Plectranthus amboinicus: A Systematic Review of Traditional Uses, Phytochemical Properties, and Therapeutic Applications
Abstract
:1. Introduction
1.1. The Skin
1.2. Traditional Herbal Medicine
1.3. Plectranthus Genus
1.4. Plectranthus amboinicus
1.5. Morphology of P. amboinicus
1.6. Applications and General Uses of P. amboinicus
2. Results and Discussion
2.1. Phytochemistry
2.1.1. Leaves
2.1.2. Stems
2.1.3. Essential Oil (EO)
Stem, Aerial, and Whole Plant EO
Leaf EO
Comparison of EOs
2.2. Biological Activities of P. amboinicus
2.2.1. Antibacterial Activity
2.2.2. Antifungal Activity
2.2.3. Mosquito Repellent and Anti-Parasitic Effects
2.2.4. Anti-Inflammatory Activities
2.2.5. Antioxidant Activities
2.2.6. Skin Enzymes
2.2.7. Insecticide
2.2.8. Cytotoxicity
2.2.9. Wound Healing
2.3. Cosmetic Formulations
2.3.1. Ointments and Creams
2.3.2. Lotions and Serums
2.3.3. Hair Care Products
2.3.4. Nanoformulations
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Žmitek, K.; Pogačnik, T.; Mervic, L.; Žmitek, J.; Pravst, I. The Effect of Dietary Intake of Coenzyme Q10 on Skin Parameters and Condition: Results of a Randomised, Placebo-controlled, Double-blind Study. BioFactors 2017, 43, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Quan, T. Human Skin Aging and the Anti-Aging Properties of Retinol. Biomolecules 2023, 13, 1614. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, N.; Zaman, S.U.; Khan, B.A.; Amir, M.N.; Ebrahimzadeh, M.A. Calendula Extract: Effects on Mechanical Parameters of Human Skin. Acta Pol. Pharm. 2011, 68, 693–701. [Google Scholar]
- Ito, N.; Seki, S.; Ueda, F. The Protective Role of Astaxanthin for UV-Induced Skin Deterioration in Healthy People—A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2018, 10, 817. [Google Scholar] [CrossRef]
- Harsha, V.H.; Hebbar, S.S.; Hegde, G.R.; Shripathi, V. Ethnomedical Knowledge of Plants Used by Kunabi Tribe of Karnataka in India. Fitoterapia 2002, 73, 281–287. [Google Scholar] [CrossRef]
- Hassan, H.M.A. A Short History of the Use of Plants as Medicines from Ancient Times. Chimia 2015, 69, 622. [Google Scholar] [CrossRef]
- Megha, M.A.; Unnma, U.; Rameshpathy, M.; Karikalan, K.; Vickram, S.; Venkat Kumar, S.; Sridharan, B. Formulation of Nano-Encapsulated Poly-Herbal Ointment for Antiinflammation. Pharm. Lett. 2013, 5, 164–170. [Google Scholar]
- Harsha, V.H.; Hebbar, S.S.; Shripathi, V.; Hegde, G.R. Ethnomedicobotany of Uttara Kannada District in Karnataka, India—Plants in Treatment of Skin Diseases. J. Ethnopharmacol. 2003, 84, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Siew, Y.-Y.; Zareisedehizadeh, S.; Seetoh, W.-G.; Neo, S.-Y.; Tan, C.-H.; Koh, H.-L. Ethnobotanical Survey of Usage of Fresh Medicinal Plants in Singapore. J. Ethnopharmacol. 2014, 155, 1450–1466. [Google Scholar] [CrossRef]
- Pandey, M.M.; Rastogi, S.; Rawat, A.K.S. Indian Traditional Ayurvedic System of Medicine and Nutritional Supplementation. Evid.-Based Complement. Altern. Med. 2013, 2013, 376327. [Google Scholar] [CrossRef]
- Lin, C.-W.; Hung, C.-M.; Chen, W.-J.; Chen, J.-C.; Huang, W.-Y.; Lu, C.-S.; Kuo, M.-L.; Chen, S.-G. New Horizons of Macrophage Immunomodulation in the Healing of Diabetic Foot Ulcers. Pharmaceutics 2022, 14, 2065. [Google Scholar] [CrossRef]
- Almeida, B.V.; Ribeiro, D.A.; Santos, M.O.; de Macêdo, D.G.; Macedo, J.G.F.; Macêdo, M.J.F.; de Menezes, I.R.A.; Souza, M.M.A. Mixtures of Medicinal Plants from Caatinga: Basis for Further Bioprospecting Studies. S. Afr. J. Bot. 2022, 151, 158–177. [Google Scholar] [CrossRef]
- Jayaraman, M.; Senthilkumar, A.; Venkatesalu, V. Evaluation of Some Aromatic Plant Extracts for Mosquito Larvicidal Potential against Culex Quinquefasciatus, Aedes Aegypti, and Anopheles Stephensi. Parasitol. Res. 2015, 114, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Hedge, I.C. A Global Survey of the Biogeography of the Labiatae. In Advances in Labiatae Science; Harley, R.M., Reynolds, T., Eds.; Royal Botanic Gardens, Kew: London, UK, 1992. [Google Scholar]
- Castrillo, M.; Vizcaino, D.; Moreno, E.; Latorraca, Z. Specific Leaf Mass, Fresh: Dry Weight Ratio, Sugar and Protein Contents in Species of Lamiaceae from Different Light Environments. Rev. Biol. Trop. 2005, 53, 23–28. [Google Scholar]
- Harley, R.M.; Reynolds, T. Advances in Labiatae Science; Royal Botanic Gardens, Kew: London, UK, 1992. [Google Scholar]
- Dutra da Silva, B.; Bernardes, P.C.; Pinheiro, P.F.; Di Giorgio Giannotti, J.; Roberto, C.D. Plectranthus amboinicus (Lour.) Spreng. Essential Oil as a Natural Alternative for the Conservation of Beef Patties Stored under Refrigeration. Food Biosci. 2022, 49, 101896. [Google Scholar] [CrossRef]
- Lukhoba, C.W.; Simmonds, M.S.J.; Paton, A.J. Plectranthus: A Review of Ethnobotanical Uses. J. Ethnopharmacol. 2006, 103, 1–24. [Google Scholar] [CrossRef]
- Arumugam, G.; Swamy, M.; Sinniah, U. Plectranthus amboinicus (Lour.) Spreng: Botanical, Phytochemical, Pharmacological and Nutritional Significance. Molecules 2016, 21, 369. [Google Scholar] [CrossRef]
- Stearn, W.T. Stearns Dictionary of Plant Names for Gardeners: A Handbok on the Origin and Meaning of the Botanical Names of Some Cultivated Plants; Cassell: London, UK, 1992. [Google Scholar]
- Gonçalves, T.B.; Braga, M.A.; de Oliveira, F.F.M.; Santiago, G.M.P.; Carvalho, C.B.M.; Cabral, P.B.e.; Santiago, T.d.M.; Sousa, J.S.; Barros, E.B.; Nascimento, R.F.d.; et al. Effect of Subinihibitory and Inhibitory Concentrations of Plectranthus amboinicus (Lour.) Spreng Essential Oil on Klebsiella Pneumoniae. Phytomedicine 2012, 19, 962–968. [Google Scholar] [CrossRef]
- Rodrigues, F.F.G.; Boligon, A.A.; Menezes, I.R.A.; Galvão-Rodrigues, F.F.; Salazas, G.J.T.; Nonato, C.F.A.; Braga, N.T.T.M.; Correia, F.M.A.; Caldas, G.F.R.; Coutinho, H.D.M.; et al. HPLC/DAD, Antibacterial and Antioxidant Activities of Plectranthus Species (Lamiaceae) Combined with the Chemometric Calculations. Molecules 2021, 26, 7665. [Google Scholar] [CrossRef]
- Lambrechts, I.A.; Lall, N. Traditional Usage and Biological Activity of Plectranthus Madagascariensis and Its Varieties: A Review. J. Ethnopharmacol. 2021, 269, 113663. [Google Scholar] [CrossRef]
- Grayer, R.J.; Eckert, M.R.; Lever, A.; Veitch, N.C.; Kite, G.C.; Paton, A.J. Distribution of Exudate Flavonoids in the Genus Plectranthus. Biochem. Syst. Ecol. 2010, 38, 335–341. [Google Scholar] [CrossRef]
- Galbiatti, M.I.; Cassola, F.; Mesquita, A.T.; Pinheiro, G.P.; Mayer, J.L.S.; Sawaya, A.C.H.F. Plectranthus Neochilus Schltr.: Anatomic and Cytogenetic Analyses and Chemical Characterization of Its Essential Oil. S. Afr. J. Bot. 2021, 143, 97–106. [Google Scholar] [CrossRef]
- Cordeiro, M.F.; Nunes, T.R.S.; Bezerra, F.G.; Damasco, P.K.M.; Silva, W.A.V.; Ferreira, M.R.A.; Magalhães, O.M.C.; Soares, L.A.L.; Cavalcanti, I.M.F.; Pitta, M.G.R.; et al. Phytochemical Characterization and Biological Activities of Plectranthus barbatus andrews. Braz. J. Biol. 2022, 82, e236297. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Garros, L.; Drouet, S.; Renouard, S.; Lainé, E.; Hano, C. Green Ultrasound Assisted Extraction of Trans Rosmarinic Acid from Plectranthus scutellarioides (L.) R.Br. Leaves. Plants 2019, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Wagner, W.L.; Lorence, D.H. Flora of the Marquesas Islands Website. Available online: http://botany.si.edu/pacificislandbiodiversity/marquesasflora/index.html (accessed on 20 May 2024).
- Chen, C.Y.; Zhang Jian, Y.P.; Yeh, H.C.; Li, W.J.; Li, H.T. Secondary Metabolites of Coleus Amboinicus. Chem. Nat. Compd. 2023, 59, 778–782. [Google Scholar] [CrossRef]
- Chandrasekar, L.P.; Sethuraman, B.D.; Subramani, M.; Mohandos, S. Green Synthesised ZnO Nanoparticles from Plectranthus amboinicus Plant Extract: Removal of Safranin- O and Malachite Green Dyes & Anti-Bacterial Activity. Int. J. Environ. Anal. Chem. 2023, 104, 7973–7990. [Google Scholar] [CrossRef]
- Murthy, P.S.; Ramalakshmi, K.; Srinivas, P. Fungitoxic Activity of Indian Borage (Plectranthus amboinicus) Volatiles. Food Chem. 2009, 114, 1014–1018. [Google Scholar] [CrossRef]
- Patel, R.; Mahobia, N.; Waseem, N.; Upwar, N.; Singh, S. Phyto-Physicochemical Investigation of Leaves of Plectranthus amboinicus (Lour) Spreng. Pharmacogn. J. 2010, 2, 536–542. [Google Scholar] [CrossRef]
- Senthilkumar, A.; Venkatesalu, V. Chemical Composition and Larvicidal Activity of the Essential Oil of Plectranthus amboinicus (Lour.) Spreng against Anopheles Stephensi: A Malarial Vector Mosquito. Parasitol. Res. 2010, 107, 1275–1278. [Google Scholar] [CrossRef]
- Khan, M.C.P.I. Current Trends in Coleus Aromaticus: An Important Medicinal Plant; Booktango: Bloomington, IN, USA, 2013. [Google Scholar]
- Ashaari, N.S.; Ab Rahim, M.H.; Sabri, S.; Lai, K.S.; Song, A.A.-L.; Abdul Rahim, R.; Wan Abdullah, W.M.A.N.; Ong Abdullah, J. Functional Characterization of a New Terpene Synthase from Plectranthus amboinicus. PLoS ONE 2020, 15, e0235416. [Google Scholar] [CrossRef]
- Hullatti, K.; Bhattacharjee, P. Pharmacognostical Evaluation of Different Parts of Coleus Amboinicus Lour., Lamiaceae. Pharmacogn. J. 2011, 3, 39–44. [Google Scholar] [CrossRef]
- Vasconcelos, S.E.C.B.; Melo, H.M.; Cavalcante, T.T.A.; Júnior, F.E.A.C.; de Carvalho, M.G.; Menezes, F.G.R.; de Sousa, O.V.; Costa, R.A. Plectranthus amboinicus Essential Oil and Carvacrol Bioactive against Planktonic and Biofilm of Oxacillin- and Vancomycin-Resistant Staphylococcus Aureus. BMC Complement. Altern. Med. 2017, 17, 462. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-S.; Yu, H.-M.; Shie, J.-J.; Cheng, T.-J.R.; Wu, C.-Y.; Fang, J.-M.; Wong, C.-H. Chemical Constituents of Plectranthus amboinicus and the Synthetic Analogs Possessing Anti-Inflammatory Activity. Bioorg. Med. Chem. 2014, 22, 1766–1772. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.P.; Andrade, L.H.C. Levantamento Etnobotânico Das Plantas Medicinais Utilizadas Pela Comunidade de Inhamã, Pernambuco, Nordeste Do Brasil. Rev. Bras. Plantas Med. 2014, 16, 721–730. [Google Scholar] [CrossRef]
- SAlvarez, M.; Billones, J.; Lin, C.-H.; Heralde, F. Plectranthus amboinicus (Spreng.) Semi-Purified Fractions with Selective β-Glucuronidase Inhibition Elucidated with Gas Chromatography-Mass Spectrometry and In Silico Docking. Pharmacogn. Mag. 2021, 17, 268. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Vinoj, G.; Malaikozhundan, B.; Shanthi, S.; Vaseeharan, B. Plectranthus amboinicus Leaf Extract Mediated Synthesis of Zinc Oxide Nanoparticles and Its Control of Methicillin Resistant Staphylococcus Aureus Biofilm and Blood Sucking Mosquito Larvae. Spectrochim. Acta Mol. Biomol. Spectrosc. 2015, 137, 886–891. [Google Scholar] [CrossRef]
- Prabakaran, L.; Sathyaraj, W.V.; Yesudhason, B.V.; Subbaraj, G.K.; Atchudan, R. Green Synthesis of Multifunctional Silver Nanoparticles Using Plectranthus amboinicus for Sensitive Detection of Triethylamine, with Potential In Vitro Antibacterial and Anticancer Activities. Chemosensors 2023, 11, 373. [Google Scholar] [CrossRef]
- Bhat, P.; Hegde, G.; Hegde, G.R. Ethnomedicinal Practices in Different Communities of Uttara Kannada District of Karnataka for Treatment of Wounds. J. Ethnopharmacol. 2012, 143, 501–514. [Google Scholar] [CrossRef]
- França, F.; Lago, E.L.; Marsden, P.D. Plants Used in the Treatment of Leishmanial Ulcers Due to Leishmania (Viannia) braziliensis in an Endemic Area of Bahia, Brazil. Rev. Soc. Bras. Med. Trop. 1996, 29, 229–232. [Google Scholar] [CrossRef]
- Shubha, J.R.; Bhatt, P. Plectranthus amboinicus Leaves Stimulate Growth of Probiotic L. Plantarum: Evidence for Ethnobotanical Use in Diarrhea. J. Ethnopharmacol. 2015, 166, 220–227. [Google Scholar] [CrossRef]
- Carvalho, A.F.F.d.; Caldeira, V.F.; Oliveira, A.P.; Gonsalves, J.K.M.d.C.; Araújo, E.C.d.C. Design and Development of Orally Disintegrating Films: A Platform Based on Hydroxypropyl Methylcellulose and Guar Gum. Carbohydr. Polym. 2023, 299, 120155. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, K.B.; Sakthivel, N. Extracellular Synthesis of Silver Nanoparticles Using the Leaf Extract of Coleus Amboinicus Lour. Mater. Res. Bull. 2011, 46, 1708–1713. [Google Scholar] [CrossRef]
- Singh, G.; Singh, O.P.; Prasad, Y.R.; de Lampasona, M.P.; Catalan, C. Studies on Essential Oils, Part 33: Chemical and Insecticidal Investigations on Leaf Oil of Coleus amboinicus Lour. Flavour. Fragr. J. 2002, 17, 440–442. [Google Scholar] [CrossRef]
- Jain, A.; Abraham, S.; Krishnamurthy, S.; Desai, K.; Basappa Veerabhadraiah, B. Development of PU Foam Dressings Loaded with Extract of Plectranthus amboinicus for Burn Wound Healing. Drug Dev. Ind. Pharm. 2024, 50, 248–261. [Google Scholar] [CrossRef]
- Rathinavel, S.; Sugumar, M.; Swaminathan, E.; Kubendren, S.; Samvasivan, K.; Sangeetha, D. Development of Electrospun Plectranthus amboinicus Loaded PCL Polymeric Nanofibrous Scaffold for Skin Wound Healing Application: In-Vitro and In-Silico Analysis. J. Polym. Res. 2023, 30, 110. [Google Scholar] [CrossRef]
- Damanik, R.; Wahlqvist, M.L.; Wattanapenpaiboon, N. Lactagogue Effects of Torbangun, a Bataknese Traditional Cuisine. Asia Pac. J. Clin. Nutr. 2006, 15, 267–274. [Google Scholar]
- Damanik, R. Torbangun (Coleus amboinicus Lour): A Bataknese Traditional Cuisine Perceived as Lactagogue by Bataknese Lactating Women in Simalungun, North Sumatera, Indonesia. J. Hum. Lact. 2009, 25, 64–72. [Google Scholar] [CrossRef]
- Aparna, M.; Gayathri, V. Formulation of Culinary Plant Medicine against Bacterial Skin Infections Caused by Staphylococcus Sps. and Streptococcus Sps. J. Pure Appl. Microbiol. 2018, 12, 1607–1615. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, A.; Cai, W.; Wang, Z.; Peng, F.; Liu, Z.; Fu, L. Hydrothermal Preparation of Reduced Graphene Oxide–Silver Nanocomposite Using Plectranthus amboinicus Leaf Extract and Its Electrochemical Performance. Enzym. Microb. Technol. 2016, 95, 112–117. [Google Scholar] [CrossRef]
- Akinbo, D.B.; Onyeaghala, A.A.; Emomidue, J.O.; Ogbhemhe, S.O.; Okpoli, H.C. Phytochemical and Anti-Inflammatory Activities of Aqueous Leaf Extract of Indian Borage (Oregano) on Rats Induced with Inflammation. Cancer Biomark. 2018, 22, 257–265. [Google Scholar] [CrossRef]
- Gurgel, A.P.A.D.; da Silva, J.G.; Grangeiro, A.R.S.; Oliveira, D.C.; Lima, C.M.P.; da Silva, A.C.P.; Oliveira, R.A.G.; Souza, I.A. In Vivo Study of the Anti-Inflammatory and Antitumor Activities of Leaves from Plectranthus amboinicus (Lour.) Spreng (Lamiaceae). J. Ethnopharmacol. 2009, 125, 361–363. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.-C.; Cheng, C.-P.; Chang, D.-M. Plectranthus amboinicus Attenuates Inflammatory Bone Erosion in Mice with Collagen-Induced Arthritis by Downregulation of RANKL-Induced NFATc1 Expression. J. Rheumatol. 2011, 38, 1844–1857. [Google Scholar] [CrossRef]
- Gupta, K.; Gautre, P.; Biharee, A.; Singh, Y.; Patil, U.K.; Kumar, S.; Thareja, S. Exploring the Potential of Essential Oil from Plectranthus amboinicus Leaves against Breast Cancer: In Vitro and In Silico Analysis. Med. Oncol. 2024, 41, 81. [Google Scholar] [CrossRef]
- Yulianto, W.; Andarwulan, N.; Giriwono, P.E.; Pamungkas, J. HPLC-Based Metabolomics to Identify Cytotoxic Compounds from Plectranthus amboinicus (Lour.) Spreng against Human Breast Cancer MCF-7Cells. J. Chromatogr. B 2016, 1039, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, S.; Karuppiah, M.; Thiruppathi, M. Antihyperglycaemic Potential of Rosmarinic Acid Attenuates Glycoprotein Moiety in High-Fat Diet and Streptozotocin-Induced Diabetic Rats. All Life 2020, 13, 120–130. [Google Scholar] [CrossRef]
- Nawawi, A.; Nakamura, N.; Hattori, M.; Kurokawa, M.; Shiraki, K. Inhibitory Effects of Indonesian Medicinal Plants on the Infection of Herpes Simplex Virus Type 1. Phytother. Res. 1999, 13, 37–41. [Google Scholar] [CrossRef]
- Kusumoto, I.T.; Nakabayashi, T.; Kida, H.; Miyashiro, H.; Hattori, M.; Namba, T.; Shimotohno, K. Screening of Various Plant Extracts Used in Ayurvedic Medicine for Inhibitory Effects on Human Immunodeficiency Virus Type 1 (HIV-1) Protease. Phytother. Res. 1995, 9, 180–184. [Google Scholar] [CrossRef]
- Stasińska-Jakubas, M.; Hawrylak-Nowak, B.; Wójciak, M.; Dresler, S. Comparative Effects of Two Forms of Chitosan on Selected Phytochemical Properties of Plectranthus amboinicus (Lour.). Molecules 2023, 28, 376. [Google Scholar] [CrossRef]
- Silitonga, M.; Silitonga, P.M.; Sinaga, E. Effect of Aqueous Infusion of Plectranthus amboinicus (Lour.) Spreng Leaves on Humoral Immune System in Rats. Trop. J. Pharm. Res. 2023, 22, 1017–1022. [Google Scholar] [CrossRef]
- Peter, S.R.; Peru, K.M.; Fahlman, B.; McMartin, D.W.; Headley, J.V. The Application of HPLC ESI MS in the Investigation of the Flavonoids and Flavonoid Glycosides of a Caribbean Lamiaceae Plant with Potential for Bioaccumulation. J. Environ. Sci. Health Part B 2015, 50, 819–826. [Google Scholar] [CrossRef]
- Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P. Biosynthesis of Silver Nanoparticles Using Plectranthus amboinicus Leaf Extract and Its Antimicrobial Activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 128, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, K.; Alarfaj, A.A.; Hirad, A.H.; Ravindran, B.; Narasimhamoorthi, S.P. Anti-Bacterial and In Silico Analysis of Biogenic Fabrication of CuO Nanoparticles Employing Coleus Amboinicus Leaf Extract. Biomass-Convers. Biorefin. 2023, 15, 327–339. [Google Scholar] [CrossRef]
- Vinothini, R.; Tamizhdurai, P.; Mangesh, V.L.; Vanjinathan, M.; Pazhanisamy, P.; Kumaran, R.; Kumar, N.S.; Al-Fatesh, A.S.; Kasim, S. Synthesis of CeO2/SO4/Ni Nanoparticle with a Greener Perspective for the Selective Oxidation of Propylene Glycol in Continuous Reactor. Mol. Catal. 2023, 549, 113475. [Google Scholar] [CrossRef]
- de Oliveira, F.F.M.; Torres, A.F.; Gonçalves, T.B.; Santiago, G.M.P.; de Carvalho, C.B.M.; Aguiar, M.B.; Camara, L.M.C.; Rabenhorst, S.H.; Martins, A.M.C.; Valença Junior, J.T.; et al. Efficacy of Plectranthus amboinicus (Lour.) Spreng in a Murine Model of Methicillin-Resistant Staphylococcus aureus Skin Abscesses. Evid.-Based Complement. Altern. Med. 2013, 2013, 291592. [Google Scholar] [CrossRef]
- Ruan, T.Z.; Kao, C.L.; Hsieh, Y.L.; Li, H.T.; Chen, C.Y. Chemical Constituents of the Leaves of Plectranthus amboinicus. Chem. Nat. Compd. 2019, 55, 124–126. [Google Scholar] [CrossRef]
- Suresh, S.; Muthukrishnan, L.; Vennila, S.; K, G.; Paiman, S.; Faruq, M.; Al-Lohedan, H.A.; Akbarzadeh, O.; Oh, W.C. Mechanistic Anticarcinogenic Efficacy of Phytofabricated Gold Nanoparticles on Human Lung Adenocarcinoma Cells. J. Exp. Nanosci. 2020, 15, 160–173. [Google Scholar] [CrossRef]
- Bhatt, P.; Joseph, G.S.; Negi, P.S.; Varadaraj, M.C. Chemical Composition and Nutraceutical Potential of Indian Borage (Plectranthus amboinicus) Stem Extract. J. Chem. 2013, 2013, 320329. [Google Scholar] [CrossRef]
- AbdelMohsen, M.; Salah, I.; Handoussa, H.; Mandour, Y. Identification and Quantitation of Ursolic Acid in Plectranthus amboinicus Extract; Molecular Docking Approach for Its Antiproliferative Potential. Egypt. J. Chem. 2022, 65, 305–311. [Google Scholar] [CrossRef]
- Monzote, L.; Scherbakov, A.M.; Scull, R.; Gutiérrez, Y.I.; Satyal, P.; Cos, P.; Shchekotikhin, A.E.; Gille, L.; Setzer, W.N. Pharmacological Assessment of the Carvacrol Chemotype Essential Oil From Plectranthus amboinicus Growing in Cuba. Nat. Prod. Commun. 2020, 15, 1934578X2096223. [Google Scholar] [CrossRef]
- Ślusarczyk, S.; Cieślak, A.; Yanza, Y.R.; Szumacher-Strabel, M.; Varadyova, Z.; Stafiniak, M.; Wojnicz, D.; Matkowski, A. Phytochemical Profile and Antioxidant Activities of Coleus Amboinicus Lour. Cultivated in Indonesia and Poland. Molecules 2021, 26, 2915. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Kao, C.L.; Li, H.T.; Yeh, H.C.; Fang, Z.Y.; Li, W.J.; Wu, H.M.; Chen, C.Y. A New Flavonoid from Plectranthus amboinicus. Chem. Nat. Compd. 2021, 57, 30–32. [Google Scholar] [CrossRef]
- Jugreet, B.S.; Mahomoodally, M.F.; Sinan, K.I.; Zengin, G.; Abdallah, H.H. Chemical Variability, Pharmacological Potential, Multivariate and Molecular Docking Analyses of Essential Oils Obtained from Four Medicinal Plants. Ind. Crops Prod. 2020, 150, 112394. [Google Scholar] [CrossRef]
- Teixeira, A.M.R.; Lima, I.K.C.; Xavier, M.R.; Pereira, R.L.S.; Gonçalves, B.G.; de Sena, D.M.; da Costa, J.M.; Freire, P.T.C.; Saraiva, G.D.; Bento, R.R.F.; et al. Vibrational Spectroscopy Study of Essential Oils from Plectranthus amboinicus Lour. Spreng and Vanillosmopsis Arborea Baker. Vib. Spectrosc. 2018, 98, 22–29. [Google Scholar] [CrossRef]
- Vishnu Priya, N.; Vinitha, U.G.; Meenakshi Sundaram, M. Preparation of Chitosan-Based Antimicrobial Active Food Packaging Film Incorporated with Plectranthus amboinicus Essential Oil. Biocatal. Agric. Biotechnol. 2021, 34, 102021. [Google Scholar] [CrossRef]
- Lopes, P.; Carneiro, F.; De Sousa, A.; Santos, S.; Oliveira, E.; Soares, L. Technological Evaluation of Emulsions Containing the Volatile Oil from Leaves of Plectranthus amboinicus Lour. Pharmacogn. Mag. 2017, 13, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-T.; Lin, C.-C.; Kuo, T.-C.; Chen, S.-J.; Huang, R.-N. Phytochemical Composition and Larvicidal Activity of Essential Oils from Herbal Plants. Planta 2019, 250, 59–68. [Google Scholar] [CrossRef]
- Pinheiro, P.F.; Costa, A.V.; Alves, T.d.A.; Galter, I.N.; Pinheiro, C.A.; Pereira, A.F.; Oliveira, C.M.R.; Fontes, M.M.P. Phytotoxicity and Cytotoxicity of Essential Oil from Leaves of Plectranthus amboinicus, Carvacrol, and Thymol in Plant Bioassays. J. Agric. Food Chem. 2015, 63, 8981–8990. [Google Scholar] [CrossRef]
- Sabra, A.S.; Astatkie, T.; Alataway, A.; Mahmoud, A.A.; Gendy, A.S.H.; Said-Al Ahl, H.A.H.; Tkachenko, K.G. Response of Biomass Development, Essential Oil, and Composition of Plectranthus amboinicus (Lour.) Spreng. to Irrigation Frequency and Harvest Time. Chem. Biodivers. 2018, 15, e1800005. [Google Scholar] [CrossRef]
- El-Gohary, A.; Amer, H.; Salem, S.; Hussein, M. Foliar Application of Selenium and Humic Acid Changes Yield, Essential Oil, and Chemical Composition of Plectranthus amboinicus (Lour.) Plant and Its Antimicrobial Effects. Egypt. Pharm. J. 2019, 18, 356. [Google Scholar] [CrossRef]
- Roja, G.; Pol, B.B.; Subbaraman, A.S.; Chintalwar, G.J.; Eapen, S. Accumulation of Essential Oils in Tissue Cultures of Coleus amboinicus. J. Herbs Spices Med. Plants 2006, 11, 1–7. [Google Scholar] [CrossRef]
- Tewari, G.; Pande, C.; Kharkwal, G.; Singh, S.; Singh, C. Phytochemical Study of Essential Oil from the Aerial Parts of Coleus aromaticus Benth. Nat. Prod. Res. 2012, 26, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, N.O.; Mariane, B.; Lago, J.H.G.; Sartorelli, P.; Rosa, W.; Soares, M.G.; Da Silva, A.M.; Lorenzi, H.; Vallim, M.A.; Pascon, R.C. Assessing the Chemical Composition and Antimicrobial Activity of Essential Oils from Brazilian Plants—Eremanthus erythropappus (Asteraceae), Plectrantuns barbatus, and P. Amboinicus (Lamiaceae). Molecules 2015, 20, 8440–8452. [Google Scholar] [CrossRef] [PubMed]
- Jena, B.; Biswal, B.; Sarangi, A.; Giri, A.K.; Bhattacharya, D.; Acharya, L. GC/MS Profiling and Evaluation of Leaf Essential Oil for Bactericidal Effect and Free Radical Scavenging Activity of Plectranthus amboinicus (Lour.) Spreng Collected from Odisha, India. Chem. Biodivers. 2023, 20, e202200691. [Google Scholar] [CrossRef] [PubMed]
- Kweka, E.J.; Senthilkumar, A.; Venkatesalu, V. Toxicity of Essential Oil from Indian Borage on the Larvae of the African Malaria Vector Mosquito, Anopheles Gambiae. Parasit. Vectors 2012, 5, 277. [Google Scholar] [CrossRef]
- Velasco, J.; Rojas, L.B.; Díaz, T.; Usubillaga, A. Chemical Composition and Antibacterial Activity of the Essential Oil of Coleus amboinicus Lour., Against Enteric Pathogens. J. Essent. Oil Bear. Plants 2009, 12, 453–461. [Google Scholar] [CrossRef]
- Zahari, N.A.A.R.; Chong, G.H.; Abdullah, L.C.; Chua, B.L. Ultrasonic-Assisted Extraction (UAE) Process on Thymol Concentration from Plectranthus amboinicus Leaves: Kinetic Modeling and Optimization. Processes 2020, 8, 322. [Google Scholar] [CrossRef]
- Zaki, F.; Salleh, W.; Noor, N.; Shaharudin, S.; Ab Ghani, N. Characterisation of the Essential Oil Components and Their Multivariate Statistical Analysis of the Genus Vitex and Plectranthus (Lamiaceae). RISG Riv. Ital. Sostanze Grasse 2022, 99, 263–268. [Google Scholar]
- Hole, R.C.; Juvekar, A.R.; Roja, G.; Eapen, S.; D’Souza, S.F. Positive Inotropic Effect of the Leaf Extracts of Parent and Tissue Culture Plants of Coleus amboinicus on an Isolated Perfused Frog Heart Preparation. Food Chem. 2009, 114, 139–141. [Google Scholar] [CrossRef]
- Chellappandian, M.; Saravanan, M.; Pandikumar, P.; Harikrishnan, P.; Thirugnanasambantham, K.; Subramanian, S.; Hairul-Islam, V.I.; Ignacimuthu, S. Traditionally Practiced Medicinal Plant Extracts Inhibit the Ergosterol Biosynthesis of Clinically Isolated Dermatophytic Pathogens. J. Mycol. Med. 2018, 28, 143–149. [Google Scholar] [CrossRef]
- Meesil, W.; Wisuittipot, W.; Ngoenkam, J.; Muangpat, P.; Vitta, A.; Thanwisai, A. Antibacterial Activity of Plectranthus amboinicus (Lour.) Spreng Extracts against Pathogenic Bacteria. Multidiscip. Sci. J. 2025, 7, 2025336. [Google Scholar] [CrossRef]
- Augustus, A.R.; Jana, S.; Samsudeen, M.B.; Nagaiah, H.P.; Shunmugiah, K.P. In Vitro and in Vivo Evaluation of the Anti-Infective Potential of the Essential Oil Extracted from the Leaves of Plectranthus amboinicus (Lour.) Spreng against Klebsiella Pneumoniae and Elucidation of Its Mechanism of Action through Proteomics Approach. J. Ethnopharmacol. 2024, 330, 118202. [Google Scholar] [CrossRef] [PubMed]
- Adame, A.A.; Desta, M.D.; Yus, Z.Y.; Ume, Y.U.; Chavula, P.C. Phytochemical Screening and In Vitro Antibacterial Evaluation of Plectranthus amboinicus (Lour) Spreng against Selected Four Pathogenic Bacteria. Access Microbiol. 2025, 000961-v2. [Google Scholar] [CrossRef]
- Lalthazuali; Mathew, N. Mosquito Repellent Activity of Volatile Oils from Selected Aromatic Plants. Parasitol. Res. 2017, 116, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Jugreet, B.S.; Lall, N.; Anina Lambrechts, I.; Reid, A.-M.; Maphutha, J.; Nel, M.; Hassan, A.H.; Khalid, A.; Abdalla, A.N.; Van, B.L.; et al. In Vitro and In Silico Pharmacological and Cosmeceutical Potential of Ten Essential Oils from Aromatic Medicinal Plants from the Mascarene Islands. Molecules 2022, 27, 8705. [Google Scholar] [CrossRef]
- Kumaran, A.; Karunakaran, R.J. Antioxidant and Free Radical Scavenging Activity of an Aqueous Extract of Coleus Aromaticus. Food Chem. 2006, 97, 109–114. [Google Scholar] [CrossRef]
- Pinheiro, G.P.; Graciano, D.d.S.; Mayer, J.L.S.; Hantao, L.W.; Sawaya, A.C.H.F. Glandular Trichomes of Coleus amboinicus Lour. and the Effect of Developmental Stage on Leaf Headspace Volatile Composition. S. Afr. J. Bot. 2023, 152, 136–146. [Google Scholar] [CrossRef]
- Bezerra, R. de C. de F.; Neto, F.B. de O.; Silva, F.F.M. da; Bertini, L.M.; Alves, L.A. Seasonal effect in essential oil composition and antioxidant activity of Plectranthus amboinicus leaves. Biosci. J. 2017, 33, 1608–1616. [Google Scholar] [CrossRef]
- Manjamalai, A.; Grace, D.V.B. Volatile Constituents and Antioxidant Property of Essential Oil from Plectranthus amboinicus (Lour.). Int. J. Pharm. Bio Sci. 2012, 3, 445–458. [Google Scholar]
- Escobar, A.; Pérez, M.; Romanelli, G.; Blustein, G. Thymol Bioactivity: A Review Focusing on Practical Applications. Arab. J. Chem. 2020, 13, 9243–9269. [Google Scholar] [CrossRef]
- Rajput, J.D.; Bagul, S.D.; Pete, U.D.; Zade, C.M.; Padhye, S.B.; Bendre, R.S. Perspectives on Medicinal Properties of Natural Phenolic Monoterpenoids and Their Hybrids. Mol. Divers. 2018, 22, 225–245. [Google Scholar] [CrossRef]
- Ito, J.; Hara, K.; Someya, T.; Myoda, T.; Sagane, Y.; Watanabe, T.; Wijesekara, R.G.S.; Toeda, K.; Nojima, S. Data on the Inhibitory Effect of Traditional Plants from Sri Lanka against Tyrosinase and Collagenase. Data Brief. 2018, 20, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Leesombun, A.; Sungpradit, S.; Boonmasawai, S.; Weluwanarak, T.; Klinsrithong, S.; Ruangsittichai, J.; Ampawong, S.; Masmeatathip, R.; Changbunjong, T. Insecticidal Activity of Plectranthus amboinicus Essential Oil against the Stable Fly Stomoxys calcitrans (Diptera: Muscidae) and the Horse Fly Tabanus megalops (Diptera: Tabanidae). Insects 2022, 13, 255. [Google Scholar] [CrossRef] [PubMed]
- Changbunjong, T.; Weluwanarak, T.; Ratanakorn, P.; Maneeon, P.; Ganpanakngan, M.; Apiwathnasorn, C.; Sungvornyothin, S.; Sriwichai, P.; Sumruayphol, S.; Ruangsittichai, J. Distribution and Abundance of Stomoxyini Flies (Diptera: Muscidae) in Thailand. S. Asian J. Trop. Med. Public Health 2012, 43, 1400–1410. [Google Scholar]
- Zhu, J.J.; Zeng, X.-P.; Berkebile, D.; Du, H.-J.; Tong, Y.; Qian, K. Efficacy and Safety of Catnip (Nepeta cataria) as a Novel Filth Fly Repellent. Med. Vet. Entomol. 2009, 23, 209–216. [Google Scholar] [CrossRef]
- Anjelisa Hasibuan, P.Z. Cytotoxic Effect of N-Hexane, Ethylacetate and Ethanol Extracts of Plectranthus amboinicus, (Lour.) Spreng. on HeLa and Vero Cells Lines. Int. J. PharmTech Res. 2014, 6, 1806–1809. [Google Scholar]
- Bala, A.; Kar, B.; Haldar, P.K.; Mazumder, U.K.; Bera, S. Evaluation of Anticancer Activity of Cleome Gynandra on Ehrlich’s Ascites Carcinoma Treated Mice. J. Ethnopharmacol. 2010, 129, 131–134. [Google Scholar] [CrossRef] [PubMed]
- CarolineM, L.; Muthukumar, R.S.; AH, H.P.; Nachiammai, N. Anticancer Effect of Plectranthus amboinicus and Glycyrrhiza glabra on Oral Cancer Cell Line: An Invitro Experimental Study. Asian Pac. J. Cancer Prev. 2023, 24, 881–887. [Google Scholar] [CrossRef]
- Manurung, K.; Sulastri, D.; Zubir, N.; Ilyas, S. In Silico Anticancer Activity and In Vitro Antioxidant of Flavonoids in Plectranthus amboinicus. Pharmacogn. J. 2020, 12, 1573–1577. [Google Scholar] [CrossRef]
- Manjamalai, A.; Grace, V.M.B. The Chemotherapeutic Effect of Essential Oil of Plectranthus amboinicus (Lour) on Lung Metastasis Developed by B16F-10 Cell Line in C57BL/6 Mice. Cancer Investig. 2013, 31, 74–82. [Google Scholar] [CrossRef]
- Thirugnanasampandan, R.; Ramya, G.; Gogulramnath, M.; Jayakumar, R.; Kanthimathi, M.S. Evaluation of Cytotoxic, DNA Protecting and LPS Induced MMP-9 down Regulation Activities of Plectranthus amboinicus (Lour.) Spreng. Essential Oil. Pharmacogn. J. 2014, 7, 32–36. [Google Scholar] [CrossRef]
- Danga, Y.S.P.; Nukenine, E.N.; Younoussa, L.; Esimone, C.O. Phytochemicals and larvicidal activity of Plectranthus glandulosus (Lamiaceae) leaf extracts against anopheles gambiae, aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Int. J. Pure Appl. Zool. 2014, 2, 160–170. [Google Scholar]
- Pillai, P.G.; Aggarwal, G.; Doshi, G.; Bhatia, V.; Suresh, P. Pharmacognostical Standardization and Toxicity Profile of the Methanolic Leaf Extract of Plectranthus amboinicus (Lour.) Spreng. J. Appl. Pharm. Sci. 2010, 2011, 76–81. [Google Scholar]
- Borg Karlsson, A.-K.; Asiimwe, S.; Borg-Karlsson, A.-K.; Azeem, M.; Maud Mugisha, K.; Namutebi, A.; James Gakunga, N. Chemical Composition and Toxicological Evaluation of the Aqueous Leaf Extracts of Plectranthus amboinicus Lour. Spreng. Int. J. Pharm. Sci. Invent. 2014, 3, 19–27. [Google Scholar]
- Chiu, Y.-J.; Huang, T.-H.; Chiu, C.-S.; Lu, T.-C.; Chen, Y.-W.; Peng, W.-H.; Chen, C.-Y. Analgesic and Antiinflammatory Activities of the Aqueous Extract from Plectranthus amboinicus (Lour.) Spreng. Both In Vitro and In Vivo. Evid.-Based Complement. Altern. Med. 2012, 2012, 508137. [Google Scholar] [CrossRef]
- Kuo, Y.S.; Chien, H.F.; Lu, W. Plectranthus amboinicus and Centella asiatica Cream for the Treatment of Diabetic Foot Ulcers. Evid.-Based Complement. Altern. Med. 2012, 2012, 418679. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Bharali, A.; Sarma, H.; Kushari, S.; Gam, S.; Hazarika, I.; Prasad, S.K.; Laloo, D. Traditional Complementary and Alternative Medicine (TCAM) for Diabetic Foot Ulcer Management: A Systematic Review. J. Ayurveda Integr. Med. 2023, 14, 100745. [Google Scholar] [CrossRef]
- Gonçalves, M.M.; Carneiro, J.; Justus, B.; Espinoza, J.T.; Budel, J.M.; Farago, P.V.; Paula, J.P.d. Preparation and Characterization of a Novel Antimicrobial Film Dressing for Wound Healing Application. Braz. J. Pharm. Sci. 2020, 56, e18784. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Uyama, H. Tyrosinase Inhibitors from Natural and Synthetic Sources: Structure, Inhibition Mechanism and Perspective for the Future. Cell. Mol. Life Sci. 2005, 62, 1707–1723. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Chang, Y.; Yang, C.; Hong, H. Allergic Contact Dermatitis to Plectranthus amboinicus Masquerading as Chronic Leg Ulcer. Contact Dermat. 2005, 53, 356–357. [Google Scholar] [CrossRef]
- Terto, M.V.C.; Gomes, J.M.; Araújo, D.I.A.F.; Silva, T.S.; Ferreira, J.M.; Souza, J.J.N.; Silva, M.S.; Tavares, J.F. Photoprotective Activity of Plectranthus amboinicus Extracts and HPLC Quantification of Rosmarinic Acid. Rev. Bras. Farmacogn. 2020, 30, 183–188. [Google Scholar] [CrossRef]
- Ashaari, N.S.; Ab Rahim, M.H.; Sabri, S.; Lai, K.S.; Song, A.A.-L.; Abdul Rahim, R.; Ong Abdullah, J. Kinetic Studies and Homology Modeling of a Dual-Substrate Linalool/Nerolidol Synthase from Plectranthus amboinicus. Sci. Rep. 2021, 11, 17094. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, K.B.; Sakthivel, N. Phytosynthesis of Gold Nanoparticles Using Leaf Extract of Coleus amboinicus Lour. Mater. Charact. 2010, 61, 1232–1238. [Google Scholar] [CrossRef]
- Jing, Y.; Ning, S.; Guan, Y.; Cao, M.; Li, J.; Zhu, L.; Zhang, Q.; Cheng, C.; Deng, Y. Electrochemical Determination of Nicotine in Tobacco Products Based on Biosynthesized Gold Nanoparticles. Front. Chem. 2020, 8, 593070. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhang, H.; Fu, L. Preparation Gold Nanoparticles Using Herb Leaf Extract for Electro-Oxidation Determination of Ascorbic Acid. Inorg. Nano-Metal. Chem. 2018, 48, 449–453. [Google Scholar] [CrossRef]
- Fu, L.; Fu, Z. Plectranthus amboinicus Leaf Extract–Assisted Biosynthesis of ZnO Nanoparticles and Their Photocatalytic Activity. Ceram. Int. 2015, 41, 2492–2496. [Google Scholar] [CrossRef]
- Fu, L.; Zheng, Y.; Ren, Q.; Wang, A.; Deng, B. Green biosynthesis of SnO2 nanoparticles by Plectranthus amboinicus leaf extract their photocatalytic activity toward rhodamine B degradation. J. Ovonic Res. 2015, 11, 21–26. [Google Scholar]
Compound | Petrolina, Brazil (Stems) [46] | Cariré, Brazil (Aerial) [37] | Havana, Cuba (Aerial) [74] | Mauritiu, Madagascar (Whole) [77] | Uttarakhand, India (Aerial) [86] | Taiwan (Aerial) [81] | Cairo, Egypt (Dried Herb) [84] | Cairo, Egypt (Whole) [83] | Number of Results | |
---|---|---|---|---|---|---|---|---|---|---|
Alloaromadendrene | 5.21 | 1 | ||||||||
α-Bergamotene | 2.96 | 2.56 | 2 | |||||||
α-cis-Bergamotene | 0.84 | 1 | ||||||||
(E)-α-Bergamotene | 2.7 | 4.0 | 2 | |||||||
β-bisabolene | 0.3 | 0.87 | 2 | |||||||
Borneol | 0.24 | 0.4 | 2 | |||||||
β-Bourbenene | 2.12 | 1 | ||||||||
α-Cadinol | 0.4 | 1.6 | 5.67 | 3 | ||||||
δ-Cadinol | 6.44 | 1 | ||||||||
Calamenene | 0.2 | 1 | ||||||||
Camphene | 0.8 | 0.3 | 2 | |||||||
Camphor | 12.9 | 1 | ||||||||
γ-Cadinene | 0.35 | 1 | ||||||||
δ-Cadinene | 1.4 | 6.02 | 2 | |||||||
δ-3-Carene | 15.2 | 1 | ||||||||
Carvacrol | 76.33 | 88.17 | 71 | 17.9 | 0.45 | 61.53 | 5.96 | 2.96 | 3.11 | 9 |
Caryophyllene | 9.33 | 1 | ||||||||
(E)-Caryophyllene | 2.02 | 1 | ||||||||
β-Caryophyllene | 4.2 | 6.1 | 12.79 | 0.71 | 11.6 | 14.98 | 6 | |||
Caryophyllene oxide | 5.85 | 1.6 | 0.9 | 1.24 | 0.37 | 0.48 | 6 | |||
14-Hydroxy-(Z)-caryophyllene | 0.2 | 1 | ||||||||
1.8-Cineole | 2.01 | 0.2 | 2 | |||||||
α-Copaene | 1.1 | 1 | ||||||||
β-Copaene | 0.39 | 1 | ||||||||
ρ-Cymene | 5.35 | 0.72 | 9.7 | 9.9 | 9.42 | 2.55 | 10.68 | 13.65 | 8 | |
α-Fenchone | 0.2 | 1 | ||||||||
α-Humulene | 1.3 | 1.6 | 3.24 | 1.3 | 0.35 | 5 | ||||
Humulene epoxide II | 0.3 | 1 | ||||||||
trans-Isocarveol | 0.51 | 1 | ||||||||
Transcycloisolongifol-5-ol | 1.11 | 1 | ||||||||
Limonene | 1.2 | 8.03 | 2 | |||||||
Linalool | 0.3 | 0.49 | 2 | |||||||
epi-α-Muurolol | 0.69 | 1 | ||||||||
T-Muurolol | 0.3 | 1 | ||||||||
α-Muulorene | 7.31 | 1 | ||||||||
γ-Muulorene | 5.51 | 1 | ||||||||
α-Muulorene-4-hydroxy | 1.17 | 1 | ||||||||
Myrcene | 0.6 | 1.2 | 0.53 | 2.1 | 2.45 | 5 | ||||
Myristicin | 0.2 | 1 | ||||||||
(E)-β-ocimene | 0.57 | 1 | ||||||||
Oct-1-en-3-ol | 0.6 | 0.6 | 1.17 | 3.25 | 2.37 | 5 | ||||
Oplupanone | 0.98 | 1 | ||||||||
α-Phellandrene | 0.8 | 0.2 | 2 | |||||||
β-Phellandrene | 0.5 | 1 | ||||||||
α-Pinene | 0.7 | 0.22 | 2 | |||||||
β-Pinene | 0.98 | 0.68 | 1.1 | 3 | ||||||
cis-Sabinene hydrate | 0.42 | 1 | ||||||||
α-Selinene | 0.7 | 1 | ||||||||
β-Selinene | 4.2 | 0.29 | 2 | |||||||
Spathulenol | 0.24 | 1 | ||||||||
Terpinen-4-ol | 1.4 | 1.03 | 2.93 | 0.93 | 4 | |||||
Terpinene | 8.99 | 1 | ||||||||
α-Terpinene | 0.6 | 4.1 | 1.73 | 0.22 | 3.15 | 1.87 | 6 | |||
γ-Terpinene | 0.45 | 4.3 | 6.6 | 8.51 | 8.64 | 18.86 | 15.89 | 7 | ||
α-Terpineol | 0.2 | 1 | ||||||||
Terpinolene | 1 | 0.63 | 0.93 | 0.93 | 4 | |||||
Tetradecene | 0.23 | 1 | ||||||||
Thymol | 0.3 | 83.39 | 0.21 | 32.42 | 34.89 | 5 | ||||
Thymol acetate | 0.46 | 1.43 | 0.9 | 3 | ||||||
α-Thujene | 0.8 | 0.6 | 0.41 | 0.7 | 0.46 | 5 |
Compound | Malaysia [92] | Cambodia [90] | Mangudi, India [89] | Rajahmundry, India [48] | Mysore, India [31] | Oshida, India [88] | Punjab, India [58] | Tiruchirappalli, India [79] | Fortaleza, Brazil [21] | Nova Odessa, Brazil [87] | Alegre, Brazil [82] | Apiacá, Brazil [17] | Paraíba, Brazil [80] | Ceará, Brazil [78] | Number of Results | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cyclopropa [5,6]-A-nor-5,alpha,-androstane-3,7-dione, 3′,6,beta,-dihydro-17,beta,-hydroxy-3′,3′-dimethyl-, acetate | 0.21 | 1 | |||||||||||||||
2Z-octenol acetate | 0.96 | 1 | |||||||||||||||
Phthalic acid | 4.32 | 1 | |||||||||||||||
Alloaromadendrene | 0.21 | 1 | |||||||||||||||
Allopregnanolone | 0.27 | 1 | |||||||||||||||
Aromadendrede epoxide | 0.3 | 0.5 | 2 | ||||||||||||||
Aromadendrede oxide | 11.19 | 1 | |||||||||||||||
Isoaromadendrene epoxide | 0.5 | 1 | |||||||||||||||
Adamantane | 0.2 | 1 | |||||||||||||||
β-Bisabolene | 1.8 | 5.77 | 2 | ||||||||||||||
α-Bergamotene | 3.9 | 1.78 | 2 | ||||||||||||||
α-cis-Bergamotene | 7.7 | 1 | |||||||||||||||
(E)-α-Bergamotene | 0.3 | 2.5 | 8.19 | 3 | |||||||||||||
γ-Bergamotene | 3.16 | 1 | |||||||||||||||
Borneol | 0.26 | 1 | |||||||||||||||
Bornyl isovalerate | 2.47 | 1 | |||||||||||||||
2C-E | 2.7 | 1 | |||||||||||||||
δ-Cadinene | 0.9 | 1 | |||||||||||||||
Carene | 15.89 | 1 | |||||||||||||||
4-Carene | 0.56 | 1 | |||||||||||||||
Carvacrol | 54.4 | 65.2 | 29.25 | 1.2 | 70 | 20.25 | 37.7 | 88.61 | 33.5 | 9 | |||||||
Carvacrol acetate | 0.2 | 1.07 | 2 | ||||||||||||||
Dihydro carvel | 0.23 | 1 | |||||||||||||||
Caryophyllene | 0.27 | 19.34 | 2 | ||||||||||||||
α-Caryophyllene | 6.2 | 1 | |||||||||||||||
β-Caryophyllene | 8.9 | 5 | 1.9 | 3.09 | 2.8 | 5 | |||||||||||
(Z)-Caryophyllenne | 14.07 | 2.39 | 2 | ||||||||||||||
(E)-Caryophyllene | 4.63 | 1 | |||||||||||||||
Isocaryophyllene | 12.18 | 1 | |||||||||||||||
Caryophyllene oxide | 6 | 1.7 | 5.83 | 1 | 5.76 | 5.05 | 10.78 | 1.36 | 0.2 | 0.62 | 10 | ||||||
β-Cedrene epoxide | 0.3 | 1 | |||||||||||||||
1,8-Cineole | 0.8 | 1 | |||||||||||||||
1-epi-Cubenol | 0 | 1 | |||||||||||||||
n-tetraContane | 0.33 | 1 | |||||||||||||||
Octatriacontyl pentafluoropropionate | 1.48 | 1 | |||||||||||||||
α-Copaene | 1.03 | 1 | |||||||||||||||
α-Cubebene | 0.8 | 1 | |||||||||||||||
Cuminol | 18.57 | 1 | |||||||||||||||
o-Cymene | 19.41 | 1 | |||||||||||||||
ρ-Cymene | 8.5 | 6.51 | 0.3 | 1.65 | 12.01 | 19.46 | 28.2 | 10.3 | 8 | ||||||||
3-Methylheptadecane | 0.02 | 1 | |||||||||||||||
Eicosahydrodibenzo(a,i)fluorene | 1.22 | 1 | |||||||||||||||
Elixene | 2.9 | 1 | |||||||||||||||
Eremophilene | 0.44 | 1 | |||||||||||||||
Eudesma-4, 11-diene | 1.8 | 1 | |||||||||||||||
Eugenol | 1.59 | 1 | |||||||||||||||
(Z)-α-farnesene | 1.4 | 1 | |||||||||||||||
(E)-β-farnesene | 0.2 | 1.55 | 0.39 | 3 | |||||||||||||
Globulol | 1.41 | 1 | |||||||||||||||
1,3,3-Trimethyl-2-vinyl-1-cyclohexene | 0.21 | 1 | |||||||||||||||
α-Himachalene | 0.44 | 1 | |||||||||||||||
α-Humulene | 3.1 | 1.5 | 9.67 | 3.83 | 1.17 | 5 | |||||||||||
Humelene oxide | 3.68 | 1 | |||||||||||||||
Humulene epoxide II | 1.1 | 1 | |||||||||||||||
Irone | 0.27 | 1 | |||||||||||||||
α-Isomethyl ionone | 0.86 | 1 | |||||||||||||||
Ledol | 0.62 | 1 | |||||||||||||||
Limonene | 0.46 | 0.84 | 2 | ||||||||||||||
D-Limonene | 0.82 | 1 | |||||||||||||||
Linalool | 0.66 | 1 | |||||||||||||||
Linolenic acid, methyl ester | 0.83 | 1 | |||||||||||||||
epi-Longipinanol | 1.1 | 1 | |||||||||||||||
p-Menthatriene | 4.45 | 1 | |||||||||||||||
Methyl chavicol | 0.28 | 1 | |||||||||||||||
Methyl octanoate | 0.42 | 1 | |||||||||||||||
β-Myrcene | 0.7 | 0.4 | 0.33 | 6.17 | 0.97 | 12.59 | 2.03 | 7 | |||||||||
Myrcene dissulfide | 0.33 | 1 | |||||||||||||||
Nopinene | 0.33 | 1 | |||||||||||||||
Oct-1-en-3-ol | 0.3 | 1 | |||||||||||||||
(E)-β-Ocimene | 64 | 1 | |||||||||||||||
cis-β-Ocimene | 0.39 | 1 | |||||||||||||||
1-octene | 0 | 1 | |||||||||||||||
Palmitic acid | 1.31 | 3.54 | 2 | ||||||||||||||
2-Cyclopentylcyclopentan-1-one | 0.24 | 1 | |||||||||||||||
2,3,4,5-Tetramethylcyclopent-2-en-1-ol | 0.48 | 1 | |||||||||||||||
Perillen | 1.12 | 1 | |||||||||||||||
4-tert-Butyl-2-(5-tert-butyl-2-hydroxyphenyl)phenol | 0.32 | 1 | |||||||||||||||
Phytol | 3.73 | 1 | |||||||||||||||
Pichtosin | 0.2 | 1 | |||||||||||||||
α-Pinene | 0.2 | 0.24 | 0.38 | 3 | |||||||||||||
β-Pinene | 0.26 | 1 | |||||||||||||||
(-)- β Pinene | 0.2 | 1 | |||||||||||||||
α-Phellandrene | 0.2 | 0.31 | 2 | ||||||||||||||
β-Phellandrene | 0.4 | 1 | |||||||||||||||
β-Sesquiphellandrene | 0.4 | 1 | |||||||||||||||
Sabinene | 0.26 | 1 | |||||||||||||||
trans-Sabinene hydrate | 0.22 | 1 | |||||||||||||||
Selinene | 10.81 | 1 | |||||||||||||||
β-Selinene | 2.01 | 1 | |||||||||||||||
δ-Selinene | 1.7 | 1 | |||||||||||||||
γ-Selinene | 2.55 | 1 | |||||||||||||||
Seline-4(14),11-diene | 6.72 | 1 | |||||||||||||||
Shyobunol | 0.65 | 1 | |||||||||||||||
Spathulenol | 0.2 | 1 | |||||||||||||||
Stearic acid | 0.36 | 1 | |||||||||||||||
Terpinen-4-ol | 0.2 | 0.2 | 1.2 | 1.65 | 90.55 | 95.39 | 98.03 | 1.39 | 8 | ||||||||
L-4-Terpineol | 1.52 | 1 | |||||||||||||||
α-Terpinene | 1.7 | 0.61 | 1.96 | 2.52 | 4 | ||||||||||||
γ-Terpinene | 10 | 7.76 | 5.3 | 0.56 | 2.46 | 14.74 | 14.77 | 9.9 | 8 | ||||||||
α-Terpineol | 1.1 | 3.28 | 0.22 | 3 | |||||||||||||
α-Terpinolene | 7.18 | 9.86 | 2 | ||||||||||||||
4-Thujanol | 0.24 | 1 | |||||||||||||||
α-Thujene | 0.2 | 0.83 | 2 | ||||||||||||||
2-phenyl ethyl tiglate | 1.38 | 1 | |||||||||||||||
Thymol | 0.5 | 21.66 | 94.3 | 0.3 | 20.17 | 0.52 | 45.64 | 64.3 | 8 | ||||||||
Thymol acetate | 0.2 | 1 | |||||||||||||||
Undecanal | 8.29 | 1 | |||||||||||||||
Valeranone | 6.47 | 1 | |||||||||||||||
Verbenol | 1.6 | 1 | |||||||||||||||
Vinyl amyl carbinol | 0.39 | 0.74 | 2 | ||||||||||||||
Cycloheptane,4-methylene-1-methyl-2-(2-methyl-1-propen-1-yl)-1-vinyl | 4.75 | 1 | |||||||||||||||
Viridiflorol | 0.62 | 1 | |||||||||||||||
Widdrol | 1.56 | 1 |
Molecular Target | Biological Activity | Mechanism/Role | References |
---|---|---|---|
Tyrosinase | Anti-aging, skin-lightening | Inhibition reduces melanin synthesis and hyperpigmentation | [99,123] |
Collagenase | Anti-aging, anti-wrinkle | Inhibition protects extracellular matrix and prevents skin degradation | [99,123] |
TNF-α (Tumor Necrosis Factor-alpha) | Anti-inflammatory | Downregulation reduces systemic and local inflammation | [119] |
IL-8 (Interleukin-8) | Anti-inflammatory | Inhibition reduces inflammatory cell recruitment | [55] |
NF-κB (Nuclear Factor kappa B) | Anti-inflammatory | Inhibition suppresses transcription of pro-inflammatory cytokines | [55] |
COX-2 (Cyclooxygenase-2) | Anti-inflammatory, wound healing | Downregulation contributes to pain relief and inflammation control | [119] |
SOD (Superoxide Dismutase) | Antioxidant | Enhances antioxidant defense by neutralizing superoxide radicals | [119] |
GRx (Glutathione Reductase) | Antioxidant | Maintains glutathione homeostasis and redox balance | [119] |
MDA (Malondialdehyde) | Antioxidant, anti-aging | Reduced levels indicate protection from lipid peroxidation | [119] |
Ergosterol synthesis | Antifungal | Disruption impairs fungal membrane integrity | [31] |
Cancer cell viability pathways (e.g., p53, Bcl-2 inferred) | Anticancer | Induction of cytotoxicity and apoptosis in cancer cells | [58,59,112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos Filipe, M.; Bangay, G.; Brauning, F.Z.; Ogungbemiro, F.O.; Palma, B.B.; Díaz-Lanza, A.M.; Hassan, A.; André, R.; Rijo, P. Plectranthus amboinicus: A Systematic Review of Traditional Uses, Phytochemical Properties, and Therapeutic Applications. Pharmaceuticals 2025, 18, 707. https://doi.org/10.3390/ph18050707
Santos Filipe M, Bangay G, Brauning FZ, Ogungbemiro FO, Palma BB, Díaz-Lanza AM, Hassan A, André R, Rijo P. Plectranthus amboinicus: A Systematic Review of Traditional Uses, Phytochemical Properties, and Therapeutic Applications. Pharmaceuticals. 2025; 18(5):707. https://doi.org/10.3390/ph18050707
Chicago/Turabian StyleSantos Filipe, Márcia, Gabrielle Bangay, Florencia Z. Brauning, Festus Oladayo Ogungbemiro, Bernardo Brito Palma, Ana María Díaz-Lanza, Amr Hassan, Rebeca André, and Patricia Rijo. 2025. "Plectranthus amboinicus: A Systematic Review of Traditional Uses, Phytochemical Properties, and Therapeutic Applications" Pharmaceuticals 18, no. 5: 707. https://doi.org/10.3390/ph18050707
APA StyleSantos Filipe, M., Bangay, G., Brauning, F. Z., Ogungbemiro, F. O., Palma, B. B., Díaz-Lanza, A. M., Hassan, A., André, R., & Rijo, P. (2025). Plectranthus amboinicus: A Systematic Review of Traditional Uses, Phytochemical Properties, and Therapeutic Applications. Pharmaceuticals, 18(5), 707. https://doi.org/10.3390/ph18050707