The Effects of Ritonavir on the Pharmacokinetics of Tofacitinib in Rats
Abstract
1. Introduction
2. Results
PK DDI Evaluation
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Animals
4.3. In Vivo PK DDI Study
4.4. LC-MS/MS Method for Quantification of TOF in Rat Plasma
4.5. Pharmacokinetic Evaluation
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer, D.M.; Jesson, M.I.; Li, X.; Elrick, M.M.; Funckes-Shippy, C.L.; Warner, J.D.; Gross, C.J.; Dowty, M.E.; Ramaiah, S.K.; Hirsch, J.L.; et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J. Inflamm. 2010, 7, 41. [Google Scholar] [CrossRef]
- Ly, K.; Beck, K.M.; Smith, M.P.; Orbai, A.-M.; Liao, W. Tofacitinib in the management of active psoriatic arthritis: Patient selection and perspectives. Psoriasis Targets Ther. 2019, 9, 97–107. [Google Scholar] [CrossRef]
- D’Amico, F.; Parigi, T.L.; Fiorino, G.; Peyrin-Biroulet, L.; Danese, S. Tofacitinib in the treatment of ulcerative colitis: Efficacy and safety from clinical trials to real-world experience. Ther. Adv. Gastroenterol. 2019, 12, 1756284819848631. [Google Scholar] [CrossRef] [PubMed]
- Krishnaswami, S.; Boy, M.; Chow, V.; Chan, G. Safety, tolerability, and pharmacokinetics of single oral doses of tofacitinib, a Janus kinase inhibitor, in healthy volunteers. Clin. Pharmacol. Drug Dev. 2015, 4, 83–88. [Google Scholar] [CrossRef]
- Dowty, M.E.; Lin, J.; Ryder, T.F.; Wang, W.; Walker, G.S.; Vaz, A.; Chan, G.L.; Krishnaswami, S.; Prakash, C. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a janus kinase inhibitor, in humans. Drug Metab. Dispos. Biol. Fate Chem. 2014, 42, 759–773. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Pharmacology Review(s): Tofacitinib (NDA 203214Orig1s000); Report No.: NDA 203214Orig1s000; Center for Drug Evaluation and Research: Silver Spring, MD, USA, 2012. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203214Orig1s000PharmR.pdf (accessed on 5 September 2025).
- Gupta, P.; Chow, V.; Wang, R.; Kaplan, I.; Chan, G.; Alvey, C.; Ni, G.; Ndongo, M.; LaBadie, R.R.; Krishnaswami, S. Evaluation of the effect of fluconazole and ketoconazole on the pharmacokinetics of tofacitinib in healthy adult subjects. Clin. Pharmacol. Drug Dev. 2014, 3, 72–77. [Google Scholar] [CrossRef]
- Loos, N.H.C.; Beijnen, J.H.; Schinkel, A.H. The inhibitory and inducing effects of ritonavir on hepatic and intestinal CYP3A and other drug-handling proteins. Biomed. Pharmacother. 2023, 162, 114636. [Google Scholar] [CrossRef]
- Hull, M.W.; Montaner, J.S.G. Ritonavir-boosted protease inhibitors in HIV therapy. Ann. Med. 2011, 43, 375–388. [Google Scholar] [CrossRef]
- Carrillo, A.; Stewart, K.D.; Sham, H.L.; Norbeck, D.W.; Kohlbrenner, W.E.; Leonard, J.M.; Kempf, D.J.; Molla, A. In Vitro selection and characterization of human immunodeficiency virus type 1 variants with increased resistance to ABT-378, a novel protease inhibitor. J. Virol. 1998, 72, 7532–7541. [Google Scholar] [CrossRef]
- Zhou, S.-F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr. Drug Metab. 2008, 9, 310–322. [Google Scholar] [CrossRef]
- Mertz, D.; Battegay, M.; Marzolini, C.; Mayr, M. Drug-drug interaction in a kidney transplant recipient receiving HIV salvage therapy and tacrolimus. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2009, 54, e1–e4. [Google Scholar] [CrossRef]
- Nieminen, T.H.; Hagelberg, N.M.; Saari, T.I.; Neuvonen, M.; Neuvonen, P.J.; Laine, K.; Olkkola, K.T. Oxycodone concentrations are greatly increased by the concomitant use of ritonavir or lopinavir/ritonavir. Eur. J. Clin. Pharmacol. 2010, 66, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Foster, G.; Gandelman, K.; LaBadie, R.R.; Allison, M.J.; Gutierrez, M.J.; Sharma, A. Steady-state pharmacokinetic and safety profiles of voriconazole and ritonavir in healthy male subjects. Antimicrob Agents Chemother 2007, 51, 3617–3626. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Rheumatoid Arthritis. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/rheumatoid-arthritis (accessed on 10 October 2025).
- CDC. IBD Facts and Stats. Inflamm. Bowel Dis. 2024. Available online: https://www.cdc.gov/inflammatory-bowel-disease/php/facts-stats/index.html (accessed on 10 October 2025).
- UNAIDS. Global HIV & AIDS Statistics—Fact Sheet | UNAIDS. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 10 October 2025).
- Gomides, A.P.M.; Albuquerque, C.P.; Santos, A.B.; Amorim, R.B.C.; Bértolo, M.B.; Júnior, P.L.; Santos, I.A.; Giorgi, R.D.; Sacilotto, N.C.; Radominski, S.C.; et al. High Levels of Polypharmacy in Rheumatoid Arthritis-A Challenge Not Covered by Current Management Recommendations: Data from a Large Real-Life Study. J. Pharm. Pract. 2021, 34, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Carroll, M.B.; Fields, J.H.; Clerc, P.G. Rheumatoid arthritis in patients with HIV: Management challenges. Open Access Rheumatol. Res. Rev. 2016, 8, 51–59. [Google Scholar] [CrossRef]
- Ytterberg, S.R.; Bhatt, D.L.; Mikuls, T.R.; Koch, G.G.; Fleischmann, R.; Rivas, J.L.; Germino, R.; Menon, S.; Sun, Y.; Wang, C.; et al. Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. N. Engl. J. Med. 2022, 386, 316–326. [Google Scholar] [CrossRef]
- Loos, N.H.C.; Beijnen, J.H.; Schinkel, A.H. The Mechanism-Based Inactivation of CYP3A4 by Ritonavir: What Mechanism? Int. J. Mol. Sci. 2022, 23, 9866. [Google Scholar] [CrossRef]
- Rioux, N.; Bellavance, E.; Bourg, S.; Garneau, M.; Ribadeneira, M.D.; Duan, J. Assessment of CYP3A-mediated drug-drug interaction potential for victim drugs using an in vivo rat model. Biopharm. Drug Dispos. 2013, 34, 396–401. [Google Scholar] [CrossRef]
- Kirby, B.J.; Collier, A.C.; Kharasch, E.D.; Whittington, D.; Thummel, K.E.; Unadkat, J.D. Complex drug interactions of HIV protease inhibitors 1: Inactivation, induction, and inhibition of cytochrome P450 3A by ritonavir or nelfinavir. Drug Metab. Dispos. Biol. Fate Chem. 2011, 39, 1070–1078. [Google Scholar] [CrossRef]
- Lee, J.-S.; Kim, H.-S.; Jung, Y.-S.; Choi, H.-G.; Kim, S.-H. Pharmacokinetic Drug Interaction between Tofacitinib and Voriconazole in Rats. Pharmaceutics 2021, 13, 740. [Google Scholar] [CrossRef]
- Ghosal, A.; Satoh, H.; Thomas, P.E.; Bush, E.; Moore, D. Inhibition and kinetics of cytochrome P4503A activity in microsomes from rat, human, and cdna-expressed human cytochrome P450. Drug Metab. Dispos. Biol. Fate Chem. 1996, 24, 940–947. [Google Scholar] [CrossRef]
- Greenblatt, D.J.; Harmatz, J.S. Ritonavir is the best alternative to ketoconazole as an index inhibitor of cytochrome P450-3A in drug-drug interaction studies. Br. J. Clin. Pharmacol. 2015, 80, 342–350. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research; Food and Drug Administration. Pharmacology Review(s) of Tofacitinib; Center for Drug Evaluation and Research, Food and Drug Administration: Silver Spring, MD, USA, 2012. [Google Scholar]
- Venuto, C.S.; Markatou, M.; Woolwine-Cunningham, Y.; Furlage, R.; Ocque, A.J.; DiFrancesco, R.; Dumas, E.O.; Wallace, P.K.; Morse, G.D.; Talal, A.H. Paritaprevir and Ritonavir Liver Concentrations in Rats as Assessed by Different Liver Sampling Techniques. Antimicrob. Agents Chemother. 2017, 61, e02283-16. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wu, S.; Dong, Z. Identification of the metabolites of tofacitinib in liver microsomes by liquid chromatography combined with high resolution mass spectrometry. Biomed. Chromatogr. 2021, 35, e5081. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.F.V. Cytochromes P450: Structure, Function and Mechanism; Taylor & Francis: Bristol, UK, 1996. [Google Scholar]
- Jiang, F.; Zhang, C.; Lu, Z.; Liu, J.; Liu, P.; Huang, M.; Zhong, G. Simultaneous absolute protein quantification of seven cytochrome P450 isoforms in rat liver microsomes by LC-MS/MS-based isotope internal standard method. Front. Pharmacol. 2022, 13, 906027. [Google Scholar] [CrossRef] [PubMed]
- Gerges, S.H.; El-Kadi, A.O.S. Sexual Dimorphism in the Expression of Cytochrome P450 Enzymes in Rat Heart, Liver, Kidney, Lung, Brain, and Small Intestine. Drug Metab. Dispos. 2023, 51, 81–94. [Google Scholar] [CrossRef]
- Park, M.-Y. Effects of Cytochrome P450 (CYP) Inducers and Inhibitors on Tofacitinib Pharmacokinetics in Rats. Master’s Thesis, Ajou University, Suwon, Republic of Korea, 2018. [Google Scholar]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic. Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef]
- Koudriakova, T.; Iatsimirskaia, E.; Utkin, I.; Gangl, E.; Vouros, P.; Storozhuk, E.; Orza, D.; Marinina, J.; Gerber, N. Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: Mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab. Dispos. Biol. Fate Chem. 1998, 26, 552–561. [Google Scholar]
- Greenblatt, D.J.; von Moltke, L.L.; Daily, J.P.; Harmatz, J.S.; Shader, R.I. Extensive impairment of triazolam and alprazolam clearance by short-term low-dose ritonavir: The clinical dilemma of concurrent inhibition and induction. J. Clin. Psychopharmacol. 1999, 19, 293–296. [Google Scholar] [CrossRef]
- Greenblatt, D.J.; Peters, D.E.; Oleson, L.E.; Harmatz, J.S.; MacNab, M.W.; Berkowitz, N.; Zinny, M.A.; Court, M.H. Inhibition of oral midazolam clearance by boosting doses of ritonavir, and by 4,4-dimethyl-benziso-(2H)-selenazine (ALT-2074), an experimental catalytic mimic of glutathione oxidase. Br. J. Clin. Pharmacol. 2009, 68, 920–927. [Google Scholar] [CrossRef]
- Katzenmaier, S.; Markert, C.; Riedel, K.-D.; Burhenne, J.; Haefeli, W.E.; Mikus, G. Determining the time course of CYP3A inhibition by potent reversible and irreversible CYP3A inhibitors using A limited sampling strategy. Clin. Pharmacol. Ther. 2011, 90, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Culmmerdek, K.; Vonmoltke, L.; Gan, L.; Horan, K.; Reynolds, R.; Harmatz, J.; Court, M.; Greenblatt, D. Effect of extended exposure to grapefruit juice on cytochrome P450 3A activity in humans: Comparison with ritonavir. Clin. Pharmacol. Ther. 2006, 79, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Greenblatt, D.J.; von Moltke, L.L.; Harmatz, J.S.; Durol, A.L.B.; Daily, J.P.; Graf, J.A.; Mertzanis, P.; Hoffman, J.L.; Shader, R.I. Differential impairment of triazolam and zolpidem clearance by ritonavir. J. Acquir. Immune Defic. Syndr. 2000, 24, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, S.H. Dose-Dependent Pharmacokinetics of Tofacitinib in Rats: Influence of Hepatic and Intestinal First-Pass Metabolism. Pharmaceutics 2019, 11, 318. [Google Scholar] [CrossRef]
- Kim, J.E.; Park, M.Y.; Kim, S.H. Simple determination and quantification of tofacitinib, a JAK inhibitor, in rat plasma, urine and tissue homogenates by HPLC and its application to a pharmacokinetic study. J. Pharm. Investig. 2020, 50, 603–612. [Google Scholar] [CrossRef]
- Gwak, E.H.; Yoo, H.Y.; Kim, S.H. Effects of Diabetes Mellitus on the Disposition of Tofacitinib, a Janus Kinase Inhibitor, in Rats. Biomol. Ther. 2020, 28, 361–369. [Google Scholar] [CrossRef]
- Bae, S.H.; Kim, H.S.; Choi, H.G.; Chang, S.-Y.; Kim, S.H. Effects of Dextran Sulfate Sodium-Induced Ulcerative Colitis on the Disposition of Tofacitinib in Rats. Biomol. Ther. 2022, 30, 510–519. [Google Scholar] [CrossRef]
- Wang, B.; Shen, J.; Zhou, Q.; Meng, D.; He, Y.; Chen, F.; Wang, S.; Ji, W. Effects of naringenin on the pharmacokinetics of tofacitinib in rats. Pharm. Biol. 2020, 58, 225–230. [Google Scholar] [CrossRef]
- Miyoshi, S.; Krishnaswami, S.; Toyoizumi, S.; Nakamura, H.; Zwillich, S.H. Phase 1 Dose-Escalation Study to Evaluate the Pharmacokinetics, Safety, and Tolerability of Tofacitinib in Japanese Healthy Volunteers. Clin. Pharmacol. Drug Dev. 2020, 9, 11–20. [Google Scholar] [CrossRef]
- Muñoz, M.J.; Merino-Sanjuán, M.; Lledó-García, R.; Casabó, V.G.; Máñez-Castillejo, F.J.; Nácher, A. Use of nonlinear mixed effect modeling for the intestinal absorption data: Application to ritonavir in the rat. Eur. J. Pharm. Biopharm. 2005, 61, 20–26. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Benet, L.Z. Predicting Drug Disposition via Application of BCS: Transport/Absorption/Elimination Interplay and Development of a Biopharmaceutics Drug Disposition Classification System. Pharm. Res. 2005, 22, 11–23. [Google Scholar] [CrossRef]
- Ren, S.; Vishwanathan, K.; Cantarini, M.; Frewer, P.; Hara, I.; Scarfe, G.; Burke, W.; Schalkwijk, S.; Li, Y.; Han, D.; et al. Clinical evaluation of the potential drug–drug interactions of savolitinib: Interaction with rifampicin, itraconazole, famotidine or midazolam. Br. J. Clin. Pharmacol. 2022, 88, 655–668. [Google Scholar] [CrossRef]
- Chen, Y.; Cabalu, T.D.; Callegari, E.; Einolf, H.; Liu, L.; Parrott, N.; Peters, S.A.; Schuck, E.; Sharma, P.; Tracey, H.; et al. Recommendations for the Design of Clinical Drug-Drug Interaction Studies With Itraconazole Using a Mechanistic Physiologically-Based Pharmacokinetic Model. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Rioux, N.; Gardner, I.; Owens, K.; Ragueneau-Majlessi, I. Metabolite Measurement in Index Substrate Drug Interaction Studies: A Review of the Literature and Recent New Drug Application Reviews. Metabolites 2024, 14, 522. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, Z.; Tay-Sontheimer, J.; Levy, R.H.; Ragueneau-Majlessi, I. Risk of Clinically Relevant Pharmacokinetic-Based Drug-Drug Interactions with Drugs Approved by the U.S. Food and Drug Administration Between 2013 and 2016. Drug Metab. Dispos. 2018, 46, 835–845. [Google Scholar] [CrossRef]
- European Medicines Agency. Guideline on Bioanalytical Method Validation. 2011. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed on 14 September 2025).
- U.S. Department of Health and Human Services, Food and Drug Administration. Bioanalytical Method Validation Guidance for Industry. Biopharmaceutics. 2018. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 14 September 2025).
Parameter | Control (TOF Only) | RTV 10 mg/kg | RTV 20 mg/kg | Significance (p) |
---|---|---|---|---|
AUCinf (ng∙h/mL) | 2718 [2468–3200] | 8477 6549–9367] | 15,980 [15,206–16,789] | <0.001 |
AUCinf/Dose (ng∙h/mL per mg/kg RTV) | - | 848 [655–937] | 799 [760–839] | - |
Cmax (ng/mL) | 1362 [1263–1410] | 2250 [1787–2531] | 3899 [3589–4263] | <0.001 |
Cmax/Dose (ng/mL per mg/kg RTV) | - | 225 [179–253] | 195 [179–213] | - |
Tmax (h) | 0.25 [0.25–0.5] | 0.5 [0.44–1.0] | 1.0 [1.0–1.0] | <0.01 |
t1/2 (h) | 1.21 [1.14–1.49] | 1.0 [0.92–1.18] | 0.87 [0.72–1.01] | >0.05 |
CL (L/h/kg) | 3.57 [2.65–4.49] | 1.65 [1.19–2.11] | 0.66 [0.60- 0.73] | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.-y.; Lee, H.; Bui, T.T.; Tran, Q.T.; Ngo, L.T.; Yun, H.-y.; Jung, S.; Chae, J.-w. The Effects of Ritonavir on the Pharmacokinetics of Tofacitinib in Rats. Pharmaceuticals 2025, 18, 1561. https://doi.org/10.3390/ph18101561
Yang S-y, Lee H, Bui TT, Tran QT, Ngo LT, Yun H-y, Jung S, Chae J-w. The Effects of Ritonavir on the Pharmacokinetics of Tofacitinib in Rats. Pharmaceuticals. 2025; 18(10):1561. https://doi.org/10.3390/ph18101561
Chicago/Turabian StyleYang, Sung-yoon, Hyunjung Lee, Tham Thi Bui, Quyen Thi Tran, Lien Thi Ngo, Hwi-yeol Yun, Sangkeun Jung, and Jung-woo Chae. 2025. "The Effects of Ritonavir on the Pharmacokinetics of Tofacitinib in Rats" Pharmaceuticals 18, no. 10: 1561. https://doi.org/10.3390/ph18101561
APA StyleYang, S.-y., Lee, H., Bui, T. T., Tran, Q. T., Ngo, L. T., Yun, H.-y., Jung, S., & Chae, J.-w. (2025). The Effects of Ritonavir on the Pharmacokinetics of Tofacitinib in Rats. Pharmaceuticals, 18(10), 1561. https://doi.org/10.3390/ph18101561