Mitochondrial Protease ClpP: Cancer Marker and Drug Target
Abstract
1. Introduction
2. Results
2.1. ClpP and ClpX: Expression, Localization, and Prognostic Relevance in Human Cancers
2.2. ClpP-Targeting Compounds: Therapeutic Relevance and Stage of Development
2.3. ClpP Modulation in Acute Myeloid Leukemia (AML)
2.3.1. Mechanism of Action
2.3.2. Preclinical Data
2.3.3. Clinical Outlook
2.4. Solid Tumors with High Mitochondrial Metabolism
2.4.1. ClpP Modulation in Pancreatic Ductal Adenocarcinoma (PDAC)
Mechanism of Action
Preclinical Data
Clinical Outlook
2.5. ClpP in Liver Cancer: From Mitochondrial Stress Regulator to Therapeutic Target
2.5.1. Mechanism of Action
2.5.2. Preclinical Data
2.5.3. Clinical Outlook
2.6. ClpP in Gastric Cancer: Molecular Alterations and Therapeutic Targeting
2.6.1. Mechanism of Action
2.6.2. Preclinical Data
2.6.3. Clinical Outlook
2.7. ClpP in Colorectal Cancer
2.8. ClpP in Prostate Cancer
2.8.1. Mechanism of Action
2.8.2. Preclinical Data and Clinical Outlook
2.9. ClpP in Lung Cancer
2.9.1. Mechanism of Action
2.9.2. Preclinical Data
2.9.3. Clinical Outlook
2.10. Female Specific Tumors with Chemoresistance
ClpP in Ovarian Cancer: Targeting Mitochondrial Proteostasis to Overcome Chemoresistance
2.11. ClpP in Breast Cancer: Mitochondrial Stress, Senescence, and Metabolic Vulnerability
2.11.1. Mechanism of Action
2.11.2. Preclinical Data and Clinical Outlook
2.12. ClpP in Brain Tumors: Mitochondrial Vulnerability in High-Grade Gliomas
2.12.1. Mechanism
2.12.2. Preclinical Data
2.12.3. Clinical Outlook
3. Controversies and Knowledge Gaps in ClpP Biology and Therapeutic Targeting
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
hClpP | Human Caseinolytic Protease P |
ClpX | Caseinolytic Protease X |
UPRmt | Mitochondrial Unfolded Protein Response |
OXPHOS | Oxidative Phosphorylation |
GBM | Glioblastoma Multiforme |
TCGA | The Cancer Genome Atlas |
ROS | Reactive Oxygen Species |
AML | Acute Myeloid Leukemia |
ISR | Integrated Stress Response |
HCC | Hepatocellular Carcinoma |
NSCLC | Non-Small Cell Lung Cancer |
TRAIL | Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand |
DMG | Diffuse Midline Glioma |
ATP | Adenosine Triphosphate |
CLL | Chronic Lymphocytic Leukemia |
shRNA | Short Hairpin RNA |
VEN | Venetoclax |
BCR | Breakpoint Cluster Region |
BCL-2 | B-Cell Lymphoma-2 |
PDAC | Pancreatic Ductal Adenocarcinoma |
ETC | Electron Transport Chain |
2-DG | 2-Deoxy-D-Glucose |
AMPK | AMP-Activated Protein Kinase |
DRD2 | Dopamine Receptor D2 |
NASH | Non-Alcoholic Steatohepatitis |
FAO | Fatty Acid Oxidation |
SDHA | Succinate Dehydrogenase A |
SDHB | Succinate Dehydrogenase B |
ECH1 | Enoyl-Coa Hydratase 1 |
COX5A | Cytochrome C Oxidase Subunit 5A |
MAD1L1 | Mitotic Arrest Deficient 1 Like 1 |
EB1 | End Binding 1 |
DR5 | Death Receptor 5 |
PARP | Poly (ADP-ribose) polymerase |
CRC | Colorectal Cancer |
PCa | Prostate Cancer |
CRPC | Castration-Resistant Prostate Cancer |
NEPC | Neuroendocrine Prostate Cancer |
AR | Androgen Receptor |
NED | Neuroendocrine Differentiation |
SOX2 | SRY-box transcription factor 2 |
POU3F2 | POU class 3 homeobox 2 |
SCLC | Small Cell Lung Carcinoma |
SNPs | Single Nucleotide Polymorphisms |
SCC | Squamous Cell Carcinoma |
LUSC | Lung Squamous Cell Carcinoma |
DDR | DNA Damage Response |
EOC | Epithelial Ovarian Cancer |
NDUFA12 | NADH:ubiquinone oxidoreductase subunit A12 |
EMT | Epithelial–Mesenchymal Transition |
ER | Endoplasmic Reticulum |
VEGF | Vascular Endothelial Growth Factor Receptor |
TNBC | Triple-Negative Breast Cancer |
TCA | Tricarboxylic Acid Cycle |
NK | Natural Killer |
CSC | Cancer Stem Cell |
DMG | Diffuse Midline Gliomas |
DIPG | Diffuse Intrinsic Pontine Glioma |
IDH3B | Isocitrate Dehydrogenase (NAD(+)) 3 Non-Catalytic Subunit Beta |
COX4I1 | Cytochrome c oxidase subunit 4 isoform 1 |
CETSA | Cellular Thermal Shift Assay |
HDAC | Histone Deacetylase |
Bcl-xL | B-cell lymphoma-extra large |
Mcl-1 | Induced myeloid leukemia cell differentiation protein |
NQO1 | NAD(P)H dehydrogenase [quinone] 1 |
PRLTS | Perrault syndrome |
References
- Miciaccia, M.; Rizzo, F.; Centonze, A.; Cavallaro, G.; Contino, M.; Armenise, D.; Baldelli, O.M.; Solidoro, R.; Ferorelli, S.; Scarcia, P.; et al. Harmaline to Human Mitochondrial Caseinolytic Serine Protease Activation for Pediatric Diffuse Intrinsic Pontine Glioma Treatment. Pharmaceuticals 2024, 17, 135. [Google Scholar] [CrossRef]
- Graves, P.R.; Aponte-Collazo, L.J.; Fennell, E.M.J.; Graves, A.C.; Hale, A.E.; Dicheva, N.; Herring, L.E.; Gilbert, T.S.K.; East, M.P.; McDonald, I.M.; et al. Mitochondrial Protease ClpP is a Target for the Anticancer Compounds ONC201 and Related Analogues. ACS Chem. Biol. 2022, 17, 2377–2378. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, B.; Sui, J.; Qiu, Z.; Huang, J.; Yang, T.; Luo, Y. IMP075 targeting ClpP for colon cancer therapy in vivo and in vitro. Biochem. Pharmacol. 2022, 204, 115232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qiu, Z.; Liu, S.; Huang, J.; Luo, B.; Sui, J.; Dai, Z.; Xiang, X.; Yang, T.; Luo, Y. Discovery of a Novel Series of Homo sapiens Caseinolytic Protease P Agonists for Colorectal Adenocarcinoma Treatment via ATF3-Dependent Integrated Stress Response. J. Med. Chem. 2024, 67, 2812–2836. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Gao, G.; Fang, K.; Sun, H. Development of Novel Anticancer Agents with a Scaffold of Tetrahydropyrido[4,3-d]pyrimidine-2,4-dione. ACS Med. Chem. Lett. 2019, 10, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, P.; Wei, B.; Chen, L.; Song, X.; Pan, Y.; Li, J.; Gan, J.; Zhang, T.; Yang, C.G. Assessment of the structure-activity relationship and antileukemic activity of diacylpyramide compounds as human ClpP agonists. Eur. J. Med. Chem. 2023, 258, 115577. [Google Scholar] [CrossRef]
- Zhou, L.L.; Zhang, T.; Xue, Y.; Yue, C.; Pan, Y.; Wang, P.; Yang, T.; Li, M.; Zhou, H.; Ding, K.; et al. Selective activator of human ClpP triggers cell cycle arrest to inhibit lung squamous cell carcinoma. Nat. Commun. 2023, 14, 7069. [Google Scholar] [CrossRef]
- Miciaccia, M.; Baldelli, O.M.; Fortuna, C.G.; Cavallaro, G.; Armenise, D.; Liturri, A.; Ferorelli, S.; Muñoz, D.P.; Bonifazi, A.; Rizzo, F.; et al. ONC201-Derived Tetrahydropyridopyrimidindiones as Powerful ClpP Protease Activators to Tackle Diffuse Midline Glioma. J. Med. Chem. 2025, 68, 5190–5210. [Google Scholar] [CrossRef]
- Ishizawa, J.; Zarabi, S.F.; Davis, R.E.; Halgas, O.; Nii, T.; Jitkova, Y.; Zhao, R.; St-Germain, J.; Heese, L.E.; Egan, G.; et al. Mitochondrial ClpP-Mediated Proteolysis Induces Selective Cancer Cell Lethality. Cancer Cell 2019, 35, 721–737.e9. [Google Scholar] [CrossRef]
- Allen, J.E.; Kline, C.L.; Prabhu, V.V.; Wagner, J.; Ishizawa, J.; Madhukar, N.; Lev, A.; Baumeister, M.; Zhou, L.; Lulla, A.; et al. Discovery and clinical introduction of first-in-class imipridone ONC201. Oncotarget 2021, 12, 2231. [Google Scholar] [CrossRef]
- Goncalves, M.M.; Uday, A.B.; Forrester, T.J.B.; Currie, S.Q.W.; Kim, A.S.; Feng, Y.; Jitkova, Y.; Velyvis, A.; Harkness, R.W.; Kimber, M.S.; et al. Mechanism of allosteric activation in human mitochondrial ClpP protease. Proc. Natl. Acad. Sci. USA 2025, 122, e2419881122. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.proteinatlas.org/ENSG00000125656-CLPP/cancer (accessed on 15 July 2025).
- Available online: https://v22.proteinatlas.org/ENSG00000125656-CLPP/pathology (accessed on 15 July 2025).
- Available online: https://v22.proteinatlas.org/ENSG00000125656-CLPP/tissue (accessed on 15 July 2025).
- Available online: https://v22.proteinatlas.org/ENSG00000166855-CLPX/pathology (accessed on 15 July 2025).
- Xiang, X.; Dai, Z.; Luo, B.; Zhao, N.; Liu, S.; Sui, J.; Huang, J.; Zhou, Y.; Gu, J.; Zhang, J.; et al. Rational Design of a Novel Class of Human ClpP Agonists through a Ring-Opening Strategy with Enhanced Antileukemia Activity. J. Med. Chem. 2024, 67, 6769–6792. [Google Scholar] [CrossRef]
- Chen, B.; Sun, M.; Zhang, C.; Huang, Q.; Teng, D.; Hu, L.; Ma, H.; Lin, X.; Huang, Z.; Gui, R.; et al. Discovery of CLPP-1071 as an Exceptionally Potent and Orally Efficacious Human ClpP Activator with Strong In Vivo Antitumor Activity. J. Med. Chem. 2024, 67, 21009–21029. [Google Scholar] [CrossRef]
- Zeiler, E.; Korotkov, V.S.; Lorenz-Baath, K.; Böttcher, T.; Sieber, S.A. Development and characterization of improved β-lactone-based anti-virulence drugs targeting ClpP. Bioorg. Med. Chem. 2012, 20, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Gronauer, T.F.; Mandl, M.M.; Lakemeyer, M.; Hackl, M.W.; Meßner, M.; Korotkov, V.S.; Pachmayr, J.; Sieber, S.A. Design and synthesis of tailored human caseinolytic protease P inhibitors. Chem. Commun. 2018, 54, 9833–9836. [Google Scholar] [CrossRef]
- Nouri, K.; Feng, Y.; Schimmer, A. Mitochondrial ClpP serine protease-biological function and emerging target for cancer therapy. Cell. Death Dis. 2020, 11, 841. [Google Scholar] [CrossRef]
- de Beauchamp, L.; Himonas, E.; Helgason, G.V. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia 2022, 36, 1–12. [Google Scholar] [CrossRef]
- Kang, M.H.; Reynolds, C.P. Bcl-2 inhibitors: Targeting mitochondrial apoptotic pathways in cancer therapy. Clin. Cancer Res. 2009, 15, 1126–1132. [Google Scholar] [CrossRef]
- Lev, A.; Lulla, A.R.; Ross, B.C.; Ralff, M.D.; Makhov, P.B.; Dicker, D.T.; El-Deiry, W.S. ONC201 Targets AR and AR-V7 Signaling, Reduces PSA, and Synergizes with Everolimus in Prostate Cancer. Mol. Cancer Res. 2018, 16, 754–766. [Google Scholar] [CrossRef]
- Parker, C.S.; Zhou, L.; Prabhu, V.V.; Lee, S.; Miner, T.J.; Ross, E.A.; El-Deiry, W.S. ONC201/TIC10 plus TLY012 anti-cancer effects via apoptosis inhibitor downregulation, stimulation of integrated stress response and death receptor DR5 in gastric adenocarcinoma. Am. J. Cancer Res. 2023, 13, 6290–6312. [Google Scholar] [PubMed] [PubMed Central]
- Wang, P.; Zhang, T.; Wang, X.; Xiao, H.; Li, H.; Zhou, L.L.; Yang, T.; Wei, B.; Zhu, Z.; Zhou, L.; et al. Aberrant human ClpP activation disturbs mitochondrial proteome homeostasis to suppress pancreatic ductal adenocarcinoma. Cell Chem. Biol. 2022, 29, 1396–1408.e8. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Cao, F.; Wang, C.; Jiao, Z.; You, Y.; Wang, X.; Zhao, W. ONC206 targeting ClpP induces mitochondrial dysfunction and protective autophagy in hepatocellular carcinoma cells. Neoplasia 2024, 55, 101015. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.M.; Huang, L.J.; Ou-Yang, F.; Kan, J.Y.; Kao, L.C.; Hou, M.F. Activation of mitochondrial unfolded protein response is associated with Her2-overexpression breast cancer. Breast Cancer Res. Treat. 2020, 183, 61–70. [Google Scholar] [CrossRef]
- Kou, X.; Yang, X.; Zhao, Z.; Li, L. HSPA8-mediated stability of the CLPP protein regulates mitochondrial autophagy in cisplatin-resistant ovarian cancer cells. Acta Biochim. Biophys. Sin. 2024, 56, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Kline, C.; Franson, A.; Banerjee, A.; Reddy, A.T.; Raber, S.; Hoffman, C.; Minturn, J.; van der Lugt, J.; de Vos-Kerkhof, E.; van Vuurden, D.; et al. CTNI-84. PNOC022: A Combination Therapy Trial Using an Adaptive Platform Design for Patients with Diffuse Midline Gliomas (DMGs) at Initial Diagnosis, Post-Radiation Therapy and at time of Progression. Neuro-Oncology 2023, 25, v97. [Google Scholar] [CrossRef] [PubMed Central]
- Mirali, S.; Schimmer, A.D. The role of mitochondrial proteases in leukemic cells and leukemic stem cells. Stem Cells Transl. Med. 2020, 9, 1481–1487. [Google Scholar] [CrossRef]
- Sharon, D.; Cathelin, S.; Mirali, S.; Di Trani, J.M.; Yanofsky, D.J.; Keon, K.A.; Rubinstein, J.L.; Schimmer, A.D.; Ketela, T.; Chan, S.M.; et al. Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response. Sci. Transl. Med. 2019, 11, eaax2863. [Google Scholar] [CrossRef]
- Bosc, C.; Saland, E.; Bousard, A.; Gadaud, N.; Sabatier, M.; Cognet, G.; Farge, T.; Boet, E.; Gotanègre, M.; Aroua, N.; et al. Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. Nat. Cancer 2021, 2, 1204–1223. [Google Scholar] [CrossRef]
- Feng, Y.; Goncalves, M.M.; Jitkova, Y.; Keszei, A.F.A.; Yan, Y.; Sarathy, C.; St-Germain, J.; Kenney, T.M.G.; Tcheng, M.; Trudel, V.; et al. Serine phosphorylation facilitates protein degradation by the human mitochondrial ClpXP protease. Proc. Natl. Acad. Sci. USA 2025, 122, e2422447122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fatima, N.; Shen, Y.; Crassini, K.; Iwanowicz, E.J.; Lang, H.; Karanewsky, D.S.; Christopherson, R.I.; Mulligan, S.P.; Best, O.G. The ClpP activator ONC-212 (TR-31) inhibits BCL2 and B-cell receptor signaling in CLL. EJHaem 2021, 2, 81–93. [Google Scholar] [CrossRef]
- Ferrarini, I.; Louie, A.; Zhou, L.; El-Deiry, W.S. ONC212 is a Novel Mitocan Acting Synergistically with Glycolysis Inhibition in Pancreatic Cancer. Mol. Cancer Ther. 2021, 20, 1572–1583. [Google Scholar] [CrossRef] [PubMed]
- Czuczi, T.; Murányi, J.; Bárány, P.; Móra, I.; Borbély, A.; Csala, M.; Csámpai, A. Synthesis and Antiproliferative Activity of Novel Imipridone-Ferrocene Hybrids with Triazole and Alkyne Linkers. Pharmaceuticals 2022, 15, 468. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Tapinos, N.; Lulla, R.; El-Deiry, W.S. Dopamine pre-treatment impairs the anti-cancer effect of integrated stress response- and TRAIL pathway-inducing ONC201, ONC206 and ONC212 imipridones in pancreatic, colorectal cancer but not DMG cells. Am. J. Cancer Res. 2024, 14, 2453–2464. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-E.; Hwang, Y.; Lee, S.-J.; Jung, H.; Shin, T.H.; Son, Y.; Park, S.; Han, S.J.; Kim, H.J.; Lee, K.W.; et al. Mitochondrial protease ClpP supplementation ameliorates diet-induced NASH in mice. J. Hepatol. 2022, 77, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, C.; Roszik, J.; Bhattacharya, R.; Alauddin, M.; Mahmud, I.; Yadugiri, S.; Ali, M.M.; Khan, F.S.; Prabhu, V.V.; Lorenzi, P.L.; et al. Imipridones inhibit tumor growth and improve survival in an orthotopic liver metastasis mouse model of human uveal melanoma. Br. J. Cancer 2024, 131, 1846–1857. [Google Scholar] [CrossRef]
- Nishigaki, R.; Osaki, M.; Hiratsuka, M.; Toda, T.; Murakami, K.; Jeang, K.T.; Ito, H.; Inoue, T.; Oshimura, M. Proteomic identification of differentially-expressed genes in human gastric carcinomas. Proteomics 2005, 5, 3205–3213. [Google Scholar] [CrossRef]
- Schirizzi, A.; Contino, M.; Carrieri, L.; Riganti, C.; De Leonardis, G.; Scavo, M.P.; Perrone, M.G.; Miciaccia, M.; Kopecka, J.; Refolo, M.G.; et al. The multiple combination of Paclitaxel, Ramucirumab and Elacridar reverses the paclitaxel-mediated resistance in gastric cancer cell lines. Front. Oncol. 2023, 13, 1129832. [Google Scholar] [CrossRef]
- Purcell, C.; Srinivasan, P.R.; Pinho-Schwermann, M.; MacDonald, W.J.; Ding, E.; El-Deiry, W.S. Neuroendocrine prostate cancer drivers SOX2 and BRN2 confer differential responses to imipridones ONC201, ONC206, and ONC212 in prostate cancer cell lines. Am. J. Transl. Res. 2024, 16, 7972–7982. [Google Scholar] [CrossRef]
- Lee, Y.G.; Kim, H.W.; Nam, Y.; Shin, K.J.; Lee, Y.J.; Park, D.H.; Rhee, H.W.; Seo, J.K.; Chae, Y.C. LONP1 and ClpP cooperatively regulate mitochondrial proteostasis for cancer cell survival. Oncogenesis 2021, 10, 18. [Google Scholar] [CrossRef]
- Kumar, R.; Chaudhary, A.K.; Woytash, J.; Inigo, J.R.; Gokhale, A.A.; Bshara, W.; Attwood, K.; Wang, J.; Spernyak, J.A.; Rath, E.; et al. A mitochondrial unfolded protein response inhibitor suppresses prostate cancer growth in mice via HSP60. J. Clin. Investig. 2022, 132, e149906. [Google Scholar] [CrossRef]
- Li, X.; Zou, Y.; Li, T.; Wong, T.K.F.; Bushey, R.T.; Campa, M.J.; Gottlin, E.B.; Liu, H.; Wei, Q.; Rodrigo, A.; et al. Genetic Variants of CLPP and M1AP Are Associated With Risk of Non-Small Cell Lung Cancer. Front. Oncol. 2021, 11, 709829. [Google Scholar] [CrossRef] [PubMed]
- Ding, E.; Pinho-Schwermann, M.; Zhang, S.; Purcell, C.; El-Deiry, W.S. Neuroendocrine differentiation (ND) in sensitivity of neuroendocrine tumor (NET) cells to ONC201/TIC10 cancer therapeutic. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Li, M.D.; Fu, L.; Lv, B.B.; Xiang, Y.; Xiang, H.X.; Xu, D.X.; Zhao, H. Arsenic induces ferroptosis and acute lung injury through mtROS-mediated mitochondria-associated endoplasmic reticulum membrane dysfunction. Ecotoxicol. Environ. Saf. 2022, 238, 113595. [Google Scholar] [CrossRef]
- Perrone, M.G.; Filieri, S.; Azzariti, A.; Armenise, D.; Baldelli, O.M.; Liturri, A.; Sardanelli, A.M.; Ferorelli, S.; Miciaccia, M.; Scilimati, A. Exosomes in Ovarian Cancer: Towards Precision Oncology. Pharmaceuticals 2025, 18, 371. [Google Scholar] [CrossRef] [PubMed]
- Solidoro, R.; Centonze, A.; Miciaccia, M.; Baldelli, O.M.; Armenise, D.; Ferorelli, S.; Perrone, M.G.; Scilimati, A. Fluorescent imaging probes for in vivo ovarian cancer targeted detection and surgery. Med. Res. Rev. 2024, 44, 1800–1866. [Google Scholar] [CrossRef]
- Perrone, M.G.; Vitale, P.; Miciaccia, M.; Ferorelli, S.; Centonze, A.; Solidoro, R.; Munzone, C.; Bonaccorso, C.; Fortuna, C.G.; Kleinmanns, K.; et al. Fluorochrome Selection for Imaging Intraoperative Ovarian Cancer Probes. Pharmaceuticals 2022, 15, 668. [Google Scholar] [CrossRef]
- Kou, X.; Ding, H.; Li, L.; Chao, H. Caseinolytic protease P (CLPP) activated by ONC201 inhibits proliferation and promotes apoptosis in human epithelial ovarian cancer cells by inducing mitochondrial dysfunction. Ann. Transl. Med. 2021, 9, 1463. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, J.; Fang, Z.; Pierce, S.R.; West, L.; Staley, A.; Tucker, K.; Yin, Y.; Sun, W.; Kong, W.; et al. Anti-Tumor and Anti-Invasive Effects of ONC201 on Ovarian Cancer Cells and a Transgenic Mouse Model of Serous Ovarian Cancer. Front. Oncol. 2022, 12, 789450. [Google Scholar] [CrossRef]
- Tucker, K.; Yin, Y.; Staley, S.-A.; Zhao, Z.; Fang, Z.; Fan, Y.; Zhang, X.; Suo, H.; Sun, W.; Prabhu, V.V.; et al. ONC206 has anti-tumorigenic effects in human ovarian cancer cells and in a transgenic mouse model of high-grade serous ovarian cancer. Am. J. Cancer Res. 2022, 12, 521–536. [Google Scholar] [PubMed] [PubMed Central]
- Mishukov, A.; Odinokova, I.; Mndlyan, E.; Kobyakova, M.; Abdullaev, S.; Zhalimov, V.; Glukhova, X.; Galat, V.; Galat, Y.; Senotov, A.; et al. ONC201-Induced Mitochondrial Dysfunction, Senescence-like Phenotype, and Sensitization of Cultured BT474 Human Breast Cancer Cells to TRAIL. Int. J. Mol. Sci. 2022, 23, 15551. [Google Scholar] [CrossRef]
- Fennell, E.M.J.; Aponte-Collazo, L.J.; Wynn, J.D.; Drizyte-Miller, K.; Leung, E.; Greer, Y.E.; Graves, P.R.; Iwanowicz, A.A.; Ashamalla, H.; Holmuhamedov, E.; et al. Characterization of TR-107, a novel chemical activator of the human mitochondrial protease ClpP. Pharmacol. Res. Perspect. 2022, 10, e00993. [Google Scholar] [CrossRef]
- Lim, B.; Peterson, C.B.; Davis, A.; Cho, E.; Pearson, T.; Liu, H.; Hwang, M.; Ueno, N.T.; Lee, J. ONC201 and an MEK Inhibitor Trametinib Synergistically Inhibit the Growth of Triple-Negative Breast Cancer Cells. Biomedicines 2021, 9, 1410. [Google Scholar] [CrossRef] [PubMed]
- Greer, Y.E.; Hernandez, L.; Fennell, E.M.J.; Kundu, M.; Voeller, D.; Chari, R.; Gilbert, S.F.; Gilbert, T.S.K.; Ratnayake, S.; Tang, B.; et al. Mitochondrial Matrix Protease ClpP Agonists Inhibit Cancer Stem Cell Function in Breast Cancer Cells by Disrupting Mitochondrial Homeostasis. Cancer Res. Commun. 2022, 2, 1144–1161. [Google Scholar] [CrossRef] [PubMed]
- Mandorino, M.; Maitra, A.; Armenise, D.; Baldelli, O.M.; Miciaccia, M.; Ferorelli, S.; Perrone, M.G.; Scilimati, A. Pediatric Diffuse Midline Glioma H3K27-Altered: From Developmental Origins to Therapeutic Challenges. Cancers 2024, 16, 1814. [Google Scholar] [CrossRef] [PubMed]
- Maitra, A.; Miciaccia, M.; Mandorino, M.; Armenise, D.; Baldelli, O.M.; Ferorelli, S.; Papusha, L.; Druy, A.; Perrone, M.G.; Scilimati, A.; et al. Decoding Gene Expression Changes in Cerebral Tumors: Before and After Radiotherapy. Med. Res. Rev. 2025. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Jackson, E.R.; Duchatel, R.J.; Staudt, D.E.; Persson, M.L.; Mannan, A.; Yadavilli, S.; Parackal, S.; Game, S.; Chong, W.C.; Jayasekara, W.S.N.; et al. ONC201 in Combination with Paxalisib for the Treatment of H3K27-Altered Diffuse Midline Glioma. Cancer Res. 2023, 83, 2421–2437. [Google Scholar] [CrossRef]
- Antonacci, M.; Maqoud, F.; Di Turi, A.; Miciaccia, M.; Perrone, M.G.; Scilimati, A.; Tricarico, D. KATP Channel Inhibitors Reduce Cell Proliferation Through Upregulation of H3K27ac in Diffuse Intrinsic Pontine Glioma: A Functional Expression Investigation. Cancers 2025, 17, 358. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Shang, E.; Schiffgens, S.; Torrini, C.; Shu, C.; Akman, H.O.; Prabhu, V.V.; Allen, J.E.; Westhoff, M.A.; Karpel-Massler, G.; et al. Induction of Synthetic Lethality by Activation of Mitochondrial ClpP and Inhibition of HDAC1/2 in Glioblastoma. Clin. Cancer Res. 2022, 28, 1881–1895. [Google Scholar] [CrossRef]
- Rumyantseva, A.; Popovic, M.; Trifunovic, A. CLPP deficiency ameliorates neurodegeneration caused by impaired mitochondrial protein synthesis. Brain 2022, 145, 92–104. [Google Scholar] [CrossRef]
- Faridi, R.; Stratton, P.; Salmeri, N.; Morell, R.J.; Khan, A.A.; Morell, R.J.; Khan, A.A.; Usmani, M.A.; Newman, W.G.; Riazuddin, S.; et al. Homozygous novel truncating variant of CLPP associated with severe Perrault syndrome. Clin. Genet. 2024, 105, 584–586. [Google Scholar] [CrossRef]
- Odia, Y.; Koschmann, C.; Vitanza, N.A.; de Blank, P.; Aguilera, D.; Allen, J.; Daghistani, D.; Hall, M.; Khatib, Z.; Kline, C.; et al. Safety and pharmacokinetics of ONC201 (Dordaviprone) administered two consecutive days per week in pediatric patients with H3 K27M-mutant glioma. Neuro-Oncology 2024, 26, S155–S164. [Google Scholar] [CrossRef]
- Filieri, S.; Miciaccia, M.; Armenise, D.; Baldelli, O.M.; Liturri, A.; Ferorelli, S.; Sardanelli, A.M.; Perrone, M.G.; Scilimati, A. Can Focused Ultrasound Overcome the Failure of Chemotherapy in Treating Pediatric Diffuse Intrinsic Pontine Glioma Due to a Blood-Brain Barrier Obstacle? Pharmaceuticals 2025, 18, 525. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Compound [PMID] | Central Core Ring | Chemical Structure | Tumor Types [Mechanism] | Stage of Development |
---|---|---|---|---|
ONC201 [31021596] Modeyso™ | 2,4,6,7,8,9-hexahydroimidazo [1,2-a]pyrido[3,4-e]pyrimidin-5(1H)-one | AML, CRC, prostate (NEPC), pancreatic, brain tumors (DMG H3K27-altered) [activator] | Clinical trials (phase III) FDA approved | |
IMP075 [36030831] | 2,3,6,7,8,9-hexahydroimidazo[1,2-a]pyrido[3,4-e]pyrimidin-5(1H)-one | Colorectal cancer [activator] | Preclinical | |
NCA029 [38329974] | 1,2,5,6-tetrahydropyridine-3-carboxamide | Tested in ClpP-related models [activator] | Preclinical | |
ONC206 [31021596] | hexahydroimidazo[1,2-a]pyrido[3,4-e]pyrimidin-5(1H)-one | Hematological and solid tumors [activator] | Clinical trials (phase I, PNOC023) | |
ONC212 [31021596] | hexahydroimidazo[1,2-a]pyrido[3,4-e]pyrimidin-5(1H)-one | Hematological and solid tumors [activator] | Preclinical | |
TR57 [30783502] | 5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine-2,4(1H,3H)-dione | AML, other cancers [activator] | Preclinical | |
ZG36 [37352796] | 1-acetylhexahydro-4H-pyrazino[1,2-a]pyrimidine-4,7(6H)-dione | NSCLC, other tumors [activator] | Preclinical | |
ZK53 [37923710] | 1-(piperazin-1-yl)ethan-1-one | NSCLC [activator] | Preclinical | |
7k [38620134] | 2-amino-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidin-4(1H)-one | AML [activator] | Preclinical | |
ClpP-1071 [39574384] | 2,4,6,7,8,9-hexahydroimidazo[1,2-a]pyrido[3,4-e]pyrimidin-5(1H)-one | Not yet studied for tumor-specificity [activator] | Preclinical | |
THX6 [39973170] | tetrahydropyrido[4,3-d]pyrimidine-2,4(1H,3H)-dione | Not yet studied for tumor-specificity [activator] | Preclinical | |
A2-32-01 [21855356] | oxetan-2-one | Tested in ClpP-related models [inhibitor] | Preclinical | |
TG53 [30109319] | phenylester | Tested in ClpP-related models [inhibitor] | Preclinical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armenise, D.; Baldelli, O.M.; Liturri, A.; Cavallaro, G.; Fortuna, C.G.; Ferorelli, S.; Miciaccia, M.; Perrone, M.G.; Scilimati, A. Mitochondrial Protease ClpP: Cancer Marker and Drug Target. Pharmaceuticals 2025, 18, 1443. https://doi.org/10.3390/ph18101443
Armenise D, Baldelli OM, Liturri A, Cavallaro G, Fortuna CG, Ferorelli S, Miciaccia M, Perrone MG, Scilimati A. Mitochondrial Protease ClpP: Cancer Marker and Drug Target. Pharmaceuticals. 2025; 18(10):1443. https://doi.org/10.3390/ph18101443
Chicago/Turabian StyleArmenise, Domenico, Olga Maria Baldelli, Anselma Liturri, Gianfranco Cavallaro, Cosimo Gianluca Fortuna, Savina Ferorelli, Morena Miciaccia, Maria Grazia Perrone, and Antonio Scilimati. 2025. "Mitochondrial Protease ClpP: Cancer Marker and Drug Target" Pharmaceuticals 18, no. 10: 1443. https://doi.org/10.3390/ph18101443
APA StyleArmenise, D., Baldelli, O. M., Liturri, A., Cavallaro, G., Fortuna, C. G., Ferorelli, S., Miciaccia, M., Perrone, M. G., & Scilimati, A. (2025). Mitochondrial Protease ClpP: Cancer Marker and Drug Target. Pharmaceuticals, 18(10), 1443. https://doi.org/10.3390/ph18101443