold I. Lp(a)-Lowering Agents in Development: A New Era in Tackling the Burden of Cardiovascular Risk? Pharmaceuticals. 2025; 18(5):753. https://doi.org/10.3390/ph18050753
Chicago/Turabian StyleKatsiki, Niki, Michal Vrablik, Maciej Banach, and Ioanna Gouni-Berthold. 2025. "Lp(a)-Lowering Agents in Development: A New Era in Tackling the Burden of Cardiovascular Risk?" Pharmaceuticals 18, no. 5: 753. https://doi.org/10.3390/ph18050753
APA StyleKatsiki, N., Vrablik, M., Banach, M., & Gouni-Berthold, I. (2025). Lp(a)-Lowering Agents in Development: A New Era in Tackling the Burden of Cardiovascular Risk? Pharmaceuticals, 18(5), 753. https://doi.org/10.3390/ph18050753