Tissue-Specific Enhancement of Insulin Function and Restoration of Glucose-Stimulated Insulin Secretion by Croton guatemalensis Lotsy and Eryngium cymosum F. Delaroche
Abstract
1. Introduction
2. Results
2.1. Changes in Weight Gain, Calorie Intake, and Body Composition
2.2. Surrogate Markers of Fasting Insulin Sensitivity
2.3. Dynamic Insulin Sensitivity Tests
2.4. Tissue-Specific Insulin Function
2.5. Pancreatic β-Cell Mass and Insulin Levels
3. Discussion
4. Materials and Methods
4.1. Plant Extracts and Phytochemical Composition
4.2. Animals
4.3. Experimental Design
4.4. Serum Biochemical Analysis
4.5. Metabolic Tolerance Tests
4.6. Tissue Collection
4.7. Determination of Hepatic Lipid Content
4.8. Western Blotting
4.9. Islet Immunohistochemistry and Quantification of Fluorescence and Insulin-Positive Area
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Akt | Protein kinase B |
AMP | Adenosine 5′-monophosphate |
AMPK | (AMP)-activated protein kinase |
AUC | Area under the curve |
b.w. | Body weight |
CBS | Coomassie blue staining |
Cg | Croton guatemalensis |
Ec | Eryngium cymosum |
eVAT | Epididymal white adipose tissue |
FBG | Fasting blood glucose |
FBT | Fasting blood triglycerides |
FER | Food efficiency ratio |
FI | Fasting insulin |
GLUT4 | Glucose transporter type 4 |
GSIS | Glucose-stimulated insulin secretion |
HFD | High-fat diet |
HOMA-IR | Homeostatic model assessment of insulin resistance |
IGI | Insulinogenic index |
IPITT | Intraperitoneal insulin tolerance test |
IR | Insulin resistance |
kITT | Rate of glucose disappearance constant |
LRD | Laboratory rodent diet 5001 |
Met | Metformin |
mVAT | Mesenteric white adipose tissue |
OGTT | Oral glucose tolerance test |
QUICKI | Quantitative insulin sensitivity check index |
rVAT | Retroperitoneal white adipose tissue |
STZ | Streptozotocin |
T2D | Type 2 diabetes |
TyG | Triglyceride/glucose index |
VAT | Visceral white adipose tissue |
References
- Li, M.; Chi, X.; Wang, Y.; Setrerrahmane, S.; Xie, W.; Xu, H. Trends in Insulin Resistance: Insights into Mechanisms and Therapeutic Strategy. Signal Transduct. Target. Ther. 2022, 7, 216. [Google Scholar] [CrossRef]
- Lee, S.-H.; Park, S.-Y.; Choi, C.S. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab. J. 2022, 46, 15–37. [Google Scholar] [CrossRef]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose Tissue and Insulin Resistance in Obese. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef]
- Mastrototaro, L.; Roden, M. Insulin Resistance and Insulin Sensitizing Agents. Metabolism 2021, 125, 154892. [Google Scholar] [CrossRef]
- Dimitriadis, G.D.; Maratou, E.; Kountouri, A.; Board, M.; Lambadiari, V. Regulation of Postabsorptive and Postprandial Glucose Metabolism by Insulin-Dependent and Insulin-Independent Mechanisms: An Integrative Approach. Nutrients 2021, 13, 159. [Google Scholar] [CrossRef]
- Xing, J.; Chen, C. Hyperinsulinemia: Beneficial or Harmful or Both on Glucose Homeostasis. Am. J. Physiol. Endocrinol. Metab. 2022, 323, E2–E7. [Google Scholar] [CrossRef] [PubMed]
- He, L. Metformin and Systemic Metabolism. Trends Pharmacol. Sci. 2020, 41, 868–881. [Google Scholar] [CrossRef]
- Al-Majed, A.; Bakheit, A.H.H.; Abdel Aziz, H.A.; Alharbi, H.; Al-Jenoobi, F.I. Pioglitazone. In Profiles of Drug Substances, Excipients and Related Methodology; Brittain, H.G., Ed.; Academic Press: New York, NY, USA, 2016; Volume 41, pp. 379–438. [Google Scholar]
- Salunkhe, V.A.; Veluthakal, R.; Kahn, S.E.; Thurmond, D.C. Novel Approaches to Restore Beta Cell Function in Prediabetes and Type 2 Diabetes. Diabetologia 2018, 61, 1895–1901. [Google Scholar] [CrossRef]
- Espinoza-Hernández, F.A.; Andrade-Cetto, A. Chronic Antihyperglycemic Effect Exerted by Traditional Extracts of Three Mexican Medicinal Plants. Evid.-Based Complement. Altern. Med. 2022, 2022, 5970358. [Google Scholar] [CrossRef] [PubMed]
- Peñalvo, J.L. The Impact of Taxing Sugar-Sweetened Beverages on Diabetes: A Critical Review. Diabetologia 2024, 67, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Softic, S.; Stanhope, K.L.; Boucher, J.; Divanovic, S.; Lanaspa, M.A.; Johnson, R.J.; Kahn, C.R. Fructose and Hepatic Insulin Resistance. Crit. Rev. Clin. Lab. Sci. 2020, 57, 308–322. [Google Scholar] [CrossRef]
- Hieronimus, B.; Medici, V.; Lee, V.; Nunez, M.V.; Sigala, D.M.; Bremer, A.A.; Cox, C.L.; Keim, N.L.; Schwarz, J.; Pacini, G.; et al. Effects of Consuming Beverages Sweetened with Fructose, Glucose, High-Fructose Corn Syrup, Sucrose, or Aspartame on OGTT-Derived Indices of Insulin Sensitivity in Young Adults. Nutrients 2024, 16, 151. [Google Scholar] [CrossRef]
- Espinoza-Hernández, F.; Andrade-Cetto, A.; Escandón-Rivera, S.; Mata-Torres, G.; Mata, R.; Espinoza-Hernandez, F.; Andrade-Cetto, A.; Escandon-Rivera, S.; Mata-Torres, G.; Mata, R. Contribution of Fasting and Postprandial Glucose-Lowering Mechanisms to the Acute Hypoglycemic Effect of Traditionally Used Eryngium cymosum F. Delaroche. J. Ethnopharmacol. 2021, 279, 114339. [Google Scholar] [CrossRef]
- Moreno-Vargas, A.D.; Andrade-Cetto, A.; Espinoza-Hernández, F.A.; Mata-Torres, G. Proposed Mechanisms of Action Participating in the Hypoglycemic Effect of the Traditionally Used Croton Guatemalensis Lotsy and Junceic Acid, Its Main Compound. Front. Pharmacol. 2024, 15, 1436927. [Google Scholar] [CrossRef]
- Cruz, E.C.; Andrade-Cetto, A. Ethnopharmacological Field Study of the Plants Used to Treat Type 2 Diabetes among the Cakchiquels in Guatemala. J. Ethnopharmacol. 2015, 159, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Romo-Pérez, A.; Escandón-Rivera, S.M.; Miranda, L.D.; Andrade-Cetto, A. Phytochemical Study of Eryngium cymosum F. Delaroche and the Inhibitory Capacity of Its Main Compounds on Two Glucose-Producing Pathway Enzymes. Plants 2022, 11, 992. [Google Scholar] [CrossRef] [PubMed]
- Escandón-Rivera, S.M.; Andrade-Cetto, A.; Rosas-Ramírez, D.G.; Arreguín-Espinosa, R. Phytochemical Screening and Isolation of New Ent-Clerodane Diterpenoids from Croton Guatemalensis Lotsy. Plants 2022, 11, 3159. [Google Scholar] [CrossRef] [PubMed]
- Tahapary, D.L.; Pratisthita, L.B.; Fitri, N.A.; Marcella, C.; Wafa, S.; Kurniawan, F.; Rizka, A.; Tarigan, T.J.E.; Harbuwono, D.S.; Purnamasari, D.; et al. Challenges in the Diagnosis of Insulin Resistance: Focusing on the Role of HOMA-IR and Tryglyceride/Glucose Index. Diabetes Metab. Syndr. Clin. Res. Rev. 2022, 16, 102581. [Google Scholar] [CrossRef]
- Betim Cazarin, C.B. (Ed.) Basic Protocols in Foods and Nutrition; Methods and Protocols in Food Science; Springer: New York, NY, USA, 2022; ISBN 978-1-0716-2344-2. [Google Scholar]
- Brozinick, J.T.; Roberts, B.R.; Dohm, G.L. Defective Signaling Through Akt-2 and -3 But Not Akt-1 in Insulin-Resistant Human Skeletal Muscle. Diabetes 2003, 52, 935–941. [Google Scholar] [CrossRef]
- Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell 2017, 169, 381–405. [Google Scholar] [CrossRef]
- Schultze, S.M.; Hemmings, B.A.; Niessen, M.; Tschopp, O. PI3K/AKT, MAPK and AMPK Signalling: Protein Kinases in Glucose Homeostasis. Expert Rev. Mol. Med. 2012, 14, e1. [Google Scholar] [CrossRef]
- Matheny, R.W.; Geddis, A.V.; Abdalla, M.N.; Leandry, L.A.; Ford, M.; McClung, H.L.; Pasiakos, S.M. AKT2 Is the Predominant AKT Isoform Expressed in Human Skeletal Muscle. Physiol. Rep. 2018, 6, e13652. [Google Scholar] [CrossRef]
- Zheng, X.; Cartee, G.D. Insulin-Induced Effects on the Subcellular Localization of AKT1, AKT2 and AS160 in Rat Skeletal Muscle. Sci. Rep. 2016, 6, 39230. [Google Scholar] [CrossRef]
- Reddy, A.S.; Zhang, S. Polypharmacology: Drug Discovery for the Future. Expert. Rev. Clin. Pharmacol. 2013, 6, 41–47. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Wang, C.; Shi, X.; Li, K. Rosmarinic Acid Inhibits Proliferation and Invasion of Hepatocellular Carcinoma Cells SMMC 7721 via PI3K/AKT/MTOR Signal Pathway. Biomed. Pharmacother. 2019, 120, 109443. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Casares, R.M.; Hernández-Vázquez, L.; Mandujano, A.; Sánchez-Pérez, L.; Pérez-Gutiérrez, S.; Pérez-Ramos, J. Anti-Inflammatory and Cytotoxic Activities of Clerodane-Type Diterpenes. Molecules 2023, 28, 4744. [Google Scholar] [CrossRef]
- Hannou, S.A.; Haslam, D.E.; McKeown, N.M.; Herman, M.A. Fructose Metabolism and Metabolic Disease. J. Clin. Investig. 2018, 128, 545–555. [Google Scholar] [CrossRef]
- Petersen, M.C.; Shulman, G.I. Mechanisms of Insulin Action and Insulin Resistance. Physiol. Rev. 2018, 98, 2133–2223. [Google Scholar] [CrossRef] [PubMed]
- van Stee, M.F.; de Graaf, A.A.; Groen, A.K. Actions of Metformin and Statins on Lipid and Glucose Metabolism and Possible Benefit of Combination Therapy. Cardiovasc. Diabetol. 2018, 17, 94. [Google Scholar] [CrossRef]
- Kawano, Y.; Cohen, D.E. Mechanisms of Hepatic Triglyceride Accumulation in Non-Alcoholic Fatty Liver Disease. J. Gastroenterol. 2013, 48, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Nyandwi, J.B.; Ko, Y.S.; Jin, H.; Yun, S.P.; Park, S.W.; Kim, H.J. Rosmarinic Acid Exhibits a Lipid-Lowering Effect by Modulating the Expression of Reverse Cholesterol Transporters and Lipid Metabolism in High-Fat Diet-Fed Mice. Biomolecules 2021, 11, 1470. [Google Scholar] [CrossRef]
- Beg, M.; Shankar, K.; Varshney, S.; Rajan, S.; Singh, S.P.; Jagdale, P.; Puri, A.; Chaudhari, B.P.; Sashidhara, K.V.; Gaikwad, A.N. A Clerodane Diterpene Inhibit Adipogenesis by Cell Cycle Arrest and Ameliorate Obesity in C57BL/6 Mice. Mol. Cell Endocrinol. 2015, 399, 373–385. [Google Scholar] [CrossRef]
- Arámbul-Carrillo, C.E.; Ramos-Márquez, M.E.; Carrillo-Pérez, M.D.C. Association between Polymorphism in the AKT1 Gene and Type 2 Diabetes Mellitus in a Mexican Population. Rev. Mex. Endocrinol. Metab. Nutr. 2015, 2, 167–170. [Google Scholar]
- Liu, H.Y.; Hong, T.; Wen, G.B.; Han, J.; Zuo, D.; Liu, Z.; Cao, W. Increased Basal Level of Akt-Dependent Insulin Signaling May Be Responsible for the Development of Insulin Resistance. Am. J. Physiol. Endocrinol. Metab. 2009, 297, 898–906. [Google Scholar] [CrossRef]
- Tonks, K.T.; Ng, Y.; Miller, S.; Coster, A.C.F.; Samocha-Bonet, D.; Iseli, T.J.; Xu, A.; Patrick, E.; Yang, J.Y.H.; Junutula, J.R.; et al. Impaired Akt Phosphorylation in Insulin-Resistant Human Muscle Is Accompanied by Selective and Heterogeneous Downstream Defects. Diabetologia 2013, 56, 875–885. [Google Scholar] [CrossRef]
- Cozzone, D.; Fröjdö, S.; Disse, E.; Debard, C.; Laville, M.; Pirola, L.; Vidal, H. Isoform-Specific Defects of Insulin Stimulation of Akt/Protein Kinase B (PKB) in Skeletal Muscle Cells from Type 2 Diabetic Patients. Diabetologia 2008, 51, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Herrera, I.; Martín, M.A.; Bravo, L.; Goya, L.; Ramos, S. Cocoa Flavonoids Improve Insulin Signalling and Modulate Glucose Production via AKT and AMPK in HepG2 Cells. Mol. Nutr. Food Res. 2013, 57, 974–985. [Google Scholar] [CrossRef]
- Den Hartogh, D.J.; Vlavcheski, F.; Tsiani, E. Muscle Cell Insulin Resistance Is Attenuated by Rosmarinic Acid: Elucidating the Mechanisms Involved. Int. J. Mol. Sci. 2023, 24, 5094. [Google Scholar] [CrossRef] [PubMed]
- Son, J.; Accili, D. Reversing Pancreatic β-Cell Dedifferentiation in the Treatment of Type 2 Diabetes. Exp. Mol. Med. 2023, 55, 1652–1658. [Google Scholar] [CrossRef]
- Mu, J.; Woods, J.; Zhou, Y.P.; Roy, R.S.; Li, Z.; Zycband, E.; Feng, Y.; Zhu, L.; Li, C.; Howard, A.D.; et al. Chronic Inhibition of Dipeptidyl Peptidase-4 with a Sitagliptin Analog Preserves Pancreatic β-Cell Mass and Function in a Rodent Model of Type 2 Diabetes. Diabetes 2006, 55, 1695–1704. [Google Scholar] [CrossRef]
- Oroojan, A.A. Eugenol Improves Insulin Secretion and Content of Pancreatic Islets from Male Mouse. Int. J. Endocrinol. 2020, 2020, 7416529. [Google Scholar] [CrossRef]
- He, H.; Wei, Q.; Chang, J.; Yi, X.; Yu, X.; Luo, G.; Li, X.; Yang, W.; Long, Y. Exploring the Hypoglycemic Mechanism of Chlorogenic Acids from Pyrrosia Petiolosa (Christ) Ching on Type 2 Diabetes Mellitus Based on Network Pharmacology and Transcriptomics Strategy. J. Ethnopharmacol. 2024, 322, 117580. [Google Scholar] [CrossRef] [PubMed]
- El-Huneidi, W.; Anjum, S.; Mohammed, A.K.; Bin Eshaq, S.; Abdrabh, S.; Bustanji, Y.; Soares, N.C.; Semreen, M.H.; Alzoubi, K.H.; Abu-Gharbieh, E.; et al. Rosemarinic Acid Protects β-Cell from STZ-Induced Cell Damage via Modulating NF-κβ Pathway. Heliyon 2023, 9, e19234. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Z.; Meng, Z.; Jiang, S.; Liu, Z.; Zhu, H.; Li, X.; Zhang, J.; Li, W. Platycodin D Ameliorates Type 2 Diabetes-Induced Myocardial Injury by Activating the AMPK Signaling Pathway. J. Agric. Food Chem. 2024, 72, 10339–10354. [Google Scholar] [CrossRef] [PubMed]
- Szkudelski, T.; Szkudelska, K. The Relevance of AMP-Activated Protein Kinase in Insulin-Secreting β Cells: A Potential Target for Improving β Cell Function? J. Physiol. Biochem. 2019, 75, 423–432. [Google Scholar] [CrossRef]
- Ngo, Y.L.; Lau, C.H.; Chua, L.S. Review on Rosmarinic Acid Extraction, Fractionation and Its Anti-Diabetic Potential. Food Chem. Toxicol. 2018, 121, 687–700. [Google Scholar] [CrossRef]
- Acquaviva, R.; Malfa, G.A.; Loizzo, M.R.; Xiao, J.; Bianchi, S.; Tundis, R. Advances on Natural Abietane, Labdane and Clerodane Diterpenes as Anti-Cancer Agents: Sources and Mechanisms of Action. Molecules 2022, 27, 4791. [Google Scholar] [CrossRef]
- Andrade-Cetto, A.; Cruz, E.C.; Cabello-Hernández, C.A.; Cárdenas-Vázquez, R. Hypoglycemic Activity of Medicinal Plants Used among the Cakchiquels in Guatemala for the Treatment of Type 2 Diabetes. Evid.-Based Complement. Altern. Med. 2019, 2019, 2168603. [Google Scholar] [CrossRef]
- National Research Council (US); Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Espinoza-Hernández, F.A.; Andrade-Cetto, A. Weaning STZ-Induced Hyperglycemic Rats Fed Glucose-Fructose Syrup As a Novel Model for the Natural History of Type 2 Diabetes. Pharmacologyonline 2021, 2, 292–307. [Google Scholar]
- Knopp, J.L.; Holder-Pearson, L.; Chase, J.G. Insulin Units and Conversion Factors: A Story of Truth, Boots, and Faster Half-Truths. J. Diabetes Sci. Technol. 2019, 13, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and Abuse of HOMA Modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Dragano, N.R.V.; Milbank, E. The Assessment of Glucose Homeostasis in Rodents: Glucose, Insulin and Pyruvate Tolerance Tests. In Basic Protocols in Foods and Nutrition; Betim Cazarin, C.B., Ed.; Springer: New York, NY, USA, 2022; pp. 33–52. ISBN 978-1-0716-2345-9. [Google Scholar]
- Tura, A.; Kautzky-Willer, A.; Pacini, G. Insulinogenic Indices from Insulin and C-Peptide: Comparison of Beta-Cell Function from OGTT and IVGTT. Diabetes Res. Clin. Pract. 2006, 72, 298–301. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinoza-Hernández, F.A.; Moreno-Vargas, A.D.; Díaz-Villaseñor, A.; Mata-Torres, G.; Samario-Román, J.; Andrade-Cetto, A. Tissue-Specific Enhancement of Insulin Function and Restoration of Glucose-Stimulated Insulin Secretion by Croton guatemalensis Lotsy and Eryngium cymosum F. Delaroche. Pharmaceuticals 2025, 18, 1433. https://doi.org/10.3390/ph18101433
Espinoza-Hernández FA, Moreno-Vargas AD, Díaz-Villaseñor A, Mata-Torres G, Samario-Román J, Andrade-Cetto A. Tissue-Specific Enhancement of Insulin Function and Restoration of Glucose-Stimulated Insulin Secretion by Croton guatemalensis Lotsy and Eryngium cymosum F. Delaroche. Pharmaceuticals. 2025; 18(10):1433. https://doi.org/10.3390/ph18101433
Chicago/Turabian StyleEspinoza-Hernández, Fernanda Artemisa, Angelina Daniela Moreno-Vargas, Andrea Díaz-Villaseñor, Gerardo Mata-Torres, Jazmín Samario-Román, and Adolfo Andrade-Cetto. 2025. "Tissue-Specific Enhancement of Insulin Function and Restoration of Glucose-Stimulated Insulin Secretion by Croton guatemalensis Lotsy and Eryngium cymosum F. Delaroche" Pharmaceuticals 18, no. 10: 1433. https://doi.org/10.3390/ph18101433
APA StyleEspinoza-Hernández, F. A., Moreno-Vargas, A. D., Díaz-Villaseñor, A., Mata-Torres, G., Samario-Román, J., & Andrade-Cetto, A. (2025). Tissue-Specific Enhancement of Insulin Function and Restoration of Glucose-Stimulated Insulin Secretion by Croton guatemalensis Lotsy and Eryngium cymosum F. Delaroche. Pharmaceuticals, 18(10), 1433. https://doi.org/10.3390/ph18101433