Peptide-Based Strategies Against Mycobacterium tuberculosis Covering Immunomodulation, Vaccines, Synergistic Therapy, and Nanodelivery
Abstract
1. Introduction
2. Host-Directed Antimicrobial Peptides in Tuberculosis: A Promising Therapeutic Avenue
3. Synergy Between Conventional TB Drugs and Antimicrobials Peptides
AMP/Antibiotic Combination | Concentrations Used | Mycobacterium Strains | FICI | Ref. |
---|---|---|---|---|
HHC-8/Rifampicin MM-10/Rifampicin | 1.05 µg/mL (HHC-8 or MM-10) + 0.625 µg/mL (Rifampicin) | M. smegmatis | 0.09–0.47 | [36] |
AS-48/Ethambutol | 2 µg/mL (each) | M. tuberculosis H37Rv | 0.09 | [32] |
M(LLKK2)M/Rifampicin | 3.91–15.6 mgL−1 (M(LLKK2)M) + 0.00025–1.95 mgL−1 (Rifampicin) | M. tuberculosis, M. bovis, and M. smegmatis | 0.56, 0.5, and 0.5 | [37] |
D-LAK120/Isoniazid | 32 µM (each) | M. tuberculosis | 0.25–0.38 | [33] |
HNP-1/Isoniazid and rifampicin | 6.0–0.1 µg/mL (HNP-1) + 0.3–0.02 µg/mL (each antibiotic) | M. tuberculosis H37Rv | 0.18–0.25 | [41] |
NZ2114/Isoniazid and ethambutol | 0.88–110 µg/mL (NZ2114), 0.03–2 µg/mL (Isoniazid), 0.06–4 µg/mL (Ethambutol) | M. bovis and M. abscessus | 0.32–0.40 | [52] |
D-hLF 1-11/Rifampicin | 25 µg/mL (D-hLF 1-11) and 0.031 µg/mL (Rifampicin) | M. tuberculosis H37Rv | 0.312 | [53] |
NZX/Ethambutol | 0.88–110 µg/mL (NZX) + 0.06–4 µg/mL (Ethambutol) | M. tuberculosis H37Rv | 0.75 | [44] |
4. Designing Synthetic AMPs Against MTB
4.1. Peptide Optimization
4.2. Molecular Docking
4.3. Molecular Dynamics
4.4. In Silico Prediction Algorithms
4.5. MIC Assays and Functional Characterization
5. Vitamin D, Cathelicidins, and Tuberculosis
6. AMPs and the Tuberculosis Vaccine Landscape
7. Delivery Systems
- Nanotechnology
7.1. Host-Directed Mechanisms
7.2. Drug Delivery Systems and Nanocarrier Platforms
7.2.1. Macrophage-Targeted Delivery
7.2.2. pH-Responsive and Stimuli-Responsive Systems
7.2.3. Microtechnology
7.3. Clinical Applications and Translational Studies
7.3.1. Preclinical Development Status
7.3.2. Regulatory Considerations
7.3.3. Clinical Trial Landscape
7.4. Challenges and Limitations
7.4.1. Technical Challenges
7.4.2. Biological Challenges
7.5. Regulatory and Economic Challenges
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Tuberculosis Report 2024; WHO: Geneva, Switzerland, 2024.
- Khawbung, J.L.; Nath, D.; Chakraborty, S. Drug Resistant Tuberculosis: A Review. Comp. Immunol. Microbiol. Infect. Dis. 2021, 74, 101574. [Google Scholar] [CrossRef]
- Vasava, M.S.; Bhoi, M.N.; Rathwa, S.K.; Borad, M.A.; Nair, S.G.; Patel, H.D. Drug Development against Tuberculosis: Past, Present and Future. Indian J. Tuberc. 2017, 64, 252–275. [Google Scholar] [CrossRef]
- Dheda, K.; Mirzayev, F.; Cirillo, D.M.; Udwadia, Z.; Dooley, K.E.; Chang, K.-C.; Omar, S.V.; Reuter, A.; Perumal, T.; Horsburgh, C.R.; et al. Multidrug-Resistant Tuberculosis. Nat. Rev. Dis. Primers 2024, 10, 22. [Google Scholar] [CrossRef]
- Lange, C.; Vasiliu, A.; Mandalakas, A.M. Emerging Bedaquiline-Resistant Tuberculosis. Lancet Microbe 2023, 4, e964–e965. [Google Scholar] [CrossRef]
- Sotgiu, G.; Pontali, E.; Centis, R.; D’Ambrosio, L.; Migliori, G.B. Delamanid (OPC-67683) for Treatment of Multi-Drug-Resistant Tuberculosis. Expert Rev. Anti-Infect. Ther. 2015, 13, 305–315. [Google Scholar] [CrossRef]
- Roque-Borda, C.A.; Primo, L.M.D.G.; Medina-Alarcón, K.P.; Campos, I.C.; Nascimento, C.d.F.; Saraiva, M.M.S.; Berchieri Junior, A.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J.S.; Perdigão, J.; et al. Antimicrobial Peptides: A Promising Alternative to Conventional Antimicrobials for Combating Polymicrobial Biofilms. Adv. Sci. 2024, 12, e2410893. [Google Scholar] [CrossRef]
- Arranz-Trullén, J.; Lu, L.; Pulido, D.; Bhakta, S.; Boix, E. Host Antimicrobial Peptides: The Promise of New Treatment Strategies against Tuberculosis. Front. Immunol. 2017, 8, 1499. [Google Scholar] [CrossRef]
- Mookherjee, N.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial Host Defence Peptides: Functions and Clinical Potential. Nat. Rev. Drug Discov. 2020, 19, 311–332. [Google Scholar] [CrossRef]
- Rivas-Santiago, B.; Rivas Santiago, C.E.; Castañeda-Delgado, J.E.; León–Contreras, J.C.; Hancock, R.E.W.; Hernandez-Pando, R. Activity of LL-37, CRAMP and Antimicrobial Peptide-Derived Compounds E2, E6 and CP26 against Mycobacterium tuberculosis. Int. J. Antimicrob. Agents 2013, 41, 143–148. [Google Scholar] [CrossRef]
- AlMatar, M.; Makky, E.A.; Yakıcı, G.; Var, I.; Kayar, B.; Köksal, F. Antimicrobial Peptides as an Alternative to Anti-Tuberculosis Drugs. Pharmacol. Res. 2018, 128, 288–305. [Google Scholar] [CrossRef]
- Rao, K.U.; Li, P.; Welinder, C.; Tenland, E.; Gourdon, P.; Sturegård, E.; Ho, J.C.S.; Godaly, G. Mechanisms of a Mycobacterium tuberculosis Active Peptide. Pharmaceutics 2023, 15, 540. [Google Scholar] [CrossRef]
- Hemmati, S.; Saeidikia, Z.; Seradj, H.; Mohagheghzadeh, A. Immunomodulatory Peptides as Vaccine Adjuvants and Antimicrobial Agents. Pharmaceuticals 2024, 17, 201. [Google Scholar] [CrossRef]
- Tiberi, S.; Muñoz-Torrico, M.; Duarte, R.; Dalcolmo, M.; D’Ambrosio, L.; Migliori, G.-B. New Drugs and Perspectives for New Anti-Tuberculosis Regimens. Pulmonology 2018, 24, 86–98. [Google Scholar] [CrossRef]
- Panda, S.; Faisal, S.; Seelan, D.M.; Dagar, M.; Mandlecha, L.; Varshney, V.; Sharma, M.; Luthra, K.; Gupta, N.K.; Singh, A. Protective Role of Human Beta-Defensin-2 and Cathelicidin in High Risk Close Household Contacts of Pulmonary Tuberculosis. Clin. Immunol. Commun. 2023, 3, 23–30. [Google Scholar] [CrossRef]
- Gao, X.; Feng, J.; Wei, L.; Dong, P.; Chen, J.; Zhang, L.; Yang, Y.; Xu, L.; Wang, H.; Luo, J.; et al. Defensins: A Novel Weapon against Mycobacterium tuberculosis? Int. Immunopharmacol. 2024, 127, 111383. [Google Scholar] [CrossRef]
- Rivas-Santiago, B.; Castañeda-Delgado, J.E.; Rivas Santiago, C.E.; Waldbrook, M.; González-Curiel, I.; León-Contreras, J.C.; Enciso-Moreno, J.A.; Villar, V.d.; Mendez-Ramos, J.; Hancock, R.E.W.; et al. Ability of Innate Defence Regulator Peptides IDR-1002, IDR-HH2 and IDR-1018 to Protect against Mycobacterium tuberculosis Infections in Animal Models. PLoS ONE 2013, 8, e59119. [Google Scholar] [CrossRef]
- Martineau, A.R.; Newton, S.M.; Wilkinson, K.A.; Kampmann, B.; Hall, B.M.; Nawroly, N.; Packe, G.E.; Davidson, R.N.; Griffiths, C.J.; Wilkinson, R.J. Neutrophil-Mediated Innate Immune Resistance to Mycobacteria. J. Clin. Investig. 2007, 117, 1988–1994. [Google Scholar] [CrossRef]
- Soehnlein, O.; Kai-Larsen, Y.; Frithiof, R.; Sorensen, O.E.; Kenne, E.; Scharffetter-Kochanek, K.; Eriksson, E.E.; Herwald, H.; Agerberth, B.; Lindbom, L. Neutrophil Primary Granule Proteins HBP and HNP1-3 Boost Bacterial Phagocytosis by Human and Murine Macrophages. J. Clin. Investig. 2008, 118, 3491–3502. [Google Scholar] [CrossRef]
- Dong, H.; Lv, Y.; Zhao, D.; Barrow, P.; Zhou, X. Defensins: The Case for Their Use against Mycobacterial Infections. J. Immunol. Res. 2016, 2016, 7515687. [Google Scholar] [CrossRef]
- Fattorini, L.; Gennaro, R.; Zanetti, M.; Tan, D.; Brunori, L.; Giannoni, F.; Pardini, M.; Orefici, G. In Vitro Activity of Protegrin-1 and Beta-Defensin-1, Alone and in Combination with Isoniazid, against Mycobacterium tuberculosis. Peptides 2004, 25, 1075–1077. [Google Scholar] [CrossRef]
- Tsutsumi-Ishii, Y.; Nagaoka, I. Modulation of Human β-Defensin-2 Transcription in Pulmonary Epithelial Cells by Lipopolysaccharide-Stimulated Mononuclear Phagocytes via Proinflammatory Cytokine Production. J. Immunol. 2003, 170, 4226–4236. [Google Scholar] [CrossRef]
- Kisich, K.O.; Heifets, L.; Higgins, M.; Diamond, G. Antimycobacterial Agent Based on MRNA Encoding Human β-Defensin 2 Enables Primary Macrophages to Restrict Growth of Mycobacterium tuberculosis. Infect. Immun. 2001, 69, 2692–2699. [Google Scholar] [CrossRef]
- Liu, P.T.; Schenk, M.; Walker, V.P.; Dempsey, P.W.; Kanchanapoomi, M.; Wheelwright, M.; Vazirnia, A.; Zhang, X.; Steinmeyer, A.; Zügel, U.; et al. Convergence of IL-1β and VDR Activation Pathways in Human TLR2/1-Induced Antimicrobial Responses. PLoS ONE 2009, 4, e5810. [Google Scholar] [CrossRef]
- Faridgohar, M.; Nikoueinejad, H. New Findings of Toll-like Receptors Involved in Mycobacterium tuberculosis Infection. Pathog. Glob. Health 2017, 111, 256–264. [Google Scholar] [CrossRef]
- Rivas-Santiago, B.; Hernandez-Pando, R.; Carranza, C.; Juarez, E.; Contreras, J.L.; Aguilar-Leon, D.; Torres, M.; Sada, E. Expression of Cathelicidin LL-37 During Mycobacterium tuberculosis Infection in Human Alveolar Macrophages, Monocytes, Neutrophils, and Epithelial Cells. Infect. Immun. 2008, 76, 935–941. [Google Scholar] [CrossRef]
- Sánchez, D.; Rojas, M.; Hernández, I.; Radzioch, D.; García, L.F.; Barrera, L.F. Role of TLR2- and TLR4-Mediated Signaling in Mycobacterium tuberculosis-Induced Macrophage Death. Cell. Immunol. 2010, 260, 128–136. [Google Scholar] [CrossRef]
- Torres-Juarez, F.; Cardenas-Vargas, A.; Montoya-Rosales, A.; González-Curiel, I.; Garcia-Hernandez, M.H.; Enciso-Moreno, J.A.; Hancock, R.E.W.; Rivas-Santiago, B. LL-37 Immunomodulatory Activity during Mycobacterium tuberculosis Infection in Macrophages. Infect. Immun. 2015, 83, 4495–4503. [Google Scholar] [CrossRef]
- Samuchiwal, S.K.; Tousif, S.; Singh, D.K.; Kumar, A.; Ghosh, A.; Bhalla, K.; Prakash, P.; Kumar, S.; Bhattacharyya, M.; Moodley, P.; et al. A Peptide Fragment from the Human COX3 Protein Disrupts Association of Mycobacterium tuberculosis Virulence Proteins ESAT-6 and CFP10, Inhibits Mycobacterial Growth and Mounts Protective Immune Response. BMC Infect. Dis. 2014, 14, 355. [Google Scholar] [CrossRef]
- Sarkar, T.; Chetia, M.; Chatterjee, S. Antimicrobial Peptides and Proteins: From Nature’s Reservoir to the Laboratory and Beyond. Front. Chem. 2021, 9, 691532. [Google Scholar] [CrossRef]
- Mahajan, P.; Gor, H.R.; Jadhav, S.; Joshi, M.; Nema, V. Host-Directed Therapeutic for the Treatment of Mycobacterium tuberculosis. Microbiol. Res. 2025, 299, 128253. [Google Scholar] [CrossRef]
- Schön, T.; Köser, C.U.; Werngren, J.; Viveiros, M.; Georghiou, S.; Kahlmeter, G.; Giske, C.; Maurer, F.; Lina, G.; Turnidge, J.; et al. What Is the Role of the EUCAST Reference Method for MIC Testing of the Mycobacterium tuberculosis Complex? Clin. Microbiol. Infect. 2020, 26, 1453–1455. [Google Scholar] [CrossRef]
- Aguilar-Pérez, C.; Gracia, B.; Rodrigues, L.; Vitoria, A.; Cebrián, R.; Deboosère, N.; Song, O.-R.; Brodin, P.; Maqueda, M.; Aínsa, J.A. Synergy between Circular Bacteriocin AS-48 and Ethambutol against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2018, 62, e00359-18. [Google Scholar] [CrossRef]
- Shao, Z.; Tam, K.K.G.; Achalla, V.P.K.; Woon, E.C.Y.; Mason, A.J.; Chow, S.F.; Yam, W.C.; Lam, J.K.W. Synergistic Combination of Antimicrobial Peptide and Isoniazid as Inhalable Dry Powder Formulation against Multi-Drug Resistant Tuberculosis. Int. J. Pharm. 2024, 654, 123960. [Google Scholar] [CrossRef]
- Zhu, Y.; Hao, W.; Wang, X.; Ouyang, J.; Deng, X.; Yu, H.; Wang, Y. Antimicrobial Peptides, Conventional Antibiotics, and Their Synergistic Utility for the Treatment of Drug-Resistant Infections. Med. Res. Rev. 2022, 42, 1377–1422. [Google Scholar] [CrossRef]
- Zharkova, M.S.; Orlov, D.S.; Golubeva, O.Y.; Chakchir, O.B.; Eliseev, I.E.; Grinchuk, T.M.; Shamova, O.V. Application of Antimicrobial Peptides of the Innate Immune System in Combination with Conventional Antibiotics—A Novel Way to Combat Antibiotic Resistance? Front. Cell Infect. Microbiol. 2019, 9, 128. [Google Scholar] [CrossRef]
- Sharma, A.; Gaur, A.; Kumar, V.; Sharma, N.; Patil, S.A.; Verma, R.K.; Singh, A.K. Antimicrobial Activity of Synthetic Antimicrobial Peptides Loaded in Poly-ε-caprolactone Nanoparticles against Mycobacteria and Their Functional Synergy with Rifampicin. Int. J. Pharm. 2021, 608, 121097. [Google Scholar] [CrossRef]
- Khara, J.S.; Wang, Y.; Ke, X.Y.; Liu, S.; Newton, S.M.; Langford, P.R.; Yang, Y.Y.; Ee, P.L.R. Anti-Mycobacterial Activities of Synthetic Cationic α-Helical Peptides and Their Synergism with Rifampicin. Biomaterials 2014, 35, 2032–2038. [Google Scholar] [CrossRef]
- Menzies, N.A.; Allwood, B.W.; Dean, A.S.; Dodd, P.J.; Houben, R.M.G.J.; James, L.P.; Knight, G.M.; Meghji, J.; Nguyen, L.N.; Rachow, A.; et al. Global Burden of Disease Due to Rifampicin-Resistant Tuberculosis: A Mathematical Modeling Analysis. Nat. Commun. 2023, 14, 6182. [Google Scholar] [CrossRef]
- Sulis, G.; Pai, M. Isoniazid-Resistant Tuberculosis: A Problem We Can No Longer Ignore. PLoS Med. 2020, 17, e1003023. [Google Scholar] [CrossRef]
- Tyers, M.; Wright, G.D. Drug Combinations: A Strategy to Extend the Life of Antibiotics in the 21st Century. Nat. Rev. Microbiol. 2019, 17, 141–155. [Google Scholar] [CrossRef]
- Kalita, A.; Verma, I.; Khuller, G.K. Role of Human Neutrophil Peptide-1 as a Possible Adjunct to Antituberculosis Chemotherapy. J. Infect. Dis. 2004, 190, 1476–1480. [Google Scholar] [CrossRef]
- Sharma, S.; Verma, I.; Khuller, G.K. Therapeutic Potential of Human Neutrophil Peptide 1 against Experimental Tuberculosis. Antimicrob. Agents Chemother. 2001, 45, 639–640. [Google Scholar] [CrossRef]
- Gutsmann, T. Interaction between Antimicrobial Peptides and Mycobacteria. Biochim. Biophys. Acta (BBA) Biomembr. 2016, 1858, 1034–1043. [Google Scholar] [CrossRef]
- Rao, K.U.; Henderson, D.I.; Krishnan, N.; Puthia, M.; Glegola-Madejska, I.; Brive, L.; Bjarnemark, F.; Millqvist Fureby, A.; Hjort, K.; Andersson, D.I.; et al. A Broad Spectrum Anti-Bacterial Peptide with an Adjunct Potential for Tuberculosis Chemotherapy. Sci. Rep. 2021, 11, 4201. [Google Scholar] [CrossRef]
- Shao, Z.; Chow, M.Y.T.; Chow, S.F.; Lam, J.K.W. Co-Delivery of D-LAK Antimicrobial Peptide and Capreomycin as Inhaled Powder Formulation to Combat Drug-Resistant Tuberculosis. Pharm. Res. 2023, 40, 1073–1086. [Google Scholar] [CrossRef]
- Cunha, L.; Rodrigues, S.; Rosa da Costa, A.M.; Faleiro, L.; Buttini, F.; Grenha, A. Inhalable Chitosan Microparticles for Simultaneous Delivery of Isoniazid and Rifabutin in Lung Tuberculosis Treatment. Drug Dev. Ind. Pharm. 2019, 45, 1313–1320. [Google Scholar] [CrossRef]
- Lan, Y.; Lam, J.T.; Siu, G.K.H.; Yam, W.C.; Mason, A.J.; Lam, J.K.W. Cationic Amphipathic D-Enantiomeric Antimicrobial Peptides with In Vitro and Ex Vivo Activity against Drug-Resistant Mycobacterium tuberculosis. Tuberculosis 2014, 94, 678–689. [Google Scholar] [CrossRef]
- Jacobo-Delgado, Y.M.; Rodríguez-Carlos, A.; Serrano, C.J.; Rivas-Santiago, B. Mycobacterium tuberculosis Cell-Wall and Antimicrobial Peptides: A Mission Impossible? Front. Immunol. 2023, 14, 1194923. [Google Scholar] [CrossRef]
- Preethi, A.R.; Anbarasu, A. Antimicrobial Peptides as Immunomodulators and Antimycobacterial Agents to Combat Mycobacterium tuberculosis: A Critical Review. Probiotics Antimicrob. Proteins 2023, 15, 1539–1566. [Google Scholar] [CrossRef]
- Gupta, S.; Kaur, R.; Upadhyay, A.; Singh, J.; Sharma, B.P.; Sohal, J.S. Unveiling the Potential of Antimicrobial Peptides to Combat Mycobacterium tuberculosis. Arch. Microbiol. 2025, 207, 199. [Google Scholar] [CrossRef]
- Davids, C.; Rao-Fransson, K.; Krishnan, N.; Tenland, E.; Mörgelin, M.; Robertson, B.; Godaly, G. Antimycobacterial Activity of the Plectasin Derivative NZ2114. Front. Microbiol. 2025, 16, 1613241. [Google Scholar] [CrossRef]
- Carnero Canales, C.S.; Marquez Cazorla, J.I.; Marquez Cazorla, R.M.; Roque-Borda, C.A.; Polinário, G.; Figueroa Banda, R.A.; Sábio, R.M.; Chorilli, M.; Santos, H.A.; Pavan, F.R. Breaking Barriers: The Potential of Nanosystems in Antituberculosis Therapy. Bioact. Mater. 2024, 39, 106–134. [Google Scholar] [CrossRef]
- Intorasoot, S.; Intorasoot, A.; Tawteamwong, A.; Butr-Indr, B.; Phunpae, P.; Tharinjaroen, C.S.; Wattananandkul, U.; Sangboonruang, S.; Khantipongse, J. In Vitro Antimycobacterial Activity of Human Lactoferrin-Derived Peptide, D-HLF 1-11, against Susceptible and Drug-Resistant Mycobacterium tuberculosis and Its Synergistic Effect with Rifampicin. Antibiotics 2022, 11, 1785. [Google Scholar] [CrossRef]
- Segev-Zarko, L.; Mangoni, M.L.; Shai, Y. Antimicrobial Peptides: Multiple Mechanisms against a Variety of Targets. In Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies; CABI: Wallingford, UK, 2017; pp. 119–134. [Google Scholar]
- Abedinzadeh, M.; Gaeini, M.; Sardari, S. Natural Antimicrobial Peptides against Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2014, 70, 1285–1289. [Google Scholar] [CrossRef]
- Ramón-García, S.; Mikut, R.; Ng, C.; Ruden, S.; Volkmer, R.; Reischl, M.; Hilpert, K.; Thompson, C.J. Targeting Mycobacterium tuberculosis and Other Microbial Pathogens Using Improved Synthetic Antibacterial Peptides. Antimicrob. Agents Chemother. 2013, 57, 2295–2303. [Google Scholar] [CrossRef]
- Savitskaya, A.; Masso-Silva, J.; Haddaoui, I.; Enany, S. Exploring the Arsenal of Antimicrobial Peptides: Mechanisms, Diversity, and Applications. Biochimie 2023, 214, 216–227. [Google Scholar] [CrossRef]
- Sadaqat, M.H. A Review of the Structure and Mechanism of Action of Antimicrobial Peptides. Sci. Res. Q. J. Med. Sci. 2024, 9, 25–35. [Google Scholar] [CrossRef]
- Ning, Y.; Wang, L.; Wang, M.; Meng, X.; Qiao, J. Antimicrobial Peptides: A Promising Strategy for Anti-Tuberculosis Therapeutics. Protein Pept. Lett. 2023, 30, 280–294. [Google Scholar] [CrossRef]
- Giuliani, A.; Pirri, G.; Nicoletto, S.F. Antimicrobial Peptides: An Overview of a Promising Class of Therapeutics. Cent. Eur. J. Biol. 2007, 2, 1–33. [Google Scholar] [CrossRef]
- Masand, M.; Kumar Sharma, P.; Balaramnavar, V.M.; Mathpal, D. Tuberculosis: Current Progress in Drug Targets, Potential Drugs and Therapeutic Impact. Curr. Respir. Med. Rev. 2022, 18, 165–170. [Google Scholar] [CrossRef]
- Wu, Q.; Patočka, J.; Kuča, K. Insect Antimicrobial Peptides, a Mini Review. Toxins 2018, 10, 461. [Google Scholar] [CrossRef]
- Saini, S.; Pal, S.; Sharma, R. Decoding the Role of Antimicrobial Peptides in the Fight against Mycobacterium tuberculosis. ACS Infect. Dis. 2025, 11, 350–365. [Google Scholar] [CrossRef]
- Das, N.; Singh, S.; Swaminathan, P. Rational Drug Designing for Antimicrobial Resistance: New Strategies and Targets. Curr. Pharmacol. Rep. 2025, 11, 44. [Google Scholar] [CrossRef]
- Oliveira, G.S.; Costa, R.P.; Gomes, P.; Gomes, M.S.; Silva, T.; Teixeira, C. Antimicrobial Peptides as Potential Anti-Tubercular Leads: A Concise Review. Pharmaceuticals 2021, 14, 323. [Google Scholar] [CrossRef]
- Mwangi, J.; Kamau, P.M.; Thuku, R.C.; Lai, R. Design Methods for Antimicrobial Peptides with Improved Performance. Zool. Res. 2023, 44, 1095–1114. [Google Scholar] [CrossRef]
- Kang, S.-J.; Park, S.J.; Mishig-Ochir, T.; Lee, B.-J. Antimicrobial Peptides: Therapeutic Potentials. Expert Rev. Anti-Infect. Ther. 2014, 12, 1477–1486. [Google Scholar] [CrossRef]
- Xu, S.; Tan, P.; Tang, Q.; Wang, T.; Ding, Y.; Fu, H.; Zhang, Y.; Zhou, C.; Song, M.; Tang, Q.; et al. Enhancing the Stability of Antimicrobial Peptides: From Design Strategies to Applications. Chem. Eng. J. 2023, 475, 145923. [Google Scholar] [CrossRef]
- Torres, M.D.T.; Sothiselvam, S.; Lu, T.K.; de la Fuente-Nunez, C. Peptide Design Principles for Antimicrobial Applications. J. Mol. Biol. 2019, 431, 3547–3567. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Björn, C.; Ekblom, J. Antimicrobial Peptides as Therapeutic Agents: Opportunities and Challenges. Crit. Rev. Biotechnol. 2020, 40, 978–992. [Google Scholar] [CrossRef]
- Barreto-Santamaría, A.; Patarroyo, M.E.; Curtidor, H. Designing and Optimizing New Antimicrobial Peptides: All Targets Are Not the Same. Crit. Rev. Clin. Lab. Sci. 2019, 56, 351–373. [Google Scholar] [CrossRef]
- Sekaran, S.D. Net charge, hydrophobicity and specific amino acids contribute to the activity of antimicrobial peptides. J. Health Transl. Med. 2014, 17, 1–7. [Google Scholar] [CrossRef]
- Giangaspero, A.; Sandri, L.; Tossi, A. Amphipathic α Helical Antimicrobial Peptides: A Systematic Study of the Effects of Structural and Physical Properties on Biological Activity. Eur. J. Biochem. 2001, 268, 5589–5600. [Google Scholar] [CrossRef]
- Tiberi, S.; du Plessis, N.; Walzl, G.; Vjecha, M.J.; Rao, M.; Ntoumi, F.; Mfinanga, S.; Kapata, N.; Mwaba, P.; McHugh, T.D.; et al. Tuberculosis: Progress and Advances in Development of New Drugs, Treatment Regimens, and Host-Directed Therapies. Lancet Infect. Dis. 2018, 18, e183–e198. [Google Scholar] [CrossRef]
- Ong, Z.Y.; Wiradharma, N.; Yang, Y.Y. Strategies Employed in the Design and Optimization of Synthetic Antimicrobial Peptide Amphiphiles with Enhanced Therapeutic Potentials. Adv. Drug Deliv. Rev. 2014, 78, 28–45. [Google Scholar] [CrossRef]
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in Peptide Drug Discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325. [Google Scholar] [CrossRef]
- Veltri, D.; Kamath, U.; Shehu, A. Improving Recognition of Antimicrobial Peptides and Target Selectivity through Machine Learning and Genetic Programming. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 14, 300–313. [Google Scholar] [CrossRef]
- Pearson, C.S.; Kloos, Z.; Murray, B.; Tabe, E.; Gupta, M.; Kwak, J.H.; Karande, P.; McDonough, K.A.; Belfort, G. Combined Bioinformatic and Rational Design Approach to Develop Antimicrobial Peptides against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2016, 60, 2757–2764. [Google Scholar] [CrossRef]
- Durand-Reville, T.F.; Miller, A.A.; O’Donnell, J.P.; Wu, X.; Sylvester, M.A.; Guler, S.; Iyer, R.; Shapiro, A.B.; Carter, N.M.; Velez-Vega, C.; et al. Rational Design of a New Antibiotic Class for Drug-Resistant Infections. Nature 2021, 597, 698–702. [Google Scholar] [CrossRef]
- Sun, M.; He, L.; Chen, R.; Lv, M.; Chen, Z.S.; Fan, Z.; Zhou, Y.; Qin, J.; Du, J. Rational Design of Peptides to Overcome Drug Resistance by Metabolic Regulation. Drug Resist. Updates 2025, 79, 101208. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, M.; Lai, R.; Zhang, Z. Chemical Modifications to Increase the Therapeutic Potential of Antimicrobial Peptides. Peptides 2021, 146, 170666. [Google Scholar] [CrossRef]
- Verma, D.P.; Tripathi, A.K.; Thakur, A.K. Innovative Strategies and Methodologies in Antimicrobial Peptide Design. J. Funct. Biomater. 2024, 15, 320. [Google Scholar] [CrossRef]
- Mehta, K.; Vyas, P.; Mujawar, S.; Hazam, P.K.; Vyas, A. Design and In-Silico Screening of Short Antimicrobial Peptides (AMPs) as Anti-Tubercular Agents Targeting INHA. Curr. Bioinform. 2023, 18, 715–736. [Google Scholar] [CrossRef]
- Rossetti, P.; Trollmann, M.F.W.; Wichmann, C.; Gutsmann, T.; Eggeling, C.; Böckmann, R.A. From Membrane Composition to Antimicrobial Strategies: Experimental and Computational Approaches to AMP Design and Selectivity. Small 2025, 2411476. [Google Scholar] [CrossRef]
- Li, J.; Koh, J.-J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front. Neurosci. 2017, 11, 73. [Google Scholar] [CrossRef]
- Wu, E.; Kim, S.Y.; Hristova, K.; Wimley, W.C. Cytosolic Delivery of Antibodies and Other Macromolecules. Biophys. J. 2020, 118, 384a. [Google Scholar] [CrossRef]
- George, E.A.; Naha, A.; Soundharya, H.; Pallavi, J.; Menon, A.; Anbarasu, A.; Ramaiah, S. Pharmacokinetics Screening, Molecular Docking, and Dynamics Simulations Revealed Novel Antimicrobial Peptide NKLF2 Mutants as Potent Inhibitors of Mycobacterium tuberculosis. Probiotics Antimicrob. Proteins 2025. [Google Scholar] [CrossRef]
- Liu, S.; Fan, L.; Sun, J.; Lao, X.; Zheng, H. Computational Resources and Tools for Antimicrobial Peptides. J. Pept. Sci. 2017, 23, 4–12. [Google Scholar] [CrossRef]
- Chaudhary, M.; Tyagi, K. A REVIEW ON MOLECULAR DOCKING AND ITS APPLICATION. Int. J. Adv. Res. 2024, 12, 1141–1153. [Google Scholar] [CrossRef]
- Ahuja, S.; Deep, P.; Shravani; Nair, S.; Sambhyal, S.; Mishra, D.; Pandey, C.; Manchanda, P.; Krishma; Dee, A.; et al. Molecular Docking; Future of Medicinal Research. Ecol. Environ. Conserv. 2022, 28, 18. [Google Scholar] [CrossRef]
- Deshmukh, H.S.; Dhangude, V.M.; Bhosale, T.A.; Patil, R.V.; Bagwan, R.R.; Ghule, R.G.; Deshmukh, P.A.T.; Lamkane, R.B.; Shivpuje, S.S. Precision in Binding: An Insightful Review on Molecular Docking Techniques and Their Applications. South Asian Res. J. Pharm. Sci. 2025, 7, 29–42. [Google Scholar] [CrossRef]
- Kaur, K.; Kaur, P.; Mittal, A.; Nayak, S.K.; Khatik, G.L. Design and molecular docking studies of novel antimicrobial peptides using AutoDock molecular docking software. Asian J. Pharm. Clin. Res. 2017, 10, 28. [Google Scholar] [CrossRef]
- Khusro, A.; Aarti, C.; Agastian, P. Computational Modelling and Docking Insight of Bacterial Peptide as Ideal Anti-Tubercular and Anticancer Agents. Biocatal. Agric. Biotechnol. 2020, 26, 101644. [Google Scholar] [CrossRef]
- Jiang, Z.; Vasil, A.I.; Gera, L.; Vasil, M.L.; Hodges, R.S. Rational Design of A-Helical Antimicrobial Peptides to Target Gram-negative Pathogens, Acinetobacter baumannii and Pseudomonas aeruginosa: Utilization of Charge, ‘Specificity Determinants,’ Total Hydrophobicity, Hydrophobe Type and Location as Design Parameters to Improve the Therapeutic Ratio. Chem. Biol. Drug Des. 2011, 77, 225–240. [Google Scholar] [CrossRef]
- Khara, J.S.; Priestman, M.; Uhía, I.; Hamilton, M.S.; Krishnan, N.; Wang, Y.; Yang, Y.Y.; Langford, P.R.; Newton, S.M.; Robertson, B.D.; et al. Unnatural Amino Acid Analogues of Membrane-Active Helical Peptides with Anti-Mycobacterial Activity and Improved Stability. J. Antimicrob. Chemother. 2016, 71, 2181–2191. [Google Scholar] [CrossRef]
- Chen, Y.; Mant, C.T.; Farmer, S.W.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Rational Design of α-Helical Antimicrobial Peptides with Enhanced Activities and Specificity/Therapeutic Index. J. Biol. Chem. 2005, 280, 12316–12329. [Google Scholar] [CrossRef]
- Gagat, P.; Ostrówka, M.; Duda-Madej, A.; Mackiewicz, P. Enhancing Antimicrobial Peptide Activity through Modifications of Charge, Hydrophobicity, and Structure. Int. J. Mol. Sci. 2024, 25, 10821. [Google Scholar] [CrossRef]
- Belda, I.; Madurga, S.; Tarragó, T.; Llorà, X.; Giralt, E. Evolutionary Computation and Multimodal Search: A Good Combination to Tackle Molecular Diversity in the Field of Peptide Design. Mol. Divers. 2007, 11, 7–21. [Google Scholar] [CrossRef]
- Bereau, T.; Wang, Z.-J.; Deserno, M. More than the Sum of Its Parts: Coarse-Grained Peptide-Lipid Interactions from a Simple Cross-Parametrization. J. Chem. Phys. 2014, 140, 115101. [Google Scholar] [CrossRef]
- Ciemny, M.; Kurcinski, M.; Kamel, K.; Kolinski, A.; Alam, N.; Schueler-Furman, O.; Kmiecik, S. Protein–Peptide Docking: Opportunities and Challenges. Drug Discov. Today 2018, 23, 1530–1537. [Google Scholar] [CrossRef]
- Ciemny, M.P.; Debinski, A.; Paczkowska, M.; Kolinski, A.; Kurcinski, M.; Kmiecik, S. Protein-Peptide Molecular Docking with Large-Scale Conformational Changes: The P53-MDM2 Interaction. Sci. Rep. 2016, 6, 37532. [Google Scholar] [CrossRef]
- Rentzsch, R.; Renard, B.Y. Docking Small Peptides Remains a Great Challenge: An Assessment Using AutoDock Vina. Brief. Bioinform. 2015, 16, 1045–1056. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kar, R.K.; Bhunia, A. Characterization of Antimicrobial Peptide–Membrane Interaction Using All-Atom Molecular Dynamic Simulation. In Immunity in Insects; Humana: New York, NY, USA, 2020; pp. 163–176. [Google Scholar]
- Kandasamy, S.K.; Larson, R.G. Binding and Insertion of α-Helical Anti-Microbial Peptides in POPC Bilayers Studied by Molecular Dynamics Simulations. Chem. Phys. Lipids 2004, 132, 113–132. [Google Scholar] [CrossRef]
- Bertrand, B.; Munoz-Garay, C. Unlocking the Power of Membrane Biophysics: Enhancing the Study of Antimicrobial Peptides Activity and Selectivity. Biophys. Rev. 2025, 17, 605–625. [Google Scholar] [CrossRef]
- Ulmschneider, J.P.; Ulmschneider, M.B. Molecular Dynamics Simulations Are Redefining Our View of Peptides Interacting with Biological Membranes. Acc. Chem. Res. 2018, 51, 1106–1116. [Google Scholar] [CrossRef]
- Geng, C.; Narasimhan, S.; Rodrigues, J.P.G.L.M.; Bonvin, A.M.J.J. Information-Driven, Ensemble Flexible Peptide Docking Using HADDOCK. In Modeling Peptide-Protein Interactions; Humana: New York, NY, USA, 2017; pp. 109–138. [Google Scholar]
- Kovacs, H.; Mark, A.E.; Johansson, J.; Van Gunsteren, W.F. The Effect of Environment on the Stability of an Integral Membrane Helix: Molecular Dynamics Simulations of Surfactant Protein C in Chloroform, Methanol and Water. J. Mol. Biol. 1995, 247, 808–822. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, T.; Wei, D.; Strandberg, E.; Ulrich, A.S.; Ulmschneider, J.P. How Reliable Are Molecular Dynamics Simulations of Membrane Active Antimicrobial Peptides? Biochim. Biophys. Acta (BBA) Biomembr. 2014, 1838, 2280–2288. [Google Scholar] [CrossRef]
- Esmaili, E.; Shahlaei, M. Analysis of the Flexibility and Stability of the Structure of Magainin in a Bilayer, and in Aqueous and Nonaqueous Solutions Using Molecular Dynamics Simulations. J. Mol. Model. 2015, 21, 73. [Google Scholar] [CrossRef]
- Bernèche, S.; Nina, M.; Roux, B. Molecular Dynamics Simulation of Melittin in a Dimyristoylphosphatidylcholine Bilayer Membrane. Biophys. J. 1998, 75, 1603–1618. [Google Scholar] [CrossRef]
- Avci, F.G.; Akbulut, B.S.; Ozkirimli, E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018, 8, 77. [Google Scholar] [CrossRef]
- Muller, M.P.; Jiang, T.; Sun, C.; Lihan, M.; Pant, S.; Mahinthichaichan, P.; Trifan, A.; Tajkhorshid, E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem. Rev. 2019, 119, 6086–6161. [Google Scholar] [CrossRef]
- Khandelia, H.; Ipsen, J.H.; Mouritsen, O.G. The Impact of Peptides on Lipid Membranes. Biochim. Biophys. Acta (BBA) Biomembr. 2008, 1778, 1528–1536. [Google Scholar] [CrossRef]
- Rocca, P.L.; Biggin, P.C.; Tieleman, D.P.; Sansom, M.S.P. Simulation Studies of the Interaction of Antimicrobial Peptides and Lipid Bilayers. Biochim. Biophys. Acta (BBA) Biomembr. 1999, 1462, 185–200. [Google Scholar] [CrossRef]
- Stephanie, F.; Tambunan, U.S.F.; Kuczera, K.; Siahaan, T.J. Structure of a Cyclic Peptide as an Inhibitor of Mycobacterium tuberculosis Transcription: NMR and Molecular Dynamics Simulations. Pharmaceuticals 2024, 17, 1545. [Google Scholar] [CrossRef]
- Savintseva, L.A.; Steshin, I.S.; Avdoshin, A.A.; Panteleev, S.V.; Rozhkov, A.V.; Shirokova, E.A.; Livshits, G.D.; Vasyankin, A.V.; Radchenko, E.V.; Ignatov, S.K.; et al. Conformational Dynamics and Stability of Bilayers Formed by Mycolic Acids from the Mycobacterium tuberculosis Outer Membrane. Molecules 2023, 28, 1347. [Google Scholar] [CrossRef]
- Thomas, S.; Karnik, S.; Barai, R.S.; Jayaraman, V.K.; Idicula-Thomas, S. CAMP: A Useful Resource for Research on Antimicrobial Peptides. Nucleic Acids Res. 2009, 38, D774–D780. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Wang, Z. APD3: The Antimicrobial Peptide Database as a Tool for Research and Education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef]
- Timmons, P.B.; Hewage, C.M. HAPPENN Is a Novel Tool for Hemolytic Activity Prediction for Therapeutic Peptides Which Employs Neural Networks. Sci. Rep. 2020, 10, 10869. [Google Scholar] [CrossRef]
- Porto, W.F.; Pires, A.S.; Franco, O.L. Computational Tools for Exploring Sequence Databases as a Resource for Antimicrobial Peptides. Biotechnol. Adv. 2017, 35, 337–349. [Google Scholar] [CrossRef]
- Torrent, M.; Andreu, D.; Nogués, V.M.; Boix, E. Connecting Peptide Physicochemical and Antimicrobial Properties by a Rational Prediction Model. PLoS ONE 2011, 6, e16968. [Google Scholar] [CrossRef]
- Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing Antimicrobial Peptides: Form Follows Function. Nat. Rev. Drug Discov. 2012, 11, 37–51. [Google Scholar] [CrossRef]
- Zhang, K.; Teng, D.; Mao, R.; Yang, N.; Hao, Y.; Wang, J. Thinking on the Construction of Antimicrobial Peptide Databases: Powerful Tools for the Molecular Design and Screening. Int. J. Mol. Sci. 2023, 24, 3134. [Google Scholar] [CrossRef]
- Kang, X.; Dong, F.; Shi, C.; Liu, S.; Sun, J.; Chen, J.; Li, H.; Xu, H.; Lao, X.; Zheng, H. DRAMP 2.0, an Updated Data Repository of Antimicrobial Peptides. Sci. Data 2019, 6, 148. [Google Scholar] [CrossRef]
- Wang, T.; Zou, C.; Wen, N.; Liu, X.; Meng, Z.; Feng, S.; Zheng, Z.; Meng, Q.; Wang, C. The Effect of Structural Modification of Antimicrobial Peptides on Their Antimicrobial Activity, Hemolytic Activity, and Plasma Stability. J. Pept. Sci. 2021, 27, e3306. [Google Scholar] [CrossRef]
- Hansen, I.K.Ø.; Lövdahl, T.; Simonovic, D.; Hansen, K.Ø.; Andersen, A.J.C.; Devold, H.; Richard, C.S.M.; Andersen, J.H.; Strøm, M.B.; Haug, T. Antimicrobial Activity of Small Synthetic Peptides Based on the Marine Peptide Turgencin A: Prediction of Antimicrobial Peptide Sequences in a Natural Peptide and Strategy for Optimization of Potency. Int. J. Mol. Sci. 2020, 21, 5460. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, H.; Lu, H.; Li, G.; Huang, Q. LAMP: A Database Linking Antimicrobial Peptides. PLoS ONE 2013, 8, e66557. [Google Scholar] [CrossRef]
- Taheri-Araghi, S. Synergistic Action of Antimicrobial Peptides and Antibiotics: Current Understanding and Future Directions. Front. Microbiol. 2024, 15, 1390765. [Google Scholar] [CrossRef]
- Silva, J.P.; Appelberg, R.; Gama, F.M. Antimicrobial Peptides as Novel Anti-Tuberculosis Therapeutics. Biotechnol. Adv. 2016, 34, 924–940. [Google Scholar] [CrossRef]
- Hancock, R.E.W.; Sahl, H.-G. Antimicrobial and Host-Defense Peptides as New Anti-Infective Therapeutic Strategies. Nat. Biotechnol. 2006, 24, 1551–1557. [Google Scholar] [CrossRef]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Lawrence, T.J.; Carper, D.L.; Spangler, M.K.; Carrell, A.A.; Rush, T.A.; Minter, S.J.; Weston, D.J.; Labbé, J.L. AmPEPpy 1.0: A Portable and Accurate Antimicrobial Peptide Prediction Tool. Bioinformatics 2021, 37, 2058–2060. [Google Scholar] [CrossRef]
- Seok, C.; Baek, M.; Steinegger, M.; Park, H.; Lee, G.R.; Won, J. Accurate Protein Structure Prediction: What Comes Next? BioDesign 2021, 9, 47–50. [Google Scholar] [CrossRef]
- Usmani, S.S.; Bhalla, S.; Raghava, G.P.S. Prediction of Antitubercular Peptides from Sequence Information Using Ensemble Classifier and Hybrid Features. Front. Pharmacol. 2018, 9, 954. [Google Scholar] [CrossRef]
- Ochoa, R.; Brown, J.B.; Fox, T. PyPept: A Python Library to Generate Atomistic 2D and 3D Representations of Peptides. J. Cheminform. 2023, 15, 79. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Schrödinger LLC. The PyMOL Molecular Graphics System, Version~1.8; Schrödinger LLC: New York, NY, USA, 2015. [Google Scholar]
- Lyskov, S.; Chou, F.-C.; Conchúir, S.Ó.; Der, B.S.; Drew, K.; Kuroda, D.; Xu, J.; Weitzner, B.D.; Renfrew, P.D.; Sripakdeevong, P.; et al. Serverification of Molecular Modeling Applications: The Rosetta Online Server That Includes Everyone (ROSIE). PLoS ONE 2013, 8, e63906. [Google Scholar] [CrossRef]
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al. Scalable Molecular Dynamics on CPU and GPU Architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [Google Scholar] [CrossRef]
- Anderson, J.A.; Glaser, J.; Glotzer, S.C. HOOMD-Blue: A Python Package for High-Performance Molecular Dynamics and Hard Particle Monte Carlo Simulations. Comput. Mater. Sci. 2020, 173, 109363. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in ’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Hasan, M.M.; Schaduangrat, N.; Basith, S.; Lee, G.; Shoombuatong, W.; Manavalan, B. HLPpred-Fuse: Improved and Robust Prediction of Hemolytic Peptide and Its Activity by Fusing Multiple Feature Representation. Bioinformatics 2020, 36, 3350–3356. [Google Scholar] [CrossRef]
- Rink, R.; Arkema-Meter, A.; Baudoin, I.; Post, E.; Kuipers, A.; Nelemans, S.A.; Akanbi, M.H.J.; Moll, G.N. To Protect Peptide Pharmaceuticals against Peptidases. J. Pharmacol. Toxicol. Methods 2010, 61, 210–218. [Google Scholar] [CrossRef]
- Bellavita, R.; Braccia, S.; Galdiero, S.; Falanga, A. Glycosylation and Lipidation Strategies: Approaches for Improving Antimicrobial Peptide Efficacy. Pharmaceuticals 2023, 16, 439. [Google Scholar] [CrossRef]
- Dathe, M.; Nikolenko, H.; Meyer, J.; Beyermann, M.; Bienert, M. Optimization of the Antimicrobial Activity of Magainin Peptides by Modification of Charge. FEBS Lett. 2001, 501, 146–150. [Google Scholar] [CrossRef]
- Moriuchi, T.; Hirao, T. Highly Ordered Structures of Peptides by Using Molecular Scaffolds. Chem. Soc. Rev. 2004, 33, 294. [Google Scholar] [CrossRef]
- Kaiser, E.T.; Kézdy, F.J. Secondary Structures of Proteins and Peptides in Amphiphilic Environments. (A Review). Proc. Natl. Acad. Sci. USA 1983, 80, 1137–1143. [Google Scholar] [CrossRef]
- Luong, H.X.; Kim, D.-H.; Lee, B.-J.; Kim, Y.-W. Effects of Lysine-to-Arginine Substitution on Antimicrobial Activity of Cationic Stapled Heptapeptides. Arch. Pharm. Res. 2018, 41, 1092–1097. [Google Scholar] [CrossRef]
- Arias, M.; Piga, K.B.; Hyndman, M.E.; Vogel, H.J. Improving the Activity of Trp-Rich Antimicrobial Peptides by Arg/Lys Substitutions and Changing the Length of Cationic Residues. Biomolecules 2018, 8, 19. [Google Scholar] [CrossRef]
- Hollmann, A.; Martínez, M.; Noguera, M.E.; Augusto, M.T.; Disalvo, A.; Santos, N.C.; Semorile, L.; Maffía, P.C. Role of Amphipathicity and Hydrophobicity in the Balance between Hemolysis and Peptide–Membrane Interactions of Three Related Antimicrobial Peptides. Colloids Surf. B Biointerfaces 2016, 141, 528–536. [Google Scholar] [CrossRef]
- Khara, J.S.; Lim, F.K.; Wang, Y.; Ke, X.-Y.; Voo, Z.X.; Yang, Y.Y.; Lakshminarayanan, R.; Ee, P.L.R. Designing α-Helical Peptides with Enhanced Synergism and Selectivity against Mycobacterium smegmatis: Discerning the Role of Hydrophobicity and Helicity. Acta Biomater. 2015, 28, 99–108. [Google Scholar] [CrossRef]
- Bosomworth, N.J.; Fcfp, C. Commentary Mitigating Epidemic Vitamin D Deficiency the Agony of Evidence Prevalence of Vitamin D Deficiency. Can. Fam. Physician 2011, 57, 16–20. [Google Scholar]
- Zeng, J.; Wu, G.; Yang, W.; Gu, X.; Liang, W.; Yao, Y.; Song, Y. A Serum Vitamin D Level < 25 nmol/L Pose High Tuberculosis Risk: A Meta-Analysis. PLoS ONE 2015, 10, e0126014. [Google Scholar] [CrossRef]
- Martineau, A.R.; Timms, P.M.; Bothamley, G.H.; Hanifa, Y.; Islam, K.; Claxton, A.P.; Packe, G.E.; Moore-Gillon, J.C.; Darmalingam, M.; Davidson, R.N.; et al. High-Dose Vitamin D3 during Intensive-Phase Antimicrobial Treatment of Pulmonary Tuberculosis: A Double-Blind Randomised Controlled Trial. Lancet 2011, 377, 242–250. [Google Scholar] [CrossRef]
- Salahuddin, N.; Ali, F.; Hasan, Z.; Rao, N.; Aqeel, M.; Mahmood, F. Vitamin D Accelerates Clinical Recovery from Tuberculosis: Results of the SUCCINCT Study [Supplementary Cholecalciferol in Recovery from Tuberculosis]. A Randomized, Placebo-Controlled, Clinical Trial of Vitamin D Supplementation in Patients with Pulmonary Tuberculosis’. BMC Infect. Dis. 2013, 13, 22. [Google Scholar] [CrossRef]
- Eletreby, R.; Elsharkawy, A.; Mohamed, R.; Hamed, M.; Kamal Ibrahim, E.; Fouad, R. Prevalence of Vitamin D Deficiency and the Effect of Vitamin D3 Supplementation on Response to Anti-Tuberculosis Therapy in Patients with Extrapulmonary Tuberculosis. BMC Infect. Dis. 2024, 24, 681. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D Metabolism, Mechanism of Action, and Clinical Applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef]
- DeLuca, H.F. Overview of General Physiologic Features and Functions of Vitamin D 1-4 Hector F DeLuca. Am. J. Clin. Nutr. 2004, 80, 1689S–1696S. [Google Scholar] [CrossRef]
- Pinette, K.V.; Yee, Y.K.; Amegadzie, B.Y.; Nagpal, S. Vitamin D Receptor as a Drug Discovery Target. Mini Rev. Med. Chem. 2003, 3, 193–204. [Google Scholar] [CrossRef]
- Kim, S.; Shevde, N.K.; Pike, J.W. 1,25-Dihydroxyvitamin D3 Stimulates Cyclic Vitamin D Receptor/Retinoid X Receptor DNA-Binding, Co-Activator Recruitment, and Histone Acetylation in Intact Osteoblasts. J. Bone Miner. Res. 2005, 20, 305–317. [Google Scholar] [CrossRef]
- Chung, C.; Silwal, P.; Kim, I.; Modlin, R.L.; Jo, E.K. Vitamin D-Cathelicidin Axis: At the Crossroads between Protective Immunity and Pathological Inflammation during Infection. Immune Netw. 2020, 20, e12. [Google Scholar] [CrossRef]
- Campbell, G.R.; Spector, S.A. Toll-Like Receptor 8 Ligands Activate a Vitamin D Mediated Autophagic Response That Inhibits Human Immunodeficiency Virus Type 1. PLoS Pathog. 2012, 8, e1003017. [Google Scholar] [CrossRef]
- Skaper, S.D.; Debetto, P.; Giusti, P. The P2X 7 Purinergic Receptor: From Physiology to Neurological Disorders. FASEB J. 2010, 24, 337–345. [Google Scholar] [CrossRef]
- Tang, X.; Basavarajappa, D.; Haeggström, J.Z.; Wan, M. P2X7 Receptor Regulates Internalization of Antimicrobial Peptide LL-37 by Human Macrophages That Promotes Intracellular Pathogen Clearance. J. Immunol. 2015, 195, 1191–1201. [Google Scholar] [CrossRef]
- Bankell, E.; Liu, X.; Lundqvist, M.; Svensson, D.; Swärd, K.; Sparr, E.; Nilsson, B.-O. The Antimicrobial Peptide LL-37 Triggers Release of Apoptosis-Inducing Factor and Shows Direct Effects on Mitochondria. Biochem. Biophys. Rep. 2022, 29, 101192. [Google Scholar] [CrossRef]
- Arifin, J.; Massi, M.N.; Biakto, K.T.; Bukhari, A.; Noor, Z.; Johan, M.P. Randomized Controlled Trial of Vitamin d Supplementation on Toll-like Receptor-2 (Tlr-2) and Toll-like Receptor-4 (Tlr-4) in Tuberculosis Spondylitis Patients. J. Orthop. Surg. Res. 2023, 18, 983. [Google Scholar] [CrossRef]
- Imran Hussain, M.; Ibtisam, R.; Fatima, T.; Khalid, H.; Aziz, A.; Sitara, A.; Shahzad, A.; Jabeen, A. The Role of Vitamin D Supplementation in Augmenting IFN-γ Production in Response to Mycobacterium tuberculosis Infection: A Randomized Controlled Trial. Pak. J. Pharm. Sci. 2023, 36, 1901–1908. [Google Scholar] [CrossRef]
- Norman, A.W.; Bouillon, R. Vitamin D Nutritional Policy Needs a Vision for the Future. Exp. Biol. Med. 2010, 235, 1034–1045. [Google Scholar]
- Junaid, K.; Rehman, A. Impact of Vitamin D on Infectious Disease-Tuberculosis—A Review. Clin. Nutr. Exp. 2019, 25, 1–10. [Google Scholar]
- Reddy, D.V.S.; Sofi, H.S.; Roy, T.; Verma, S.; Washimkar, K.R.; Raman, S.K.; Singh, S.; Azmi, L.; Ray, L.; Singh, J.; et al. Macrophage-Targeted versus Free Calcitriol as Host-Directed Adjunct Therapy against Mycobacterium tuberculosis Infection in Mice Is Bacteriostatic and Mitigates Tissue Pathology. Tuberculosis 2024, 148, 102536. [Google Scholar] [CrossRef]
- Dlozi, P.N.; Ahmed, R.; Khoza, S.; Dube, A. Vitamin D3 Loaded Polycaprolactone Nanoparticles Enhance the Expression of the Antimicrobial Peptide Cathelicidin in Macrophages. Artif. Cells Nanomed. Biotechnol. 2025, 53, 207–219. [Google Scholar] [CrossRef]
- Hall, D.B.; Vakkasoglu, A.S.; Hales, L.M.; Soliman, T.M. D-VITylation: Harnessing the Biology of Vitamin D to Improve the Pharmacokinetic Properties of Peptides and Small Proteins. Int. J. Pharm. 2022, 624. [Google Scholar] [CrossRef]
- Schrager, L.K.; Vekemens, J.; Drager, N.; Lewinsohn, D.M.; Olesen, O.F. The Status of Tuberculosis Vaccine Development. Lancet Infect. Dis. 2020, 20, e28–e37. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Hu, Z.-D.; Xing, L.-X.; Chen, Z.-Y.; Xu, J.-C.; Wu, Q.-Y.; Wu, J.; Zhao, G.-P.; Fan, X.-Y.; Lyu, L.-D. A Recombinant BCG with Surface-Displayed Antigen Induces Humoral and Cellular Immune Responses. Sci. Rep. 2025, 15, 17099. [Google Scholar] [CrossRef]
- Dockrell, H.M.; Smith, S.G. What Have We Learnt about BCG Vaccination in the Last 20 Years? Front. Immunol. 2017, 8, 1134. [Google Scholar] [CrossRef]
- Schmidt, A.C.; Fairlie, L.; Hellström, E.; Luabeya Kany Kany, A.; Middelkoop, K.; Naidoo, K.; Nair, G.; Gela, A.; Nemes, E.; Scriba, T.J.; et al. BCG Revaccination for the Prevention of Mycobacterium tuberculosis Infection. N. Engl. J. Med. 2025, 392, 1789–1800. [Google Scholar] [CrossRef]
- Andersen, P.; Scriba, T.J. Moving Tuberculosis Vaccines from Theory to Practice. Nat. Rev. Immunol. 2019, 19, 550–562. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, D. Recent Advance in the Development of Tuberculosis Vaccines in Clinical Trials and Virus-like Particle-Based Vaccine Candidates. Front. Immunol. 2023, 14, 1238649. [Google Scholar] [CrossRef]
- Matarazzo, L.; Bettencourt, P.J.G. MRNA Vaccines: A New Opportunity for Malaria, Tuberculosis and HIV. Front. Immunol. 2023, 14, 1172691. [Google Scholar] [CrossRef]
- Larsen, S.E.; Baldwin, S.L.; Coler, R.N. Tuberculosis Vaccines Update: Is an RNA-Based Vaccine Feasible for Tuberculosis? Int. J. Infect. Dis. 2023, 130, S47–S51. [Google Scholar] [CrossRef]
- Lai, R.; Ogunsola, A.F.; Rakib, T.; Behar, S.M. Key Advances in Vaccine Development for Tuberculosis—Success and Challenges. npj Vaccines 2023, 8, 158. [Google Scholar] [CrossRef]
- Xiao, W.; Jiang, W.; Chen, Z.; Huang, Y.; Mao, J.; Zheng, W.; Hu, Y.; Shi, J. Advance in Peptide-Based Drug Development: Delivery Platforms, Therapeutics and Vaccines. Signal Transduct. Target. Ther. 2025, 10, 74. [Google Scholar] [CrossRef]
- Akurut, E.; Gavamukulya, Y.; Mulindwa, J.; Isiagi, M.; Galiwango, R.; Bbuye, M.; Lujumba, I.; Kiberu, D.; Nabisubi, P.; Kebirungi, G.; et al. Design of a Multi-Epitope Vaccine against Drug-Resistant Mycobacterium tuberculosis and Mycobacterium bovis Using Reverse Vaccinology. Sci. Rep. 2025, 15, 27298. [Google Scholar] [CrossRef]
- Sethi, G.; Varghese, R.P.; Lakra, A.K.; Nayak, S.S.; Krishna, R.; Hwang, J.H. Immunoinformatics and Structural Aided Approach to Develop Multi-Epitope Based Subunit Vaccine against Mycobacterium tuberculosis. Sci. Rep. 2024, 14, 15923. [Google Scholar] [CrossRef]
- Ko, K.H.; Baek, S.-H.; Bae, H.S.; Kim, Y.M.; Gu, S.H.; Jung, Y.Y.; Kwak, E.H.; Choi, H.-G.; Kim, H.-J.; Shim, T.S.; et al. A Vaccine Targeting Lung Resident-Memory CD4+ T Cell Phenotype Protects against Mycobacterium tuberculosis in Mice. npj Vaccines 2025, 10, 161. [Google Scholar] [CrossRef]
- Gong, W.; Pan, C.; Cheng, P.; Wang, J.; Zhao, G.; Wu, X. Peptide-Based Vaccines for Tuberculosis. Front. Immunol. 2022, 13, 830497. [Google Scholar] [CrossRef]
- Lew, M.H.; Norazmi, M.N.; Nordin, F.; Tye, G.J. A Novel Peptide Vaccination Augments Cytotoxic CD8+ T-Cell Responses against Mycobacterium tuberculosis HspX Antigen. Immunobiology 2022, 227, 152201. [Google Scholar] [CrossRef]
- Coler, R.N.; Day, T.A.; Ellis, R.; Piazza, F.M.; Beckmann, A.M.; Vergara, J.; Rolf, T.; Lu, L.; Alter, G.; Hokey, D.; et al. The TLR-4 Agonist Adjuvant, GLA-SE, Improves Magnitude and Quality of Immune Responses Elicited by the ID93 Tuberculosis Vaccine: First-in-Human Trial. npj Vaccines 2018, 3, 34. [Google Scholar] [CrossRef]
- Yang, H.; Lei, X.; Chai, S.; Su, G.; Du, L. From Pathogenesis to Antigens: The Key to Shaping the Future of TB Vaccines. Front. Immunol. 2024, 15, 1440935. [Google Scholar] [CrossRef]
- Sadee, W.; Cheeseman, I.H.; Papp, A.; Pietrzak, M.; Seweryn, M.; Zhou, X.; Lin, S.; Williams, A.M.; Wewers, M.D.; Curry, H.M.; et al. Human Alveolar Macrophage Response to Mycobacterium tuberculosis: Immune Characteristics Underlying Large Inter-Individual Variability. Commun. Biol. 2025, 8, 950. [Google Scholar] [CrossRef]
- Warner, D.F.; Barczak, A.K.; Gutierrez, M.G.; Mizrahi, V. Mycobacterium tuberculosis Biology, Pathogenicity and Interaction with the Host. Nat. Rev. Microbiol. 2025. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vats, D.; Rani, G.; Arora, A.; Sharma, V.; Rathore, I.; Mubeen, S.A.; Singh, A. Tuberculosis and T Cells: Impact of T Cell Diversity in Tuberculosis Infection. Tuberculosis 2024, 149, 102567. [Google Scholar] [CrossRef]
- Griffiths, K.L.; Ahmed, M.; Das, S.; Gopal, R.; Horne, W.; Connell, T.D.; Moynihan, K.D.; Kolls, J.K.; Irvine, D.J.; Artyomov, M.N.; et al. Targeting Dendritic Cells to Accelerate T-Cell Activation Overcomes a Bottleneck in Tuberculosis Vaccine Efficacy. Nat. Commun. 2016, 7, 13894. [Google Scholar] [CrossRef]
- Ahmed, A.; Rakshit, S.; Adiga, V.; Dias, M.; Dwarkanath, P.; D’Souza, G.; Vyakarnam, A. A Century of BCG: Impact on Tuberculosis Control and Beyond. Immunol. Rev. 2021, 301, 98–121. [Google Scholar] [CrossRef]
- Prendergast, K.A.; Kirman, J.R. Dendritic Cell Subsets in Mycobacterial Infection: Control of Bacterial Growth and T Cell Responses. Tuberculosis 2013, 93, 115–122. [Google Scholar] [CrossRef]
- Ramos-Espinosa, O.; Mata-Espinosa, D.; Francisco-Cruz, A.; López-Torres, M.O.; Hernández-Bazán, S.; Barrios-Payán, J.; Marquina-Castillo, B.; Carretero, M.; del Río, M.; Hernández-Pando, R. Immunotherapeutic Effect of Adenovirus Encoding Antimicrobial Peptides in Experimental Pulmonary Tuberculosis. J. Leukoc. Biol. 2021, 110, 951–963. [Google Scholar] [CrossRef]
- Sharpe, S.; White, A.; Sarfas, C.; Sibley, L.; Gleeson, F.; McIntyre, A.; Basaraba, R.; Clark, S.; Hall, G.; Rayner, E.; et al. Alternative BCG Delivery Strategies Improve Protection against Mycobacterium tuberculosis in Non-Human Primates: Protection Associated with Mycobacterial Antigen-Specific CD4 Effector Memory T-Cell Populations. Tuberculosis 2016, 101, 174–190. [Google Scholar] [CrossRef]
- Ernst, J.D. Mechanisms of M. Tuberculosis Immune Evasion as Challenges to TB Vaccine Design. Cell Host Microbe 2018, 24, 34–42. [Google Scholar] [CrossRef]
- An, Y.; Ni, R.; Zhuang, L.; Yang, L.; Ye, Z.; Li, L.; Parkkila, S.; Aspatwar, A.; Gong, W. Tuberculosis Vaccines and Therapeutic Drug: Challenges and Future Directions. Mol. Biomed. 2025, 6, 4. [Google Scholar] [CrossRef]
- Khan, S.; Mansoor, S.; Rafi, Z.; Kumari, B.; Shoaib, A.; Saeed, M.; Alshehri, S.; Ghoneim, M.M.; Rahamathulla, M.; Hani, U.; et al. A Review on Nanotechnology: Properties, Applications, and Mechanistic Insights of Cellular Uptake Mechanisms. J. Mol. Liq. 2022, 348, 118008. [Google Scholar] [CrossRef]
- Macêdo, D.C.d.S.; Cavalcanti, I.D.L.; Medeiros, S.M.d.F.R.d.S.; Souza, J.B.d.; Lira Nogueira, M.C.d.B.; Cavalcanti, I.M.F. Nanotechnology and Tuberculosis: An Old Disease with New Treatment Strategies. Tuberculosis 2022, 135, 102208. [Google Scholar] [CrossRef]
- Bussi, C.; Gutierrez, M.G. Mycobacterium tuberculosis Infection of Host Cells in Space and Time. FEMS Microbiol. Rev. 2019, 43, 341–361. [Google Scholar] [CrossRef]
- Chai, Q.; Lu, Z.; Liu, C.H. Host Defense Mechanisms against Mycobacterium tuberculosis. Cell. Mol. Life Sci. 2020, 77, 1859–1878. [Google Scholar] [CrossRef]
- Chai, Q.; Wang, L.; Liu, C.H.; Ge, B. New Insights into the Evasion of Host Innate Immunity by Mycobacterium tuberculosis. Cell. Mol. Immunol. 2020, 17, 901–913. [Google Scholar] [CrossRef]
- Lateef, Z.M.; Al-Saadi, Z.H.A.; Aljarah, K.R. Host-Pathogen Interactions in Mycobacterium tuberculosis: Molecular Mechanisms and Implications for Treatment. Int. J. Med. Sci. Dent. Health 2024, 10, 73–80. [Google Scholar] [CrossRef]
- Von Both, U.; Berk, M.; Agapow, P.M.; Wright, J.D.; Git, A.; Hamilton, M.S.; Goldgof, G.; Siddiqui, N.; Bellos, E.; Wright, V.J.; et al. Mycobacterium tuberculosis Exploits a Molecular off Switch of the Immune System for Intracellular Survival. Sci. Rep. 2018, 8, 661. [Google Scholar] [CrossRef]
- Sheikh, B.A.; Bhat, B.A.; Alshehri, B.; Mir, R.A.; Mir, W.R.; Parry, Z.A.; Mir, M.A. Nano-Drug Delivery Systems: Possible End to the Rising Threats of Tuberculosis. J. Biomed. Nanotechnol. 2021, 17, 2298–2318. [Google Scholar] [CrossRef]
- Sengupta, S.; Nayak, B.; Meuli, M.; Sander, P.; Mishra, S.; Sonawane, A. Mycobacterium tuberculosis Phosphoribosyltransferase Promotes Bacterial Survival in Macrophages by Inducing Histone Hypermethylation in Autophagy-Related Genes. Front. Cell. Infect. Microbiol. 2021, 11, 676456. [Google Scholar] [CrossRef]
- Nair, A.; Greeny, A.; Nandan, A.; Sah, R.K.; Jose, A.; Dyawanapelly, S.; Junnuthula, V.; Athira, K.V.; Sadanandan, P. Advanced Drug Delivery and Therapeutic Strategies for Tuberculosis Treatment. J. Nanobiotechnol. 2023, 21, 414. [Google Scholar] [CrossRef]
- Baranyai, Z.; Soria-Carrera, H.; Alleva, M.; Millán-Placer, A.C.; Lucía, A.; Martín-Rapún, R.; Aínsa, J.A.; de la Fuente, J.M. Nanotechnology-Based Targeted Drug Delivery: An Emerging Tool to Overcome Tuberculosis. Adv. Ther. 2021, 4, 2000113. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, S.; Khuller, G.K. Lectin-Functionalized Poly (lactide-co-glycolide) Nanoparticles as Oral/Aerosolized Antitubercular Drug Carriers for Treatment of Tuberculosis. J. Antimicrob. Chemother. 2004, 54, 761–766. [Google Scholar] [CrossRef]
- Dutt, M.I.; Khuller, G.K. Chemotherapy of Mycobacterium tuberculosis Infections in Mice with a Combination of Isoniazid and Rifampicin Entrapped in Poly (DL-lactide-co-glycolide) Microparticles. J. Antimicrob. Chemother. 2001, 47, 829–835. [Google Scholar] [CrossRef]
- Jadhav, K.; Singh, R.; Ray, E.; Singh, A.K.; Verma, R.K. Taming the Devil: Antimicrobial Peptides for Safer TB Therapeutics. Curr. Protein Pept. Sci. 2022, 23, 643–656. [Google Scholar] [CrossRef]
- Hatae, A.C.; Roque-Borda, C.A.; Pavan, F.R. Strategies for Lipid-Based Nanocomposites with Potential Activity against Mycobacterium tuberculosis: Microbial Resistance Challenge and Drug Delivery Trends. OpenNano 2023, 13, 100171. [Google Scholar] [CrossRef]
- Santarelli, G.; Perini, G.; Salustri, A.; Palucci, I.; Rosato, R.; Palmieri, V.; Iacovelli, C.; Bellesi, S.; Sali, M.; Sanguinetti, M.; et al. Unraveling the Potential of Graphene Quantum Dots against Mycobacterium tuberculosis Infection. Front. Microbiol. 2024, 15, 1395815. [Google Scholar] [CrossRef]
- Mansour, H.M.; Muralidharan, P.; Hayes, D. Inhaled Nanoparticulate Systems: Composition, Manufacture and Aerosol Delivery. J. Aerosol Med. Pulm. Drug Deliv. 2024, 37, 202–218. [Google Scholar] [CrossRef]
- Primo, L.M.D.G.; Roque-Borda, C.A.; Carnero Canales, C.S.; Caruso, I.P.; de Lourenço, I.O.; Colturato, V.M.M.; Sábio, R.M.; de Melo, F.A.; Vicente, E.F.; Chorilli, M.; et al. Antimicrobial Peptides Grafted onto the Surface of N-Acetylcysteine-Chitosan Nanoparticles Can Revitalize Drugs against Clinical Isolates of Mycobacterium tuberculosis. Carbohydr. Polym. 2024, 323, 121449. [Google Scholar] [CrossRef]
- Fadaka, A.O.; Sibuyi, N.R.S.; Madiehe, A.M.; Meyer, M. Nanotechnology-Based Delivery Systems for Antimicrobial Peptides. Pharmaceutics 2021, 13, 1795. [Google Scholar] [CrossRef]
- de Oliveira, K.B.S.; Leite, M.L.; Melo, N.T.M.; Lima, L.F.; Barbosa, T.C.Q.; Carmo, N.L.; Melo, D.A.B.; Paes, H.C.; Franco, O.L. Antimicrobial Peptide Delivery Systems as Promising Tools Against Resistant Bacterial Infections. Antibiotics 2024, 13, 1042. [Google Scholar] [CrossRef]
- Lombardi, L.; Li, J.; Williams, D.R. Peptide-Based Biomaterials for Combatting Infections and Improving Drug Delivery. Pharmaceutics 2024, 16, 1468. [Google Scholar] [CrossRef]
- Di Natale, C.; De Benedictis, I.; De Benedictis, A.; Marasco, D. Metal–Peptide Complexes as Promising Antibiotics to Fight Emerging Drug Resistance: New Perspectives in Tuberculosis. Antibiotics 2020, 9, 337. [Google Scholar] [CrossRef]
- Li, G.; Deng, H.; Xu, W.; Chen, W.; Lai, Z.; Zhu, Y.; Zhang, L.; Shao, C.; Shan, A. Combating Antibiotic-Resistant Bacterial Infection Using Coassembled Dimeric Antimicrobial Peptide-Based Nanofibers. ACS Nano 2025, 19, 3155–3171. [Google Scholar] [CrossRef]
- Khan, N.; Minhas, G.; Kala Jyothi, K.; Sharma, J. Cellular Stress Responses and Immunological Regulations during Mycobacterium tuberculosis Infection. In Mycobacterium tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions; Springer: Singapore, 2019; pp. 203–220. [Google Scholar] [CrossRef]
- Verma, H.; Chauhan, A.; Kumar, A.; Kumar, M.; Kanchan, K. Synchronization of Mycobacterium Life Cycle: A Possible Novel Mechanism of Antimycobacterial Drug Resistance Evolution and Its Manipulation. Life Sci. 2024, 346, 122632. [Google Scholar] [CrossRef]
- Bekale, R.B.; Maphasa, R.E.; D’Souza, S.; Hsu, N.J.; Walters, A.; Okugbeni, N.; Kinnear, C.; Jacobs, M.; Sampson, S.L.; Meyer, M.; et al. Immunomodulatory Nanoparticles Induce Autophagy in Macrophages and Reduce Mycobacterium tuberculosis Burden in the Lungs of Mice. ACS Infect. Dis. 2025, 11, 610–625. [Google Scholar] [CrossRef]
- Campos, J.V.; de Pontes, J.T.C.; Canales, C.S.C.; Roque-Borda, C.A.; Pavan, F.R. Advancing Nanotechnology: Targeting Biofilm-Forming Bacteria with Antimicrobial Peptides. BME Front. 2025, 6, 0104. [Google Scholar] [CrossRef]
- Fang, R.; Jin, Y.; Kong, W.; Wang, H.; Wang, S.; Li, X.; Xing, J.; Zhang, Y.; Yang, X.; Song, N. Nano-Strategies Used for Combatting the Scourge of Tuberculosis Infections. Discover Immunity 2024, 1, 6. [Google Scholar] [CrossRef]
- Laudouze, J.; Canaan, S.; Gouzy, A.; Santucci, P. Unraveling Mycobacterium tuberculosis Acid Resistance and PH Homeostasis Mechanisms. FEBS Lett. 2025, 599, 1634–1648. [Google Scholar] [CrossRef]
- Dechow, S.J.; Abramovitch, R.B. Targeting Mycobacterium tuberculosis PH-Driven Adaptation. Microbiology 2024, 170, 001458. [Google Scholar] [CrossRef]
- Gouzy, A.; Healy, C.; Black, K.A.; Rhee, K.Y.; Ehrt, S. Growth of Mycobacterium tuberculosis at Acidic PH Depends on Lipid Assimilation and Is Accompanied by Reduced GAPDH Activity. Proc. Natl. Acad. Sci. USA 2021, 118, e2024571118. [Google Scholar] [CrossRef]
- Healy, C.; Ehrt, S.; Gouzy, A. An Exacerbated Phosphate Starvation Response Triggers Mycobacterium tuberculosis Glycerol Utilization at Acidic PH. mBio 2025, 16, e02825-24. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, B.; Sun, R.; Liu, W.; Zhu, Q.; Zhang, X.; Wang, R.; Chen, C. PLGA-Based Biodegradable Microspheres in Drug Delivery: Recent Advances in Research and Application. Drug Deliv. 2021, 28, 1397–1418. [Google Scholar] [CrossRef]
- Gaspar, D.P.; Gaspar, M.M.; Eleutério, C.V.; Grenha, A.; Blanco, M.; Gonçalves, L.M.D.; Taboada, P.; Almeida, A.J.; Remunán-López, C. Microencapsulated Solid Lipid Nanoparticles as a Hybrid Platform for Pulmonary Antibiotic Delivery. Mol. Pharm. 2017, 14, 2977–2990. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, H.; Chen, H.; Xiu, P.; Zeng, J.; Song, Y.; Li, T. Recent Advances in Nanotechnology-Based Strategies for Bone Tuberculosis Management. Pharmaceuticals 2024, 17, 170. [Google Scholar] [CrossRef]
Design Strategy | Description | Impact on Peptide Properties | References |
---|---|---|---|
Sequence modification/alteration | Modifying amino acid sequences to optimize properties such as hydrophobicity, charge, and peptide length | Improves membrane affinity, stability, and antimicrobial activity, and reduces toxicity | [146] |
Conformational Restrictions | Introducing structural modifications (e.g., cyclization, introduction of D/L-amino acids) | Enhances stability against proteolytic degradation, prolongs peptide lifespan | [98] |
Lipidation | Attaching lipid groups to peptides to enhance membrane interaction | Increases membrane penetration and stability, improves antimicrobial action | [147] |
Electrostatic Optimization | Modifying the charge distribution on peptides to enhance electrostatic attraction to microbial membranes | Enhances binding affinity to bacterial membranes, reduces host cell toxicity | [148] |
Structural Folding | Optimizing secondary structure (e.g., alpha-helices, beta-sheets) for better functionality | Promotes proper folding, improves specificity, and reduces non-specific interactions | [149,150] |
Cationic Residue Enhancement | Increasing the presence of cationic residues (e.g., lysine, arginine) to improve membrane penetration | Increases interaction with bacterial membranes, improving antimicrobial activity | [151,152] |
Hydrophobicity Tuning | Modifying the hydrophobic and hydrophilic balance in peptides for better membrane interaction. | Enhances cell membrane disruption and reduces toxicity to mammalian cells. | [98,153,154] |
Platform/Formulation | Drugs or Molecules | Main Findings | Ref. |
---|---|---|---|
PLG/PLGA nanoparticles functionalized with lectins (WGA-coated PLG-NPs) | Rifampicin, Isoniazid, Pyrazinamide | More biodisponibilidad relativa; permanencia plasmática prolongada (RIF: 6–7 días; INH/PZA: 13–14 días); encapsulación 54–66%; unión de WGA ≈ 3–3.5 mg/mg NP. | [214] |
Sustained-release PLG microparticles | Isoniazid + Rifampicin | Sustained release (INH: 7 weeks; RIF: 6 weeks); enhanced bacterial clearance in lungs and liver with single dose vs. daily free drug administration. | [215] |
Inhalable formulations (liposomes, micro- and nanoparticles) | Several | Viable platforms for respiratory delivery; alveolar targeting; less systemic toxicity; suitable as dry powder or nebulizable formulations. | [216] |
Liposomes and lipid-based particles | Rifampicin, Isoniazid | More intracellular efficacy against mycobacteria; tested with multiple antibiotics. | [217] |
Oral nanoparticle formulations | NR | More stability and oral delivery; less dosing frequency in murine models. | [218] |
Lipo-conjugates in polymeric NPs | Lipopeptide conjugates | Isoniazid In vitro intracellular activity; in vivo efficacy (guinea pig model); lipid conjugation + encapsulation enhance drug delivery. | [219] |
Poly(ε-caprolactone) (PCL) nanoparticles | AMPs and Rifampicin | More AMP stability; synergistic activity with rifampicin in vitro. | [213] |
Nanocarrier Type | Examples | Key Features/Advantages | Refs. |
---|---|---|---|
Lipid-Based Nanocomposites | Liposomes, SLNs, lipid nanocapsules | High biocompatibility; pulmonary delivery potential; efficient encapsulation of hydrophilic and lipophilic peptides; stability under aerosolization. | [217,219] |
Polymeric Nanoparticles | PLGA, peptide-PEG conjugates | Sustained release; tunable degradation; surface functionalization for macrophage uptake; pH-responsive release in phagolysosomes. | [213,222,223] |
Inorganic and Metal-Based Carriers | Gold NPs, silica carriers, metal–peptide complexes (Ag, Cu) | Enable surface tethering; modify peptide activity/solubility; antimicrobial synergy with silver and copper conjugates. | [221,224] |
Carbon-Based Nanomaterials | Graphene quantum dots (GQDs), functionalized CNTs | Enhance intracellular antibiotic efficacy; unique penetration and trafficking properties in infected macrophages. | [218] |
Self-Assembled Peptide Nanostructures | Peptide nanofibers, hydrogels | Intrinsic antimicrobial activity; controlled presentation of active sequences; biodegradable; low immunogenicity. | [223,225] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roque-Borda, C.A.; Vishwakarma, S.K.; Ramirez Delgado, O.J.; de Souza Rodrigues, H.L.; Primo, L.M.D.; Campos, I.C.; de Lima, T.S.; Perdigão, J.; Pavan, F.R. Peptide-Based Strategies Against Mycobacterium tuberculosis Covering Immunomodulation, Vaccines, Synergistic Therapy, and Nanodelivery. Pharmaceuticals 2025, 18, 1440. https://doi.org/10.3390/ph18101440
Roque-Borda CA, Vishwakarma SK, Ramirez Delgado OJ, de Souza Rodrigues HL, Primo LMD, Campos IC, de Lima TS, Perdigão J, Pavan FR. Peptide-Based Strategies Against Mycobacterium tuberculosis Covering Immunomodulation, Vaccines, Synergistic Therapy, and Nanodelivery. Pharmaceuticals. 2025; 18(10):1440. https://doi.org/10.3390/ph18101440
Chicago/Turabian StyleRoque-Borda, Cesar Augusto, Subham Kumar Vishwakarma, Oswaldo Julio Ramirez Delgado, Heitor Leocadio de Souza Rodrigues, Laura M. D. Primo, Isabella Cardeal Campos, Tulio Spina de Lima, João Perdigão, and Fernando Rogério Pavan. 2025. "Peptide-Based Strategies Against Mycobacterium tuberculosis Covering Immunomodulation, Vaccines, Synergistic Therapy, and Nanodelivery" Pharmaceuticals 18, no. 10: 1440. https://doi.org/10.3390/ph18101440
APA StyleRoque-Borda, C. A., Vishwakarma, S. K., Ramirez Delgado, O. J., de Souza Rodrigues, H. L., Primo, L. M. D., Campos, I. C., de Lima, T. S., Perdigão, J., & Pavan, F. R. (2025). Peptide-Based Strategies Against Mycobacterium tuberculosis Covering Immunomodulation, Vaccines, Synergistic Therapy, and Nanodelivery. Pharmaceuticals, 18(10), 1440. https://doi.org/10.3390/ph18101440