Structure-Based Insights into Stefin-Mediated Targeting of Fowlerpain-1: Towards Novel Therapeutics for Naegleria fowleri Infections
Abstract
1. Introduction
2. Results
2.1. Fowlerpain-1 Displays Papain-like Structural Features
2.2. Fowlerpain-1 Exhibits a Reliable Active-Site Cleft
2.3. Stefins Form Stable Complexes with FWP1
2.4. The Stefin-Binding Region of FWP1 Has Druggable Features
3. Discussion
3.1. Structural and Therapeutic Implications of FWP1
3.2. Stefin-Based Inhibition: Endogenous Against Therapeutic
3.3. Translational Challenges: Blood–Brain Barrier Penetration
3.4. Computational Limitations and Experimental Validation
3.5. Broader Impact and Future Directions
4. Materials and Methods
4.1. Sequence Retrieval and Database Searching
4.2. Primary and Secondary Structure Analyses
4.3. Modeling of Protein Tertiary Structures
4.4. In Silico Protein–Protein Interface Interaction Analysis
4.5. Binding Site Analysis and Druggability Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CP | Cysteine protease |
| CPI | Cysteine protease inhibitor |
| CTSL | Cathepsin L |
| FSTF | Fowlerstefin |
| FWP1 | Fowlerpain-1 |
| Nf | Naegleria fowleri |
| PAM | Primary amoebic meningoencephalitis |
| STFA | Stefin A |
References
- López-Otín, C.; Bond, J.S. Proteases: Multifunctional Enzymes in Life and Disease. J. Biol. Chem. 2008, 283, 30433–30437. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Child, M.A.; Bogyo, M. Proteases as Regulators of Pathogenesis: Examples from the Apicomplexa. Biochim. Biophys. Acta BBA Proteins Proteom. 2012, 1824, 177–185. [Google Scholar] [CrossRef]
- Salvesen, G.S.; Hempel, A.; Coll, N.S. Protease Signaling in Animal and Plant-Regulated Cell Death. FEBS J. 2016, 283, 2577–2598. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS Database of Proteolytic Enzymes, Their Substrates and Inhibitors in 2017 and a Comparison with Peptidases in the PANTHER Database. Nucleic Acids Res. 2018, 46, D624–D632. [Google Scholar] [CrossRef]
- Apoorva, O.S.; Shukla, K.; Khurana, A.; Chaudhary, N. Proteases: Role in Various Human Diseases. Curr. Pharm. Biotechnol. 2024, 26, 2257–2269. [Google Scholar] [CrossRef]
- Verma, S.; Dixit, R.; Pandey, K.C. Cysteine Proteases: Modes of Activation and Future Prospects as Pharmacological Targets. Front. Pharmacol. 2016, 7, 107. [Google Scholar] [CrossRef]
- Vernet, T.; Tessier, D.C.; Chatellier, J.; Plouffe, C.; Lee, T.S.; Thomas, D.Y.; Storer, A.C.; Ménard, R. Structural and Functional Roles of Asparagine 175 in the Cysteine Protease Papain. J. Biol. Chem. 1995, 270, 16645–16652. [Google Scholar] [CrossRef]
- Petushkova, A.I.; Savvateeva, L.V.; Zamyatnin, A.A. Structure Determinants Defining the Specificity of Papain-Like Cysteine Proteases. Comput. Struct. Biotechnol. J. 2022, 20, 6552–6569. [Google Scholar] [CrossRef]
- Siklos, M.; BenAissa, M.; Thatcher, G.R.J. Cysteine Proteases as Therapeutic Targets: Does Selectivity Matter? A Systematic Review of Calpain and Cathepsin Inhibitors. Acta Pharm. Sin. B 2015, 5, 506–519. [Google Scholar] [CrossRef] [PubMed]
- Kędzior, M.; Seredyński, R.; Gutowicz, J. Microbial Inhibitors of Cysteine Proteases. Med. Microbiol. Immunol. 2016, 205, 275–296. [Google Scholar] [CrossRef] [PubMed]
- Siqueira-Neto, J.L.; Debnath, A.; McCall, L.-I.; Bernatchez, J.A.; Ndao, M.; Reed, S.L.; Rosenthal, P.J. Cysteine Proteases in Protozoan Parasites. PLoS Negl. Trop. Dis. 2018, 12, e0006512. [Google Scholar] [CrossRef] [PubMed]
- McKerrow, J.H. The Diverse Roles of Cysteine Proteases in Parasites and Their Suitability as Drug Targets. PLoS Negl. Trop. Dis. 2018, 12, e0005639. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Svärd, S.G.; Klotz, C. Giardia intestinalis Cystatin Is a Potent Inhibitor of Papain, Parasite Cysteine Proteases and, to a Lesser Extent, Human Cathepsin B. FEBS Lett. 2019, 593, 1313–1325. [Google Scholar] [CrossRef]
- Turk, V.; Stoka, V.; Turk, D. Cystatins: Biochemical and Structural Properties, and Medical Relevance. Front. Biosci. 2008, 13, 5406–5420. [Google Scholar] [CrossRef]
- Turk, V.; Turk, D.; Dolenc, I.; Stoka, V. Characteristics, Structure, and Biological Role of Stefins (Type-1 Cystatins) of Human. Acta Chim. Slov. 2019, 66, 5–17. [Google Scholar] [CrossRef]
- Stubbs, M.T.; Laber, B.; Bode, W.; Huber, R.; Jerala, R.; Lenarcic, B.; Turk, V. The Refined 2.4 A X-Ray Crystal Structure of Recombinant Human Stefin B in Complex with the Cysteine Proteinase Papain: A Novel Type of Proteinase Inhibitor Interaction. EMBO J. 1990, 9, 1939–1947. [Google Scholar] [CrossRef]
- Jenko, S.; Dolenc, I.; Gunčar, G.; Doberšek, A.; Podobnik, M.; Turk, D. Crystal Structure of Stefin A in Complex with Cathepsin H: N-Terminal Residues of Inhibitors Can Adapt to the Active Sites of Endo- and Exopeptidases. J. Mol. Biol. 2003, 326, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Güémez, A.; García, E. Primary Amoebic Meningoencephalitis by Naegleria fowleri: Pathogenesis and Treatments. Biomolecules 2021, 11, 1320. [Google Scholar] [CrossRef]
- Pana, A.; Vijayan, V.; Anilkumar, A.C. Amebic Meningoencephalitis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Ahmad Zamzuri, M.; Ammar, I.; Abd Majid, F.N.; Mihat, M.; Ibrahim, S.S.; Ismail, M.; Abd Aziz, S.; Mohamed, Z.; Rejali, L.; Yahaya, H.; et al. Systematic Review of Brain-Eating Amoeba: A Decade Update. Int. J. Environ. Res. Public Health 2023, 20, 3021. [Google Scholar] [CrossRef]
- Alanazi, A.; Younas, S.; Ejaz, H.; Alruwaili, M.; Alruwaili, Y.; Mazhari, B.B.Z.; Atif, M.; Junaid, K. Advancing the Understanding of Naegleria fowleri: Global Epidemiology, Phylogenetic Analysis, and Strategies to Combat a Deadly Pathogen. J. Infect. Public Health 2025, 18, 102690. [Google Scholar] [CrossRef]
- Jahangeer, M.; Mahmood, Z.; Munir, N.; Waraich, U.; Tahir, I.M.; Akram, M.; Ali Shah, S.M.; Zulfqar, A.; Zainab, R. Naegleria fowleri: Sources of Infection, Pathophysiology, Diagnosis, and Management; A Review. Clin. Exp. Pharmacol. Physiol. 2020, 47, 199–212. [Google Scholar] [CrossRef]
- Matanock, A.; Mehal, J.M.; Liu, L.; Blau, D.M.; Cope, J.R. Estimation of Undiagnosed Naegleria fowleri Primary Amebic Meningoencephalitis, United States. Emerg. Infect. Dis. 2018, 24, 162–164. [Google Scholar] [CrossRef]
- Khan, N.A.; Muhammad, J.S.; Siddiqui, R. Brain-Eating Amoebae: Is Killing the Parasite Our Only Option to Prevent Death? Expert Rev. Anti-Infect. Ther. 2022, 20, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Gharpure, R.; Bliton, J.; Goodman, A.; Ali, I.K.M.; Yoder, J.; Cope, J.R. Epidemiology and Clinical Characteristics of Primary Amebic Meningoencephalitis Caused by Naegleria fowleri: A Global Review. Clin. Infect. Dis. 2021, 73, e19–e27. [Google Scholar] [CrossRef] [PubMed]
- Bellini, N.K.; Santos, T.M.; Da Silva, M.T.A.; Thiemann, O.H. The Therapeutic Strategies Against Naegleria fowleri. Exp. Parasitol. 2018, 187, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.; El-Gamal, M.; Boghossian, A.; Saeed, B.; Oh, C.-H.; Abdel-Maksoud, M.; Alharbi, A.; Alfahemi, H.; Khan, N. Imidazothiazole Derivatives Exhibited Potent Effects against Brain-Eating Amoebae. Antibiotics 2022, 11, 1515. [Google Scholar] [CrossRef]
- Zysset-Burri, D.C.; Müller, N.; Beuret, C.; Heller, M.; Schürch, N.; Gottstein, B.; Wittwer, M. Genome-Wide Identification of Pathogenicity Factors of the Free-Living Amoeba Naegleria fowleri. BMC Genom. 2014, 15, 496. [Google Scholar] [CrossRef]
- Liechti, N.; Schürch, N.; Bruggmann, R.; Wittwer, M. Nanopore Sequencing Improves the Draft Genome of the Human Pathogenic Amoeba Naegleria fowleri. Sci. Rep. 2019, 9, 16040. [Google Scholar] [CrossRef]
- Tillery, L.; Barrett, K.; Goldstein, J.; Lassner, J.W.; Osterhout, B.; Tran, N.L.; Xu, L.; Young, R.M.; Craig, J.; Chun, I.; et al. Naegleria fowleri: Protein Structures to Facilitate Drug Discovery for the Deadly, Pathogenic Free-Living Amoeba. PLoS ONE 2021, 16, e0241738. [Google Scholar] [CrossRef]
- Herman, E.K.; Greninger, A.; van der Giezen, M.; Ginger, M.L.; Ramirez-Macias, I.; Miller, H.C.; Morgan, M.J.; Tsaousis, A.D.; Velle, K.; Vargová, R.; et al. Genomics and Transcriptomics Yields a System-Level View of the Biology of the Pathogen Naegleria fowleri. BMC Biol. 2021, 19, 142. [Google Scholar] [CrossRef]
- Joseph, S.J.; Park, S.; Kelley, A.; Roy, S.; Cope, J.R.; Ali, I.K.M. Comparative Genomic and Transcriptomic Analysis of Naegleria fowleri Clinical and Environmental Isolates. mSphere 2021, 6, e00637-21. [Google Scholar] [CrossRef]
- Rodríguez-Mera, I.B.; Carrasco-Yépez, M.M.; Vásquez-Moctezuma, I.; Correa-Basurto, J.; Salinas, G.R.-; Castillo-Ramírez, D.A.; Rosales-Cruz, É.; Rojas-Hernández, S. Role of Cathepsin B of Naegleria fowleri during Primary Amebic Meningoencephalitis. Parasitol. Res. 2022, 121, 3287–3303. [Google Scholar] [CrossRef] [PubMed]
- Chao-Pellicer, J.; Arberas-Jiménez, I.; Sifaoui, I.; Díaz-Marrero, A.R.; Fernández, J.J.; Jamerson, M.; Piñero, J.E.; Lorenzo-Morales, J. Potential Inhibitors of Human–Naegleria fowleri Interactions: An In Vitro Extracellular Matrix-Based Model. Mar. Drugs 2025, 23, 306. [Google Scholar] [CrossRef] [PubMed]
- Aldape, K.; Huizinga, H.; Bouvier, J.; Mckerrow, J. Naegleria fowleri: Characterization of a Secreted Histolytic Cysteine Protease. Exp. Parasitol. 1994, 78, 230–241. [Google Scholar] [CrossRef]
- Thái, T.L.; Kang, J.-M.; Lê, H.G.; Lee, J.; Yoo, W.G.; Shin, H.-J.; Sohn, W.-M.; Na, B.-K. Fowlerstefin, a Cysteine Protease Inhibitor of Naegleria fowleri, Induces Inflammatory Responses in BV-2 Microglial Cells in vitro. Parasites Vectors 2020, 13, 41. [Google Scholar] [CrossRef]
- Zyserman, I.; Mondal, D.; Sarabia, F.; McKerrow, J.H.; Roush, W.R.; Debnath, A. Identification of Cysteine Protease Inhibitors as New Drug Leads against Naegleria fowleri. Exp. Parasitol. 2018, 188, 36–41. [Google Scholar] [CrossRef]
- Tušar, L.; Usenik, A.; Turk, B.; Turk, D. Mechanisms Applied by Protein Inhibitors to Inhibit Cysteine Proteases. Int. J. Mol. Sci. 2021, 22, 997. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.-B.; Perminov, A.; Bekele, S.; Kedziora, G.; Farajollahi, S.; Varaljay, V.; Hinkle, K.; Molinero, V.; Meister, K.; Hung, C.; et al. AlphaFold2 Models Indicate That Protein Sequence Determines Both Structure and Dynamics. Sci. Rep. 2022, 12, 10696. [Google Scholar] [CrossRef]
- Akdel, M.; Pires, D.E.V.; Pardo, E.P.; Jänes, J.; Zalevsky, A.O.; Mészáros, B.; Bryant, P.; Good, L.L.; Laskowski, R.A.; Pozzati, G.; et al. A Structural Biology Community Assessment of AlphaFold2 Applications. Nat. Struct. Mol. Biol. 2022, 29, 1056–1067. [Google Scholar] [CrossRef]
- Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Cysteine Cathepsins: From Structure, Function and Regulation to New Frontiers. Biochim. Biophys. Acta BBA Proteins Proteom. 2012, 1824, 68–88. [Google Scholar] [CrossRef]
- Novinec, M.; Lenarčič, B. Papain-like Peptidases: Structure, Function, and Evolution. Biomol. Concepts 2013, 4, 287–308. [Google Scholar] [CrossRef]
- Pavlova, A.; Estrada, S.; Björk, I. The Role of the Second Binding Loop of the Cysteine Protease Inhibitor, Cystatin A (Stefin A), in Stabilizing Complexes with Target Proteases Is Exerted Predominantly by Leu73: Second Protease-Binding Loop of Cystatin A. Eur. J. Biochem. 2002, 269, 5649–5658. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A Program to Generate Schematic Diagrams of Protein-Ligand Interactions. Protein Eng. Des. Sel. 1995, 8, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Kozakov, D.; Hall, D.R.; Chuang, G.-Y.; Cencic, R.; Brenke, R.; Grove, L.E.; Beglov, D.; Pelletier, J.; Whitty, A.; Vajda, S. Structural Conservation of Druggable Hot Spots in Protein-Protein Interfaces. Proc. Natl. Acad. Sci. USA 2011, 108, 13528–13533. [Google Scholar] [CrossRef]
- Khoo, K.K.; Norton, R.S. Role of Disulfide Bonds in Peptide and Protein Conformation. In Amino Acids, Peptides and Proteins in Organic Chemistry; Hughes, A.B., Ed.; Wiley: Hoboken, NJ, USA, 2011; pp. 395–417. ISBN 978-3-527-32104-9. [Google Scholar]
- Zheng, X.; Gan, L.; Wang, E.; Wang, J. Pocket-Based Drug Design: Exploring Pocket Space. AAPS J. 2013, 15, 228–241. [Google Scholar] [CrossRef]
- Renko, M.; Požgan, U.; Majera, D.; Turk, D. Stefin A Displaces the Occluding Loop of Cathepsin B Only by as Much as Required to Bind to the Active Site Cleft. FEBS J. 2010, 277, 4338–4345. [Google Scholar] [CrossRef] [PubMed]
- Nandwani, N.; Surana, P.; Negi, H.; Mascarenhas, N.M.; Udgaonkar, J.B.; Das, R.; Gosavi, S. A Five-Residue Motif for the Design of Domain Swapping in Proteins. Nat. Commun. 2019, 10, 452. [Google Scholar] [CrossRef]
- Lê, H.G.; Ham, A.-J.; Kang, J.-M.; Võ, T.C.; Naw, H.; Sohn, H.-J.; Shin, H.-J.; Na, B.-K. A Novel Cysteine Protease Inhibitor of Naegleria fowleri That Is Specifically Expressed during Encystation and at Mature Cysts. Pathogens 2021, 10, 388. [Google Scholar] [CrossRef]
- Calkins, C.C.; Dosescu, J.; Day, N.A.; Ren, W.-P.; Fridman, R.; Sloane, B.F.; Moin, K. Functional Expression of Recombinant Human Stefin A in Mammalian and Bacterial Cells. Protein Expr. Purif. 2007, 52, 463–471. [Google Scholar] [CrossRef]
- Dingman, R.; Balu-Iyer, S.V. Immunogenicity of Protein Pharmaceuticals. J. Pharm. Sci. 2019, 108, 1637–1654. [Google Scholar] [CrossRef]
- Ebrahimi, S.B.; Samanta, D. Engineering Protein-Based Therapeutics through Structural and Chemical Design. Nat. Commun. 2023, 14, 2411. [Google Scholar] [CrossRef]
- Chacón Camacho, N.; Steller Espinoza, M.F.; Alvarado-Ocampo, J.; Osuna, A.; Retana Moreira, L.; Abrahams Sandí, E. Characterization of Naegleria fowleri from Two Human Cases: Insights into Its Excretion/Secretion Products. Front. Cell. Infect. Microbiol. 2025, 15, 1585448. [Google Scholar] [CrossRef]
- Chakraborty, S.; Biswas, S. Structure-Based Optimization of Protease–Inhibitor Interactions to Enhance Specificity of Human Stefin-A against Falcipain-2 from the Plasmodium falciparum 3D7 Strain. Biochemistry 2023, 62, 1053–1069. [Google Scholar] [CrossRef] [PubMed]
- Salameh, T.S.; Banks, W.A. Delivery of Therapeutic Peptides and Proteins to the CNS. Adv. Pharmacol. 2014, 71, 277–299. [Google Scholar] [CrossRef] [PubMed]
- Hersh, D.S.; Wadajkar, A.B.; Roberts, N.G.; Perez, J.P.; Connolly, N.; Frenkel, V.A.; Winkles, J.F.; Woodworth, G.J.; Kim, A. Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr. Pharm. Des. 2016, 22, 1177–1193. [Google Scholar] [CrossRef]
- Banks, W.A.; Rhea, E.M.; Reed, M.J.; Erickson, M.A. The Penetration of Therapeutics across the Blood-Brain Barrier: Classic Case Studies and Clinical Implications. Cell Rep. Med. 2024, 5, 101760. [Google Scholar] [CrossRef] [PubMed]
- Fong, H.; Leid, Z.H.; Debnath, A. Approaches for Targeting Naegleria fowleri Using Nanoparticles and Artificial Peptides. Pathogens 2024, 13, 695. [Google Scholar] [CrossRef]
- Petraitis, V.; Petraitiene, R.; Valdez, J.M.; Pyrgos, V.; Lizak, M.J.; Klaunberg, B.A.; Kalasauskas, D.; Basevicius, A.; Bacher, J.D.; Benjamin, D.K.; et al. Amphotericin B Penetrates into the Central Nervous System through Focal Disruption of the Blood-Brain Barrier in Experimental Hematogenous Candida Meningoencephalitis. Antimicrob. Agents Chemother. 2019, 63, e01626-19. [Google Scholar] [CrossRef]
- Phung, N.T.N.; Pham, H.T.; Tran, T.T.; Dinh, V.H.; Tran, N.M.; Tran, N.A.N.; Ngo, M.Q.N.; Nguyen, H.T.T.; Tran, D.K.; Le, T.K.T.; et al. Naegleria fowleri: Portrait of a Cerebral Killer. Diagnostics 2025, 15, 89. [Google Scholar] [CrossRef]
- Mitra, A.; Goulart, D.B. From Nose to Neurons: The Lethal Journey of the Brain-Eating Amoeba Naegleria fowleri. Microbe 2025, 8, 100537. [Google Scholar] [CrossRef]
- Chao-Pellicer, J.; Arberas-Jiménez, I.; Fuchs, F.; Sifaoui, I.; Piñero, J.E.; Lorenzo-Morales, J.; Scheid, P. Repurposing of Nitroxoline as an Alternative Primary Amoebic Meningoencephalitis Treatment. Antibiotics 2023, 12, 1280. [Google Scholar] [CrossRef]
- Trevino, J.T.; Quispe, R.C.; Khan, F.; Novak, V. Non-Invasive Strategies for Nose-to-Brain Drug Delivery. J. Clin. Trials 2020, 10, 439. [Google Scholar] [PubMed]
- Formica, M.L.; Real, D.A.; Picchio, M.L.; Catlin, E.; Donnelly, R.F.; Paredes, A.J. On a Highway to the Brain: A Review on Nose-to-Brain Drug Delivery Using Nanoparticles. Appl. Mater. Today 2022, 29, 101631. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Q.Y.; Haqqani, A.S.; Leclerc, S.; Liu, Z.; Fauteux, F.; Baumann, E.; Delaney, C.E.; Ly, D.; Star, A.T.; et al. Differential Expression of Receptors Mediating Receptor-Mediated Transcytosis (RMT) in Brain Microvessels, Brain Parenchyma and Peripheral Tissues of the Mouse and the Human. Fluids Barriers CNS 2020, 17, 47. [Google Scholar] [CrossRef] [PubMed]
- Haqqani, A.S.; Bélanger, K.; Stanimirovic, D.B. Receptor-Mediated Transcytosis for Brain Delivery of Therapeutics: Receptor Classes and Criteria. Front. Drug Deliv. 2024, 4, 1360302. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Kshirsagar, P.; Agrawal, P.; Murry, D.J. Crossing the Blood–Brain Barrier: Innovations in Receptor- and Transporter-Mediated Transcytosis Strategies. Pharmaceutics 2025, 17, 706. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Z.; Simonsen, M.R.; Owens, T.; Khorooshi, R.M.H.; Wu, C. PEGylated Liposomes via ATRP for Brain Drug Delivery. J. Liposome Res. 2025, 35, 283–289. [Google Scholar] [CrossRef]
- Romero-Ben, E.; Goswami, U.; Soto-Cruz, J.; Mansoori-Kermani, A.; Mishra, D.; Martin-Saldaña, S.; Muñoz-Ugartemendia, J.; Sosnik, A.; Calderón, M.; Beloqui, A.; et al. Polymer-Based Nanocarriers to Transport Therapeutic Biomacromolecules across the Blood-Brain Barrier. Acta Biomater. 2025, 196, 17–49. [Google Scholar] [CrossRef]
- Sanadgol, N.; Abedi, M.; Hashemzaei, M.; Kamran, Z.; Khalseh, R.; Beyer, C.; Voelz, C. Exosomes as Nanocarriers for Brain-Targeted Delivery of Therapeutic Nucleic Acids: Advances and Challenges. J. Nanobiotechnol. 2025, 23, 453. [Google Scholar] [CrossRef]
- Islam, S.; Ahmed, M.M.S.; Islam, M.A.; Hossain, N.; Chowdhury, M.A. Advances in Nanoparticles in Targeted Drug Delivery–A Review. Results Surf. Interfaces 2025, 19, 100529. [Google Scholar] [CrossRef]
- Avedissian, S.N.; Pais, G.; Joshi, M.D.; Rhodes, N.J.; Scheetz, M.H. A Translational Pharmacokinetic Rat Model of Cerebral Spinal Fluid and Plasma Concentrations of Cefepime. mSphere 2019, 4, e00595-18. [Google Scholar] [CrossRef]
- Sato, S.; Matsumiya, K.; Tohyama, K.; Kosugi, Y. Translational CNS Steady-State Drug Disposition Model in Rats, Monkeys, and Humans for Quantitative Prediction of Brain-to-Plasma and Cerebrospinal Fluid-to-Plasma Unbound Concentration Ratios. AAPS J. 2021, 23, 81. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, M.; Chen, S.-H. Instability Challenges and Stabilization Strategies of Pharmaceutical Proteins. Pharmaceutics 2022, 14, 2533. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; McHugh, K.J. Strategies for Overcoming Protein and Peptide Instability in Biodegradable Drug Delivery Systems. Adv. Drug Deliv. Rev. 2023, 199, 114904. [Google Scholar] [CrossRef]
- Xiao, W.; Jiang, W.; Chen, Z.; Huang, Y.; Mao, J.; Zheng, W.; Hu, Y.; Shi, J. Advance in Peptide-Based Drug Development: Delivery Platforms, Therapeutics and Vaccines. Signal Transduct. Target. Ther. 2025, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Feng, B.Y.; Varshney, A.; Pierce, B.G. Benchmarking AlphaFold for Protein Complex Modeling Reveals Accuracy Determinants. Protein Sci. 2022, 31, e4379. [Google Scholar] [CrossRef]
- Bryant, P.; Pozzati, G.; Elofsson, A. Improved Prediction of Protein-Protein Interactions Using AlphaFold2. Nat. Commun. 2022, 13, 1265. [Google Scholar] [CrossRef]
- Omidi, A.; Møller, M.H.; Malhis, N.; Bui, J.M.; Gsponer, J. AlphaFold-Multimer Accurately Captures Interactions and Dynamics of Intrinsically Disordered Protein Regions. Proc. Natl. Acad. Sci. USA 2024, 121, e2406407121. [Google Scholar] [CrossRef]
- Salo-Ahen, O.M.H.; Alanko, I.; Bhadane, R.; Bonvin, A.M.J.J.; Honorato, R.V.; Hossain, S.; Juffer, A.H.; Kabedev, A.; Lahtela-Kakkonen, M.; Larsen, A.S.; et al. Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development. Processes 2020, 9, 71. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef]
- Arantes, P.R.; Patel, A.C.; Palermo, G. Emerging Methods and Applications to Decrypt Allostery in Proteins and Nucleic Acids. J. Mol. Biol. 2022, 434, 167518. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Dawson, J.R.D.; DeMarco, K.R.; Rouen, K.C.; Ngo, K.; Bekker, S.; Yarov-Yarovoy, V.; Clancy, C.E.; Xiang, Y.K.; Ahn, S.-H.; et al. Molecular Simulations Reveal Intricate Coupling between Agonist-Bound β-Adrenergic Receptors and G Protein. iScience 2025, 28, 111741. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J. How Cryo-electron Microscopy and X-ray Crystallography Complement Each Other. Protein Sci. 2017, 26, 32–39. [Google Scholar] [CrossRef]
- Kalathiya, U.; Padariya, M.; Faktor, J.; Coyaud, E.; Alfaro, J.A.; Fahraeus, R.; Hupp, T.R.; Goodlett, D.R. Interfaces with Structure Dynamics of the Workhorses from Cells Revealed through Cross-Linking Mass Spectrometry (CLMS). Biomolecules 2021, 11, 382. [Google Scholar] [CrossRef]
- Piersimoni, L.; Kastritis, P.L.; Arlt, C.; Sinz, A. Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein–Protein Interactions—A Method for All Seasons. Chem. Rev. 2022, 122, 7500–7531. [Google Scholar] [CrossRef] [PubMed]
- Herrera, F.; Rumi, G.; Steinberg, P.Y.; Wolosiuk, A.; Angelomé, P.C. Small Angle Scattering Techniques for the Study of Catalysts and Catalytic Processes. ChemCatChem 2023, 15, e202300490. [Google Scholar] [CrossRef]
- O’Connell, N. Protein Ligand Interactions Using Surface Plasmon Resonance. In Targeted Protein Degradation; Cacace, A.M., Hickey, C.M., Békés, M., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2021; Volume 2365, pp. 3–20. ISBN 978-1-0716-1664-2. [Google Scholar]
- Paketurytė, V.; Zubrienė, A.; Ladbury, J.E.; Matulis, D. Intrinsic Thermodynamics of Protein-Ligand Binding by Isothermal Titration Calorimetry as Aid to Drug Design. In Microcalorimetry of Biological Molecules; Ennifar, E., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2019; Volume 1964, pp. 61–74. ISBN 978-1-4939-9178-5. [Google Scholar]
- Pelley, J.W. Enzymes and Energetics. In Elsevier’s Integrated Review Biochemistry; Elsevier: Amsterdam, The Netherlands, 2012; pp. 29–37. ISBN 978-0-323-07446-9. [Google Scholar]
- Srinivasan, B. A Guide to Enzyme Kinetics in Early Drug Discovery. FEBS J. 2023, 290, 2292–2305. [Google Scholar] [CrossRef]
- Jang, H.J.; Song, Y.M.; Jeon, J.S.; Yun, H.; Kim, S.K.; Kim, J.K. Optimizing Enzyme Inhibition Analysis: Precise Estimation with a Single Inhibitor Concentration. Nat. Commun. 2025, 16, 5217. [Google Scholar] [CrossRef]
- Dana, D.; Pathak, S.K. A Review of Small Molecule Inhibitors and Functional Probes of Human Cathepsin L. Molecules 2020, 25, 698. [Google Scholar] [CrossRef]
- Yadati, T.; Houben, T.; Bitorina, A.; Shiri-Sverdlov, R. The Ins and Outs of Cathepsins: Physiological Function and Role in Disease Management. Cells 2020, 9, 1679. [Google Scholar] [CrossRef]
- Pečar Fonović, U.; Kos, J.; Mitrović, A. Compensational Role between Cathepsins. Biochimie 2024, 226, 62–76. [Google Scholar] [CrossRef]
- Guerlais, V.; Allouch, N.; Moseman, E.A.; Wojciechowska, A.W.; Wojciechowski, J.W.; Marcelino, I. Transcriptomic Profiling of “Brain-Eating Amoeba” Naegleria fowleri Infection in Mice: The Host and the Protozoa Perspectives. Front. Cell. Infect. Microbiol. 2024, 14, 1490280. [Google Scholar] [CrossRef]
- Ali, I.U.; Akhtar, M.S.; Naz, H.; Waheed, A.; Ahmad, I.; Ahmad, J.; Ullah, I.; Tahir, M.M.; Zokirova, F.R. Beyond Brain-Eating Amoebas: Current Insights into Naegleria fowleri Identification, Prevalence, and Treatment. Bio Commun. 2025, 1, 18–28. [Google Scholar] [CrossRef]
- De Angelo, R.M.; Nascimento, L.A.; Encide, J.P.P.; Barbosa, H.; Ghilardi Lago, J.H.; Da Silva Emery, F.; Honorio, K.M. Advances and Challenges in Molecular Docking Applied to Neglected Tropical Diseases. Curr. Med. Chem. 2025, 32, 5939. [Google Scholar] [CrossRef]
- Peluso, P.; Chankvetadze, B. Recent Developments in Molecular Modeling Tools and Applications Related to Pharmaceutical and Biomedical Research. J. Pharm. Biomed. Anal. 2024, 238, 115836. [Google Scholar] [CrossRef] [PubMed]
- Scardino, V.; Di Filippo, J.I.; Cavasotto, C.N. How Good are AlphaFold Models for Docking-Based Virtual Screening? iScience 2023, 26, 105920. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zeng, X.; Zhao, Y.; Chen, R. AlphaFold2 and Its Applications in the Fields of Biology and Medicine. Signal Transduct. Target. Ther. 2023, 8, 115. [Google Scholar] [CrossRef]
- Mungroo, M.R.; Khan, N.A.; Maciver, S.; Siddiqui, R. Opportunistic Free-Living Amoebal Pathogens. Pathog. Glob. Health 2022, 116, 70–84. [Google Scholar] [CrossRef] [PubMed]
- McKerrow, J.H. Update on Drug Development Targeting Parasite Cysteine Proteases. PLoS Negl. Trop. Dis. 2018, 12, e0005850. [Google Scholar] [CrossRef]
- Rao, S.P.S.; Manjunatha, U.H.; Mikolajczak, S.; Ashigbie, P.G.; Diagana, T.T. Drug Discovery for Parasitic Diseases: Powered by Technology, Enabled by Pharmacology, Informed by Clinical Science. Trends Parasitol. 2023, 39, 260–271. [Google Scholar] [CrossRef]
- Kaushik, A.; Makarani, N.; Bharadava, K.; Gehlot, J.; Naik, B.V.; Singh, A.; Govil, S.; Kaushal, R.S. Antiprotozoal Agents–Integration of Drug Discovery, Medicinal Chemistry, and Advanced Computational Approaches: An in-Depth Review. Microbe 2025, 7, 100395. [Google Scholar] [CrossRef]
- Aurrecoechea, C.; Barreto, A.; Brestelli, J.; Brunk, B.P.; Caler, E.V.; Fischer, S.; Gajria, B.; Gao, X.; Gingle, A.; Grant, G.; et al. AmoebaDB and MicrosporidiaDB: Functional Genomic Resources for Amoebozoa and Microsporidia Species. Nucleic Acids Res. 2011, 39, D612–D619. [Google Scholar] [CrossRef]
- Amos, B.; Aurrecoechea, C.; Barba, M.; Barreto, A.; Basenko, E.Y.; Bażant, W.; Belnap, R.; Blevins, A.S.; Böhme, U.; Brestelli, J.; et al. VEuPathDB: The Eukaryotic Pathogen, Vector and Host Bioinformatics Resource Center. Nucleic Acids Res. 2022, 50, D898–D911. [Google Scholar] [CrossRef]
- Warrenfeltz, S.; Basenko, E.Y.; Crouch, K.; Harb, O.S.; Kissinger, J.C.; Roos, D.S.; Shanmugasundram, A.; Silva-Franco, F. EuPathDB: The Eukaryotic Pathogen Genomics Database Resource. In Eukaryotic Genomic Databases: Methods and Protocols; Springer: New York, NY, USA, 2018; Volume 1757, pp. 69–113. [Google Scholar] [CrossRef]
- The UniProt Consortium; Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; et al. UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Duvaud, S.; Gabella, C.; Lisacek, F.; Stockinger, H.; Ioannidis, V.; Durinx, C. Expasy, the Swiss Bioinformatics Resource Portal, as Designed by Its Users. Nucleic Acids Res. 2021, 49, W216–W227. [Google Scholar] [CrossRef] [PubMed]
- Marchler-Bauer, A.; Bryant, S.H. CD-Search: Protein Domain Annotations on the Fly. Nucleic Acids Res. 2004, 32, W327–W331. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The Conserved Domain Database in 2020. Nucleic Acids Res. 2020, 48, D265–D268. [Google Scholar] [CrossRef]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent Updates, New Developments and Status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef]
- Teufel, F.; Almagro Armenteros, J.J.; Johansen, A.R.; Gíslason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 6.0 Predicts All Five Types of Signal Peptides Using Protein Language Models. Nat. Biotechnol. 2022, 40, 1023–1025. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Salvatore, M.; Emanuelsson, O.; Winther, O.; von Heijne, G.; Elofsson, A.; Nielsen, H. Detecting Sequence Signals in Targeting Peptides Using Deep Learning. Life Sci. Alliance 2019, 2, e201900429. [Google Scholar] [CrossRef]
- Buchan, D.W.A.; Jones, D.T. The PSIPRED Protein Analysis Workbench: 20 Years On. Nucleic Acids Res. 2019, 47, W402–W407. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, Scalable Generation of High-quality Protein Multiple Sequence Alignments Using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J.; et al. Protein Complex Prediction with AlphaFold-Multimer. bioRxiv 2021. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.V.; Bernardi, R.C.; Rudack, T.; Stone, J.E.; Phillips, J.C.; Freddolino, P.L.; Schulten, K. QwikMD—Integrative Molecular Dynamics Toolkit for Novices and Experts. Sci. Rep. 2016, 6, 26536. [Google Scholar] [CrossRef] [PubMed]
- De Paris, R.; Quevedo, C.V.; Ruiz, D.D.; Norberto De Souza, O.; Barros, R.C. Clustering Molecular Dynamics Trajectories for Optimizing Docking Experiments. Comput. Intell. Neurosci. 2015, 2015, 916240. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Goddard, T.D.; Huang, C.C.; Meng, E.C.; Pettersen, E.F.; Couch, G.S.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Meeting Modern Challenges in Visualization and Analysis: UCSF ChimeraX Visualization System. Protein Sci. 2018, 27, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Hou, T. CaFE: A Tool for Binding Affinity Prediction Using End-Point Free Energy Methods. Bioinformatics 2016, 32, 2216–2218. [Google Scholar] [CrossRef]
- Rifai, E.A.; van Dijk, M.; Vermeulen, N.P.E.; Yanuar, A.; Geerke, D.P. A Comparative Linear Interaction Energy and MM/PBSA Study on SIRT1-Ligand Binding Free Energy Calculation. J. Chem. Inf. Model. 2019, 59, 4018–4033. [Google Scholar] [CrossRef]
- Maier, S.; Thapa, B.; Erickson, J.; Raghavachari, K. Comparative Assessment of QM-Based and MM-Based Models for Prediction of Protein–Ligand Binding Affinity Trends. Phys. Chem. Chem. Phys. 2022, 24, 14525–14537. [Google Scholar] [CrossRef]
- Schake, P.; Bolz, S.N.; Linnemann, K.; Schroeder, M. PLIP 2025: Introducing Protein–Protein Interactions to the Protein–Ligand Interaction Profiler. Nucleic Acids Res. 2025, 53, W463–W465. [Google Scholar] [CrossRef]
- Kozakov, D.; Grove, L.E.; Hall, D.R.; Bohnuud, T.; Mottarella, S.E.; Luo, L.; Xia, B.; Beglov, D.; Vajda, S. The FTMap Family of Web Servers for Determining and Characterizing Ligand-Binding Hot Spots of Proteins. Nat. Protoc. 2015, 10, 733–755. [Google Scholar] [CrossRef]
- Rubin, M.; Ben-Tal, N. Using ConSurf to Detect Functionally Important Regions in RNA. Curr. Protoc. 2021, 1, e270. [Google Scholar] [CrossRef]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed Atlas of Surface Topography of Proteins. Nucleic Acids Res. 2018, 46, W363–W367. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.; Tian, W.; Wang, B.; Liang, J. CASTpFold: Computed Atlas of Surface Topography of the Universe of Protein Folds. Nucleic Acids Res. 2024, 52, W194–W199. [Google Scholar] [CrossRef] [PubMed]
- Borrel, A.; Regad, L.; Xhaard, H.; Petitjean, M.; Camproux, A.-C. PockDrug: A Model for Predicting Pocket Druggability That Overcomes Pocket Estimation Uncertainties. J. Chem. Inf. Model. 2015, 55, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.A.; Borrel, A.; Geneix, C.; Petitjean, M.; Regad, L.; Camproux, A.-C. PockDrug-Server: A New Web Server for Predicting Pocket Druggability on Holo and Apo Proteins. Nucleic Acids Res. 2015, 43, W436–W442. [Google Scholar] [CrossRef]
- Volkamer, A.; Kuhn, D.; Rippmann, F.; Rarey, M. DoGSiteScorer: A Web Server for Automatic Binding Site Prediction, Analysis and Druggability Assessment. Bioinformatics 2012, 28, 2074–2075. [Google Scholar] [CrossRef] [PubMed]







| Protease-Stefin Complex 1 | MD Simulation 2 | Experimental 3 Kd (M) | |
|---|---|---|---|
| ΔG (kcal/mol) | Kd (M) | ||
| FWP1-FSTF | −23.6 ± 9.8 | 4.7 × 10−18 | - |
| FWP1-NfCPI | −17.9 ± 9.5 | 7.5 × 10−14 | - |
| FWP1-STFA | −22.2 ± 9.1 | 5.3 × 10−17 | - |
| CTSL-STFA | −16.2 ± 8.3 | 1.4 × 10−12 | ≤1 × 10−11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madero-Ayala, P.A.; Mares-Alejandre, R.E.; Muñoz-Muñoz, P.L.A.; Meléndez-López, S.G.; Ramos-Ibarra, M.A. Structure-Based Insights into Stefin-Mediated Targeting of Fowlerpain-1: Towards Novel Therapeutics for Naegleria fowleri Infections. Pharmaceuticals 2025, 18, 1606. https://doi.org/10.3390/ph18111606
Madero-Ayala PA, Mares-Alejandre RE, Muñoz-Muñoz PLA, Meléndez-López SG, Ramos-Ibarra MA. Structure-Based Insights into Stefin-Mediated Targeting of Fowlerpain-1: Towards Novel Therapeutics for Naegleria fowleri Infections. Pharmaceuticals. 2025; 18(11):1606. https://doi.org/10.3390/ph18111606
Chicago/Turabian StyleMadero-Ayala, Pablo A., Rosa E. Mares-Alejandre, Patricia L. A. Muñoz-Muñoz, Samuel G. Meléndez-López, and Marco A. Ramos-Ibarra. 2025. "Structure-Based Insights into Stefin-Mediated Targeting of Fowlerpain-1: Towards Novel Therapeutics for Naegleria fowleri Infections" Pharmaceuticals 18, no. 11: 1606. https://doi.org/10.3390/ph18111606
APA StyleMadero-Ayala, P. A., Mares-Alejandre, R. E., Muñoz-Muñoz, P. L. A., Meléndez-López, S. G., & Ramos-Ibarra, M. A. (2025). Structure-Based Insights into Stefin-Mediated Targeting of Fowlerpain-1: Towards Novel Therapeutics for Naegleria fowleri Infections. Pharmaceuticals, 18(11), 1606. https://doi.org/10.3390/ph18111606

