Innovative Wound Healing Strategy Through Amorphization of Active Pharmaceutical Ingredients as an Effective Approach for Hydrogel Formulation
Abstract
1. Introduction
2. Wounds—Treatment Approaches and Therapeutic Aims
2.1. Bacterial Infections
2.2. Biofilm Formation
2.3. Debridement
2.4. Inflammation
2.5. Oxidative Stress
2.6. Hypoxia
2.7. Angiogenesis
2.8. Wound Closure
2.9. Melanin Overproduction
3. Hydrophobicity: The Domain of Drugs—Amorphization as a Way to Overcome Natural Limitations
3.1. From Application Site to Therapeutic Target
3.2. Amorphous Solid Dispersions
3.3. Preparation Techniques and Technological Advances in ASD Production
4. Hydrogels in Wound Therapy
4.1. Hydrogels as a Bioactive Matrices
4.2. Polymers
4.2.1. Polyvinylpyrrolidone
4.2.2. Polyvinyl Alcohol
4.2.3. Polyacrylic Acid
4.2.4. Collagen
4.2.5. Gelatin
4.2.6. Chitosan
4.2.7. Sodium Alginate
4.2.8. Silk Fibroin
5. 3D Printing—A Gateway to Innovation in Wound Treatment
5.1. 3D Printing for Personalization and Structural Control
5.2. Stimulus-Responsive Hydrogels and 4D Printing
5.3. Biosensing Integration in Printed Dressings
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASDs | Amorphous Solid Dispersions |
3D | 3-Dimensional |
API | Active Pharmaceutical Ingredient |
HIF-1α | Hypoxia-Inducible Factor 1 α |
ROS | Reactive Oxygen Species |
EPS | Extracellular Polymeric Substance |
M1 | Proinflammatory Macrophages |
TNF-α | Tumor Necrosis Factor α |
ILs | Interleukines |
MMPs | Matrix Metalloproteinases |
ECM | Extracellular Matrix |
VEGF | Vascular Endothelial Growth Factor |
SDF-1 | Stromal Cell-derived Factor-1 |
Ang-1 | Angiopoietin-1 |
Ang-2 | Angiopoietin-2 |
TOT | Topical Oxygen Therapy |
HBOT | Hyperbaric Oxygen Therapy |
THBS-1 | Thrombospondin-1 |
TRP-1 | Tyrosinase-Related Protein-1 |
TRP-2 | Tyrosinase-Related Protein-2 |
FDA | Food and Drug Administration |
PVP | Polyvinylpyrrolidone |
HPMC-AS | Hydroxypropyl methylcellulose–succinic acid |
PVP-VA | Polyvinylpyrrolidone–vinyl acetate |
EC | Ethyl cellulose |
HME | Hot Melt Extrusion |
SDF | Supercritical Fluid Technology |
BSE | Bovine Spongiform Encephalopathy |
PVA | Polyvinyl Alcohol |
PAA | Polyacrylic Acid |
NIR | Near-Infrared |
CAD | Computer Aided Design |
References
- Sen, C.K. Human Wound and Its Burden: Updated 2022 Compendium of Estimates. Adv. Wound Care 2023, 12, 657–670. [Google Scholar] [CrossRef]
- Heyer, K.; Herberger, K.; Protz, K.; Glaeske, G.; Augustin, M. Epidemiology of Chronic Wounds in Germany: Analysis of Statutory Health Insurance Data. Wound Repair Regen. 2016, 24, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Martinengo, L.; Olsson, M.; Bajpai, R.; Soljak, M.; Upton, Z.; Schmidtchen, A.; Car, J.; Järbrink, K. Prevalence of Chronic Wounds in the General Population: Systematic Review and Meta-Analysis of Observational Studies. Ann. Epidemiol. 2019, 29, 8–15. [Google Scholar] [CrossRef]
- Nussbaum, S.R.; Carter, M.J.; Fife, C.E.; DaVanzo, J.; Haught, R.; Nusgart, M.; Cartwright, D. An Economic Evaluation of the Impact, Cost, and Medicare Policy Implications of Chronic Nonhealing Wounds. Value Health 2018, 21, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Herrera, M.Á.; González-Durán, M.; Rodríguez-Martínez, F.J.; Tujillo-Flores, G.; Tuset-Mateu, N.; Verdú-Soriano, J.; Gea-Caballero, V.; Sanllorente-Melenchón, A.; Almeda-Ortega, J.; Cunillera-Puértolas, O.; et al. The Financial Burden of Chronic Wounds in Primary Care: A Real-World Data Analysis on Cost and Prevalence. Int. J. Nurs. Stud. Adv. 2025, 8, 100313. [Google Scholar] [CrossRef]
- Farahani, M.; Shafiee, A. Wound Healing: From Passive to Smart Dressings. Adv. Healthc. Mater. 2021, 10, 2100477. [Google Scholar] [CrossRef]
- Wu, Z.; Lu, D.; Sun, S.; Cai, M.; Lin, L.; Zhu, M. Material Design, Fabrication Strategies, and the Development of Multifunctional Hydrogel Composites Dressings for Skin Wound Management. Biomacromolecules 2025, 26, 1419–1460. [Google Scholar] [CrossRef]
- Shahzad, F. Management of Skin Graft Donor Site in Pediatric Patients with Tumescent Technique and AQUACEL® Ag Foam Dressing. J. Plast. Surg. Hand Surg. 2021, 55, 309–314. [Google Scholar] [CrossRef]
- Guiomar, A.J.; Urbano, A.M. Polyhexanide-Releasing Membranes for Antimicrobial Wound Dressings: A Critical Review. Membranes 2022, 12, 1281. [Google Scholar] [CrossRef]
- Tuwalska, A.; Grabska-Zielińska, S.; Sionkowska, A. Chitosan/Silk Fibroin Materials for Biomedical Applications—A Review. Polymers 2022, 14, 1343. [Google Scholar] [CrossRef] [PubMed]
- Butenko, S.; Nagalla, R.R.; Guerrero-Juarez, C.F.; Palomba, F.; David, L.-M.; Nguyen, R.Q.; Gay, D.; Almet, A.A.; Digman, M.A.; Nie, Q.; et al. Hydrogel Crosslinking Modulates Macrophages, Fibroblasts, and Their Communication, during Wound Healing. Nat. Commun. 2024, 15, 6820. [Google Scholar] [CrossRef] [PubMed]
- Husni, E.; Hamidi, D.; Pavvellin, D.; Hidayah, H.; Syafri, S. Metabolite Profiling, Antioxidant, and in Vitro Wound Healing Activities of Citrus Medica L. and Citrus x Microcarpa Bunge Peels and Leaves Essential Oils. Prospect. Pharm. Sci. 2024, 22, 122–130. [Google Scholar] [CrossRef]
- Wang, J.C.; Fort, C.L.; Matl, C.M.; Harvey, B.D.; Demke, J.C.; Thomas, J.R.; Sidle, D.M. Effects of Essential Oils on Scars and Wound Healing: A Systematic Review. Facial Plast. Surg. 2023, 39, 173–179. [Google Scholar] [CrossRef]
- Fernandes, A.; Rodrigues, P.M.; Pintado, M.; Tavaria, F.K. A Systematic Review of Natural Products for Skin Applications: Targeting Inflammation, Wound Healing, and Photo-Aging. Phytomedicine 2023, 115, 154824. [Google Scholar] [CrossRef]
- Yang, Y.; Aghbashlo, M.; Gupta, V.K.; Amiri, H.; Pan, J.; Tabatabaei, M.; Rajaei, A. Chitosan Nanocarriers Containing Essential Oils as a Green Strategy to Improve the Functional Properties of Chitosan: A Review. Int. J. Biol. Macromol. 2023, 236, 123954. [Google Scholar] [CrossRef]
- Gheorghita, D.; Grosu, E.; Robu, A.; Ditu, L.; Deleanu, I.; Gradisteanu Pircalabioru, G.; Raiciu, A.-D.; Bita, A.-I.; Antoniac, A.; Antoniac, V. Essential Oils as Antimicrobial Active Substances in Wound Dressings. Materials 2022, 15, 6923. [Google Scholar] [CrossRef]
- Tomas, M.; Wen, Y.; Liao, W.; Zhang, L.; Zhao, C.; McClements, D.J.; Nemli, E.; Bener, M.; Apak, R.; Capanoglu, E. Recent Progress in Promoting the Bioavailability of Polyphenols in Plant-Based Foods. Crit. Rev. Food Sci. Nutr. 2025, 65, 2343–2364. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Hu, S.C.-S.; Huang, P.-H.; Lin, T.-C.; Yen, F.-L. Electrospun Resveratrol-Loaded Polyvinylpyrrolidone/Cyclodextrin Nanofibers and Their Biomedical Applications. Pharmaceutics 2020, 12, 552. [Google Scholar] [CrossRef] [PubMed]
- Garbiec, E.; Rosiak, N.; Sip, S.; Zalewski, P.; Cielecka-Piontek, J. Curcumin Solubility and Bioactivity Enhancement Through Amorphization with Tryptophan via Supercritical Fluid Technology. Int. J. Mol. Sci. 2025, 26, 855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; He, Y.; Chu, Y.; Zhai, Y.; Qian, S.; Wang, X.; Jiang, P.; Cui, P.; Zhang, Y.; Wang, J. Amorphous Curcumin-Based Hydrogels to Reduce the Incidence of Post-Surgical Intrauterine Adhesions. Regen. Biomater. 2024, 11, rbae043. [Google Scholar] [CrossRef]
- Zhang, L.; Virgous, C.; Si, H. Synergistic Anti-Inflammatory Effects and Mechanisms of Combined Phytochemicals. J. Nutr. Biochem. 2019, 69, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Bautista, J.L.; Yu, S.; Tian, L. Flavonoids in Cannabis Sativa: Biosynthesis, Bioactivities, and Biotechnology. ACS Omega 2021, 6, 5119–5123. [Google Scholar] [CrossRef]
- Lee, D.H.; Lim, S.; Kwak, S.S.; Kim, J. Advancements in Skin-Mediated Drug Delivery: Mechanisms, Techniques, and Applications. Adv. Healthc. Mater. 2024, 13, 2302375. [Google Scholar] [CrossRef]
- Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Bhalani, D.V.; Nutan, B.; Kumar, A.; Singh Chandel, A.K. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022, 10, 2055. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Yu, C.; Zang, Z.; Wan, X.; Naeem, A.; Zhang, R.; Zhu, W. Chitosan/Xanthan Gum-Based (Hydroxypropyl Methylcellulose-Co-2-Acrylamido-2-Methylpropane Sulfonic Acid) Interpenetrating Hydrogels for Controlled Release of Amorphous Solid Dispersion of Bioactive Constituents of Pueraria Lobatae. Int. J. Biol. Macromol. 2023, 224, 380–395. [Google Scholar] [CrossRef]
- Dahma, Z.; Torrado-Salmerón, C.; Álvarez-Álvarez, C.; Guarnizo-Herrero, V.; Martínez-Alonso, B.; Torrado, G.; Torrado-Santiago, S.; de la Torre-Iglesias, P.M. Topical Meloxicam Hydroxypropyl Guar Hydrogels Based on Low-Substituted Hydroxypropyl Cellulose Solid Dispersions. Gels 2024, 10, 207. [Google Scholar] [CrossRef]
- Radeva, L.; Yordanov, Y.; Spassova, I.; Kovacheva, D.; Tibi, I.P.-E.; Zaharieva, M.M.; Kaleva, M.; Najdenski, H.; Petrov, P.D.; Tzankova, V.; et al. Incorporation of Resveratrol-Hydroxypropyl-β-Cyclodextrin Complexes into Hydrogel Formulation for Wound Treatment. Gels 2024, 10, 346. [Google Scholar] [CrossRef]
- Yoon, S.-J.; Hyun, H.; Lee, D.-W.; Yang, D. Visible Light-Cured Glycol Chitosan Hydrogel Containing a Beta-Cyclodextrin-Curcumin Inclusion Complex Improves Wound Healing In Vivo. Molecules 2017, 22, 1513. [Google Scholar] [CrossRef]
- Le, T.T.N.; Nguyen, T.K.N.; Nguyen, V.M.; Dao, T.C.M.; Nguyen, H.B.C.; Dang, C.T.; Le, T.B.C.; Nguyen, T.K.L.; Nguyen, P.T.T.; Dang, L.H.N.; et al. Development and Characterization of a Hydrogel Containing Curcumin-Loaded Nanoemulsion for Enhanced In Vitro Antibacteria and In Vivo Wound Healing. Molecules 2023, 28, 6433. [Google Scholar] [CrossRef]
- Dahma, Z.; Álvarez-Álvarez, C.; de la Torre-Iglesias, P.M. A Mini-Review on Enhancing Solubility in Topical Hydrogel Formulations Using Solid Dispersion Technology for Poorly Water-Soluble Drugs. Colloids Interfaces 2025, 9, 17. [Google Scholar] [CrossRef]
- Chatterjee, B.; Reddy, A.; Santra, M.; Khamanga, S. Amorphization of Drugs for Transdermal Delivery-a Recent Update. Pharmaceutics 2022, 14, 983. [Google Scholar] [CrossRef]
- Alkilani, A.Z.; Nasereddin, J.; Hamed, R.; Nimrawi, S.; Hussein, G.; Abo-Zour, H.; Donnelly, R.F. Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems. Pharmaceutics 2022, 14, 1152. [Google Scholar] [CrossRef]
- Dahma, Z.; Ibáñez-Escribano, A.; Fonseca-Berzal, C.; García-Rodríguez, J.J.; Álvarez-Álvarez, C.; Torrado-Salmerón, C.; Torrado-Santiago, S.; de la Torre-Iglesias, P.M. Development, Characterization, and Cellular Toxicity Evaluation of Solid Dispersion-Loaded Hydrogel Based on Indomethacin. Polymers 2024, 16, 2174. [Google Scholar] [CrossRef]
- Jana, S.; Ali, S.A.; Nayak, A.K.; Sen, K.K.; Basu, S.K. Development of Topical Gel Containing Aceclofenac-Crospovidone Solid Dispersion by “Quality by Design (QbD)” Approach. Chem. Eng. Res. Des. 2014, 92, 2095–2105. [Google Scholar] [CrossRef]
- Pironi, A.M.; Melero, A.; Eloy, J.O.; Guillot, A.J.; Pini Santos, K.; Chorilli, M. Solid Dipersions Included in Poloxamer Hydrogels Have Favorable Rheological Properties for Topical Application and Enhance the In Vivo Antiinflammatory Effect of Ursolic Acid. J. Drug Deliv. Sci. Technol. 2022, 74, 103602. [Google Scholar] [CrossRef]
- Oliveira, M.X.; Canafístula, F.V.C.; Ferreira, C.R.N.; Fernandes, L.V.O.; de Araújo, A.R.; Ribeiro, F.O.S.; Souza, J.M.T.; Lima, I.C.; Assreuy, A.M.S.; Silva, D.A.; et al. Hydrogels Dressings Based on Guar Gum and Chitosan: Inherent Action against Resistant Bacteria and Fast Wound Closure. Int. J. Biol. Macromol. 2023, 253, 127281. [Google Scholar] [CrossRef]
- Zhang, M.; Zhuang, B.; Du, G.; Han, G.; Jin, Y. Curcumin Solid Dispersion-Loaded in Situ Hydrogels for Local Treatment of Injured Vaginal Bacterial Infection and Improvement of Vaginal Wound Healing. J. Pharm. Pharmacol. 2019, 71, 1044–1054. [Google Scholar] [CrossRef]
- Hoversten, K.P.; Kiemele, L.J.; Stolp, A.M.; Takahashi, P.Y.; Verdoorn, B.P. Prevention, Diagnosis, and Management of Chronic Wounds in Older Adults. Mayo Clin. Proc. 2020, 95, 2021–2034. [Google Scholar] [CrossRef]
- Díaz-Herrera, M.Á.; Martínez-Riera, J.R.; Verdú-Soriano, J.; Capillas-Pérez, R.M.; Pont-García, C.; Tenllado-Pérez, S.; Cunillera-Puértolas, O.; Berenguer-Pérez, M.; Gea-Caballero, V. Multicentre Study of Chronic Wounds Point Prevalence in Primary Health Care in the Southern Metropolitan Area of Barcelona. J. Clin. Med. 2021, 10, 797. [Google Scholar] [CrossRef]
- Probst, S.; Saini, C.; Gschwind, G.; Stefanelli, A.; Bobbink, P.; Pugliese, M.-T.; Cekic, S.; Pastor, D.; Gethin, G. Prevalence and Incidence of Venous Leg Ulcers-A Systematic Review and Meta-Analysis. Int. Wound J. 2023, 20, 3906–3921. [Google Scholar] [CrossRef]
- McDermott, K.; Fang, M.; Boulton, A.J.M.; Selvin, E.; Hicks, C.W. Etiology, Epidemiology, and Disparities in the Burden of Diabetic Foot Ulcers. Diabetes Care 2023, 46, 209–221. [Google Scholar] [CrossRef]
- Senneville, É.; Albalawi, Z.; van Asten, S.A.; Abbas, Z.G.; Allison, G.; Aragón-Sánchez, J.; Embil, J.M.; Lavery, L.A.; Alhasan, M.; Oz, O.; et al. IWGDF/IDSA Guidelines on the Diagnosis and Treatment of Diabetes-Related Foot Infections (IWGDF/IDSA 2023). Clin. Infect. Dis. 2023, 40, e3687. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; De Angelis, B.; Pea, F.; Scalise, A.; Stefani, S.; Tasinato, R.; Zanetti, O.; Dalla Paola, L. Challenges in the Management of Chronic Wound Infections. J. Glob. Antimicrob. Resist. 2021, 26, 140–147. [Google Scholar] [CrossRef]
- Liu, Y.; Long, S.; Wang, H.; Wang, Y. Biofilm Therapy for Chronic Wounds. Int. Wound J. 2024, 21, e14667. [Google Scholar] [CrossRef]
- Goswami, A.G.; Basu, S.; Banerjee, T.; Shukla, V.K. Biofilm and Wound Healing: From Bench to Bedside. Eur. J. Med. Res. 2023, 28, 157. [Google Scholar] [CrossRef]
- Cavallo, I.; Sivori, F.; Mastrofrancesco, A.; Abril, E.; Pontone, M.; Di Domenico, E.G.; Pimpinelli, F. Bacterial Biofilm in Chronic Wounds and Possible Therapeutic Approaches. Biology 2024, 13, 109. [Google Scholar] [CrossRef]
- Thomas, D.C.; Tsu, C.L.; Nain, R.A.; Arsat, N.; Fun, S.S.; Sahid Nik Lah, N.A. The Role of Debridement in Wound Bed Preparation in Chronic Wound: A Narrative Review. Ann. Med. Surg. 2021, 71, 102876. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.-T.; Gariani, K.; Richard, J.-C.; Kressmann, B.; Jornayvaz, F.R.; Philippe, J.; Lipsky, B.A.; Uçkay, I. Moderate to Severe Soft Tissue Diabetic Foot Infections. Ann. Surg. 2022, 276, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Las Heras, K.; Garcia-Orue, I.; Rancan, F.; Igartua, M.; Santos-Vizcaino, E.; Hernandez, R.M. Modulating the Immune System towards a Functional Chronic Wound Healing: A Biomaterials and Nanomedicine Perspective. Adv. Drug Deliv. Rev. 2024, 210, 115342. [Google Scholar] [CrossRef]
- Li, M.; Hou, Q.; Zhong, L.; Zhao, Y.; Fu, X. Macrophage Related Chronic Inflammation in Non-Healing Wounds. Front. Immunol. 2021, 12, 681710. [Google Scholar] [CrossRef]
- Li, B.; Ming, H.; Qin, S.; Nice, E.C.; Dong, J.; Du, Z.; Huang, C. Redox Regulation: Mechanisms, Biology and Therapeutic Targets in Diseases. Signal. Transduct. Target. Ther. 2025, 10, 72. [Google Scholar] [CrossRef]
- Talbott, H.E.; Mascharak, S.; Griffin, M.; Wan, D.C.; Longaker, M.T. Wound Healing, Fibroblast Heterogeneity, and Fibrosis. Cell Stem Cell 2022, 29, 1161–1180. [Google Scholar] [CrossRef]
- Hunt, M.; Torres, M.; Bachar-Wikstrom, E.; Wikstrom, J.D. Cellular and Molecular Roles of Reactive Oxygen Species in Wound Healing. Commun. Biol. 2024, 7, 1534. [Google Scholar] [CrossRef]
- Strowitzki, M.J.; Ritter, A.S.; Kimmer, G.; Schneider, M. Hypoxia-Adaptive Pathways: A Pharmacological Target in Fibrotic Disease? Pharmacol. Res. 2019, 147, 104364. [Google Scholar] [CrossRef]
- DeFrates, K.G.; Franco, D.; Heber-Katz, E.; Messersmith, P.B. Unlocking Mammalian Regeneration through Hypoxia Inducible Factor One Alpha Signaling. Biomaterials 2021, 269, 120646. [Google Scholar] [CrossRef]
- Han, C.; Barakat, M.; Dipietro, L.A. Angiogenesis in Wound Repair: Too Much of a Good Thing? Cold Spring Harb. Perspect. Biol. 2022, 14, a041225. [Google Scholar] [CrossRef]
- Veith, A.P.; Henderson, K.; Spencer, A.; Sligar, A.D.; Baker, A.B. Therapeutic Strategies for Enhancing Angiogenesis in Wound Healing. Adv. Drug Deliv. Rev. 2019, 146, 97–125. [Google Scholar] [CrossRef] [PubMed]
- Gwilym, B.L.; Mazumdar, E.; Naik, G.; Tolley, T.; Harding, K.; Bosanquet, D.C. Initial Reduction in Ulcer Size As a Prognostic Indicator for Complete Wound Healing: A Systematic Review of Diabetic Foot and Venous Leg Ulcers. Adv. Wound Care 2023, 12, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Driver, V.R.; Gould, L.J.; Dotson, P.; Allen, L.L.; Carter, M.J.; Bolton, L.L. Evidence Supporting Wound Care End Points Relevant to Clinical Practice and Patients’ Lives. Part 2. Literature Survey. Wound Repair Regen. 2019, 27, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Maghfour, J.; Olayinka, J.; Hamzavi, I.H.; Mohammad, T.F. A Focused Review on the Pathophysiology of Post-inflammatory Hyperpigmentation. Pigment Cell Melanoma Res. 2022, 35, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Markiewicz, E.; Karaman-Jurukovska, N.; Mammone, T.; Idowu, O.C. Post-Inflammatory Hyperpigmentation in Dark Skin: Molecular Mechanism and Skincare Implications. Clin. Cosmet. Investig. Dermatol. 2022, 15, 2555–2565. [Google Scholar] [CrossRef] [PubMed]
- Metsemakers, W.J.; Morgenstern, M.; McNally, M.A.; Moriarty, T.F.; McFadyen, I.; Scarborough, M.; Athanasou, N.A.; Ochsner, P.E.; Kuehl, R.; Raschke, M.; et al. Fracture-Related Infection: A Consensus on Definition from an International Expert Group. Injury 2018, 49, 505–510. [Google Scholar] [CrossRef]
- Leaper, D.; Assadian, O.; Edmiston, C.E. Approach to Chronic Wound Infections. Br. J. Dermatol. 2015, 173, 351–358. [Google Scholar] [CrossRef]
- Jones, J.; Williams, H. Wound Management Should Not Be a Pain. Br. J. Community Nurs. 2017, 22, S38–S46. [Google Scholar] [CrossRef]
- Murphree, R.W. Impairments in Skin Integrity. Nurs. Clin. N. Am. 2017, 52, 405–417. [Google Scholar] [CrossRef]
- Stevens, D.L.; Bryant, A.E.; Goldstein, E.J. Necrotizing Soft Tissue Infections. Infect. Dis. Clin. N. Am. 2021, 35, 135–155. [Google Scholar] [CrossRef]
- Tian, S.; Tan, S.; Fan, M.; Gong, W.; Yang, T.; Jiao, F.; Qiao, H. Hypoxic Environment of Wounds and Photosynthesis-Based Oxygen Therapy. Burns Trauma 2024, 12, tkae012. [Google Scholar] [CrossRef]
- Eriksson, E.; Liu, P.Y.; Schultz, G.S.; Martins-Green, M.M.; Tanaka, R.; Weir, D.; Gould, L.J.; Armstrong, D.G.; Gibbons, G.W.; Wolcott, R.; et al. Chronic Wounds: Treatment Consensus. Wound Repair Regen. 2022, 30, 156–171. [Google Scholar] [CrossRef]
- Darwitz, B.P.; Genito, C.J.; Thurlow, L.R. Triple Threat: How Diabetes Results in Worsened Bacterial Infections. Infect. Immun. 2024, 92, e0050923. [Google Scholar] [CrossRef] [PubMed]
- Bermejo-Martin, J.F.; Martín-Fernandez, M.; López-Mestanza, C.; Duque, P.; Almansa, R. Shared Features of Endothelial Dysfunction between Sepsis and Its Preceding Risk Factors (Aging and Chronic Disease). J. Clin. Med. 2018, 7, 400. [Google Scholar] [CrossRef] [PubMed]
- Bowers, S.; Franco, E. Chronic Wounds: Evaluation and Management. Am. Fam. Physician 2020, 101, 159–166. [Google Scholar] [PubMed]
- Ding, X.; Tang, Q.; Xu, Z.; Xu, Y.; Zhang, H.; Zheng, D.; Wang, S.; Tan, Q.; Maitz, J.; Maitz, P.K.; et al. Challenges and Innovations in Treating Chronic and Acute Wound Infections: From Basic Science to Clinical Practice. Burns Trauma 2022, 10, tkac014. [Google Scholar] [CrossRef] [PubMed]
- Di Domenico, E.; Farulla, I.; Prignano, G.; Gallo, M.; Vespaziani, M.; Cavallo, I.; Sperduti, I.; Pontone, M.; Bordignon, V.; Cilli, L.; et al. Biofilm Is a Major Virulence Determinant in Bacterial Colonization of Chronic Skin Ulcers Independently from the Multidrug Resistant Phenotype. Int. J. Mol. Sci. 2017, 18, 1077. [Google Scholar] [CrossRef]
- Johnson, T.R.; Gómez, B.I.; McIntyre, M.K.; Dubick, M.A.; Christy, R.J.; Nicholson, S.E.; Burmeister, D.M. The Cutaneous Microbiome and Wounds: New Molecular Targets to Promote Wound Healing. Int. J. Mol. Sci. 2018, 19, 2699. [Google Scholar] [CrossRef]
- Elwakil, W.H.; Rizk, S.S.; El-Halawany, A.M.; Rateb, M.E.; Attia, A.S. Multidrug-Resistant Acinetobacter Baumannii Infections in the United Kingdom versus Egypt: Trends and Potential Natural Products Solutions. Antibiotics 2023, 12, 77. [Google Scholar] [CrossRef]
- Nagoba, B.; Davane, M.; Gandhi, R.; Wadher, B.; Suryawanshi, N.; Selkar, S. Treatment of Skin and Soft Tissue Infections Caused by Pseudomonas Aeruginosa—A Review of Our Experiences with Citric Acid over the Past 20 Years. Wound Med. 2017, 19, 5–9. [Google Scholar] [CrossRef]
- Jeffrey, M.; Denny, K.J.; Lipman, J.; Conway Morris, A. Differentiating Infection, Colonisation, and Sterile Inflammation in Critical Illness: The Emerging Role of Host-Response Profiling. Intensive Care Med. 2023, 49, 760–771. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, L.; Dai, Q.; Hu, X.; Shen, Y.; Shen, Y. Multifunctional Antibacterial Hydrogels for Chronic Wound Management. Biomater. Sci. 2024, 12, 2460–2479. [Google Scholar] [CrossRef]
- Koo, H.; Allan, R.N.; Howlin, R.P.; Stoodley, P.; Hall-Stoodley, L. Targeting Microbial Biofilms: Current and Prospective Therapeutic Strategies. Nat. Rev. Microbiol. 2017, 15, 740–755. [Google Scholar] [CrossRef]
- Mukherjee, S.; Bassler, B.L. Bacterial Quorum Sensing in Complex and Dynamically Changing Environments. Nat. Rev. Microbiol. 2019, 17, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.W.; He, Y.; Ren, Y.; Zerdoum, A.; Libera, M.R.; Sharma, P.K.; van Winkelhoff, A.-J.; Neut, D.; Stoodley, P.; van der Mei, H.C.; et al. Viscoelasticity of Biofilms and Their Recalcitrance to Mechanical and Chemical Challenges. FEMS Microbiol. Rev. 2015, 39, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020, 28, 668–681. [Google Scholar] [CrossRef]
- Vashistha, A.; Sharma, N.; Nanaji, Y.; Kumar, D.; Singh, G.; Barnwal, R.P.; Yadav, A.K. Quorum Sensing Inhibitors as Therapeutics: Bacterial Biofilm Inhibition. Bioorg. Chem. 2023, 136, 106551. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, H.; Zhang, W.; Hu, J.; Zeng, Y.; Hu, H.; Shi, L.; Xia, J.; Xu, F. Inflammatory Microenvironment-Responsive Hydrogels Enclosed with Quorum Sensing Inhibitor for Treating Post-Traumatic Osteomyelitis. Adv. Sci. 2024, 11, 2307969. [Google Scholar] [CrossRef]
- Atkin, L. Introducing a New Approach to Debridement and Wound Bed Preparation. J. Wound Care 2022, 31, S5–S11. [Google Scholar] [CrossRef] [PubMed]
- Anghel, E.L.; DeFazio, M.V.; Barker, J.C.; Janis, J.E.; Attinger, C.E. Current Concepts in Debridement: Science and Strategies. Plast. Reconstr. Surg. 2016, 138, 82S–93S. [Google Scholar] [CrossRef]
- Gazi, U.; Taylan-Ozkan, A.; Mumcuoglu, K.Y. The Effect of Lucilia Sericata Larval Excretion/Secretion (ES) Products on Cellular Responses in Wound Healing. Med. Vet. Entomol. 2021, 35, 257–266. [Google Scholar] [CrossRef]
- Jeong, S.; Schultz, G.S.; Gibson, D.J. Testing the Influence of Surfactant-Based Wound Dressings on Proteinase Activity. Int. Wound J. 2017, 14, 786–790. [Google Scholar] [CrossRef]
- Scalise, A.; Campitiello, F.; Della Corte, A.; Longobardi, P.; Di Salvo, M.; Tartaglione, C.; Santin, C.; Giordan, N.; Guarnera, G. Enzymatic Debridement: Is HA-Collagenase the Right Synergy? Randomized Double-Blind Controlled Clinical Trial in Venous Leg Ulcers. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1421–1431. [Google Scholar] [PubMed]
- Wu, L.; Chung, K.C.; Waljee, J.F.; Momoh, A.O.; Zhong, L.; Sears, E.D. A National Study of the Impact of Initial Débridement Timing on Outcomes for Patients with Deep Sternal Wound Infection. Plast. Reconstr. Surg. 2016, 137, 414e–423e. [Google Scholar] [CrossRef]
- Mayer, D.O.; Tettelbach, W.H.; Ciprandi, G.; Downie, F.; Hampton, J.; Hodgson, H.; Lazaro-Martinez, J.L.; Probst, A.; Schultz, G.; Stürmer, E.K.; et al. Best Practice for Wound Debridement. J. Wound Care 2024, 33, S1–S32. [Google Scholar] [CrossRef]
- Demidova-Rice, T.N.; Hamblin, M.R.; Herman, I.M. Acute and Impaired Wound Healing: Pathophysiology and Current Methods for Drug Delivery, Part 1: Normal and Chronic Wounds: Biology, Causes, and Approaches to Care. Adv. Ski. Wound Care 2012, 25, 304–314. [Google Scholar] [CrossRef]
- Cooke, J.P. Inflammation and Its Role in Regeneration and Repair. Circ. Res. 2019, 124, 1166–1168. [Google Scholar] [CrossRef]
- Cioce, A.; Cavani, A.; Cattani, C.; Scopelliti, F. Role of the Skin Immune System in Wound Healing. Cells 2024, 13, 624. [Google Scholar] [CrossRef]
- Wang, G.; Yang, F.; Zhou, W.; Xiao, N.; Luo, M.; Tang, Z. The Initiation of Oxidative Stress and Therapeutic Strategies in Wound Healing. Biomed. Pharmacother. 2023, 157, 114004. [Google Scholar] [CrossRef]
- Ghasemzadeh, M.; Hosseini, E.; Roudsari, Z.O.; Zadkhak, P. Intraplatelet Reactive Oxygen Species (ROS) Correlate with the Shedding of Adhesive Receptors, Microvesiculation and Platelet Adhesion to Collagen during Storage: Does Endogenous ROS Generation Downregulate Platelet Adhesive Function? Thromb. Res. 2018, 163, 153–161. [Google Scholar] [CrossRef]
- Méndez, D.; Arauna, D.; Fuentes, F.; Araya-Maturana, R.; Palomo, I.; Alarcón, M.; Sebastián, D.; Zorzano, A.; Fuentes, E. Mitoquinone (MitoQ) Inhibits Platelet Activation Steps by Reducing ROS Levels. Int. J. Mol. Sci. 2020, 21, 6192. [Google Scholar] [CrossRef]
- Li, L.; Lu, M.; Peng, Y.; Huang, J.; Tang, X.; Chen, J.; Li, J.; Hong, X.; He, M.; Fu, H.; et al. Oxidatively Stressed Extracellular Microenvironment Drives Fibroblast Activation and Kidney Fibrosis. Redox Biol. 2023, 67, 102868. [Google Scholar] [CrossRef]
- Badran, A.; Nasser, S.A.; Mesmar, J.; El-Yazbi, A.F.; Bitto, A.; Fardoun, M.M.; Baydoun, E.; Eid, A.H. Reactive Oxygen Species: Modulators of Phenotypic Switch of Vascular Smooth Muscle Cells. Int. J. Mol. Sci. 2020, 21, 8764. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, X.; Zhuang, Y.; Zhai, Y.; Yang, X.; Yang, Y.; Wang, S.; Hong, F.; Chen, J. Pien Tze Huang Accelerated Wound Healing by Inhibition of Abnormal Fibroblast Apoptosis in Streptozotocin Induced Diabetic Mice. J. Ethnopharmacol. 2020, 261, 113203. [Google Scholar] [CrossRef]
- Kunkemoeller, B.; Kyriakides, T.R. Redox Signaling in Diabetic Wound Healing Regulates Extracellular Matrix Deposition. Antioxid. Redox Signal. 2017, 27, 823–838. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, E.; Solouki, A.; Roudsari, Z.O.; Kargar, F.; Ghasemzadeh, M. Reducing State Attenuates Ectodomain Shedding of GPVI While Restoring Adhesion Capacities of Stored Platelets: Evidence Addressing the Controversy around the Effects of Redox Condition on Thrombosis. J. Thromb. Thrombolysis 2020, 50, 123–134. [Google Scholar] [CrossRef]
- Dunnill, C.; Patton, T.; Brennan, J.; Barrett, J.; Dryden, M.; Cooke, J.; Leaper, D.; Georgopoulos, N.T. Reactive Oxygen Species (ROS) and Wound Healing: The Functional Role of ROS and Emerging ROS-Modulating Technologies for Augmentation of the Healing Process. Int. Wound J. 2017, 14, 89–96. [Google Scholar] [CrossRef]
- Landén, N.X.; Li, D.; Ståhle, M. Transition from Inflammation to Proliferation: A Critical Step during Wound Healing. Cell. Mol. Life Sci. 2016, 73, 3861–3885. [Google Scholar] [CrossRef]
- Zheng, D.; Liu, J.; Piao, H.; Zhu, Z.; Wei, R.; Liu, K. ROS-Triggered Endothelial Cell Death Mechanisms: Focus on Pyroptosis, Parthanatos, and Ferroptosis. Front. Immunol. 2022, 13, 1039241. [Google Scholar] [CrossRef]
- Liu, S.; Huang, B.; Cao, J.; Wang, Y.; Xiao, H.; Zhu, Y.; Zhang, H. ROS Fine-Tunes the Function and Fate of Immune Cells. Int. Immunopharmacol. 2023, 119, 110069. [Google Scholar] [CrossRef]
- Hong, W.X.; Hu, M.S.; Esquivel, M.; Liang, G.Y.; Rennert, R.C.; McArdle, A.; Paik, K.J.; Duscher, D.; Gurtner, G.C.; Lorenz, H.P.; et al. The Role of Hypoxia-Inducible Factor in Wound Healing. Adv. Wound Care 2014, 3, 390–399. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, S.; Yang, R.; Wang, Z.; Zhang, W.; Liu, H.; Huang, Y. ROS Promote Hypoxia-Induced Keratinocyte Epithelial-Mesenchymal Transition by Inducing SOX2 Expression and Subsequent Activation of Wnt/β-Catenin. Oxid. Med. Cell. Longev. 2022, 2022, 1084006. [Google Scholar] [CrossRef]
- Bai, Q.; Gao, Q.; Hu, F.; Zheng, C.; Sun, N.; Chen, W.; Liu, J.; Zhang, Y.; Wu, X.; Lu, T. Reoxygenation Modulates the Adverse Effects of Hypoxia on Wound Repair. Int. J. Mol. Sci. 2022, 23, 15832. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Xu, L.; Dong, J.; Yuan, X.; Ye, J.; Fan, Y.; Liu, B.; Xie, J.; Ji, X. Programmed Microalgae-Gel Promotes Chronic Wound Healing in Diabetes. Nat. Commun. 2024, 15, 1042. [Google Scholar] [CrossRef] [PubMed]
- Galeano, M.; Pallio, G.; Irrera, N.; Mannino, F.; Bitto, A.; Altavilla, D.; Vaccaro, M.; Squadrito, G.; Arcoraci, V.; Colonna, M.R.; et al. Polydeoxyribonucleotide: A Promising Biological Platform to Accelerate Impaired Skin Wound Healing. Pharmaceuticals 2021, 14, 1103. [Google Scholar] [CrossRef] [PubMed]
- Varetto, G.; Verzini, F.; Trucco, A.; Frola, E.; Spalla, F.; Gibello, L.; Boero, M.; Capaldi, G.; Rispoli, P. Oxygen Delivery Therapy with EPIFLO Reduces Wound Hyperperfusion in Patients with Chronic Leg Ulcers: A Laser Speckle Contrast Analysis. Ann. Vasc. Surg. 2020, 64, 246–252. [Google Scholar] [CrossRef]
- Wu, Y.; Klapper, I.; Stewart, P.S. Hypoxia Arising from Concerted Oxygen Consumption by Neutrophils and Microorganisms in Biofilms. Pathog. Dis. 2018, 76, fty043. [Google Scholar] [CrossRef]
- Kimmel, H.M.; Grant, A.; Ditata, J. The Presence of Oxygen in Wound Healing. Wounds 2016, 28, 264–270. [Google Scholar] [PubMed]
- Ullah, A.; Al Mamun, A.; Zaidi, M.B.; Roome, T.; Hasan, A. A Calcium Peroxide Incorporated Oxygen Releasing Chitosan-PVA Patch for Diabetic Wound Healing. Biomed. Pharmacother. 2023, 165, 115156. [Google Scholar] [CrossRef]
- Han, G.; Ceilley, R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017, 34, 599–610. [Google Scholar] [CrossRef]
- James, C.; Park, S.; Alabi, D.; Lantis, J. Effect of Topical Oxygen Therapy on Chronic Wounds. Surg. Technol. Int. 2021, 39, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.E.; Wilgus, T.A. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv. Wound Care 2014, 3, 647–661. [Google Scholar] [CrossRef]
- Shintani, T.; Obara, H.; Matsubara, K.; Hayashi, M.; Kita, H.; Ono, S.; Watada, S.; Kikuchi, N.; Sekimoto, Y.; Torizaki, Y.; et al. Impact of Wound Management Strategies after Revascularization for Chronic Limb-Threatening Ischemia. J. Vasc. Surg. 2024, 79, 632–641.e3. [Google Scholar] [CrossRef]
- Rousselle, P.; Montmasson, M.; Garnier, C. Extracellular Matrix Contribution to Skin Wound Re-Epithelialization. Matrix Biol. 2019, 75–76, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Krpata, D.M. Wound Closure and Management. Surg. Infect. 2019, 20, 135–138. [Google Scholar] [CrossRef]
- Shukla, S.K.; Sharma, A.K.; Gupta, V.; Yashavarddhan, M.H. Pharmacological Control of Inflammation in Wound Healing. J. Tissue Viability 2019, 28, 218–222. [Google Scholar] [CrossRef]
- Grzela, T.; Krejner, A.; Litwiniuk, M. Matrix Metalloproteinases in the Wound Microenvironment: Therapeutic Perspectives. Chronic Wound Care Manag. Res. 2016, 3, 29–39. [Google Scholar] [CrossRef]
- Tu, Z.; Chen, M.; Wang, M.; Shao, Z.; Jiang, X.; Wang, K.; Yao, Z.; Yang, S.; Zhang, X.; Gao, W.; et al. Engineering Bioactive M2 Macrophage-Polarized Anti-Inflammatory, Antioxidant, and Antibacterial Scaffolds for Rapid Angiogenesis and Diabetic Wound Repair. Adv. Funct. Mater. 2021, 31, 2100924. [Google Scholar] [CrossRef]
- Shao, Z.; Yin, T.; Jiang, J.; He, Y.; Xiang, T.; Zhou, S. Wound Microenvironment Self-Adaptive Hydrogel with Efficient Angiogenesis for Promoting Diabetic Wound Healing. Bioact. Mater. 2023, 20, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Swope, V.B.; Abdel-Malek, Z.A. MC1R: Front and Center in the Bright Side of Dark Eumelanin and DNA Repair. Int. J. Mol. Sci. 2018, 19, 2667. [Google Scholar] [CrossRef] [PubMed]
- Snyman, M.; Walsdorf, R.E.; Wix, S.N.; Gill, J.G. The Metabolism of Melanin Synthesis—From Melanocytes to Melanoma. Pigment Cell Melanoma Res. 2024, 37, 438–452. [Google Scholar] [CrossRef]
- D’Mello, S.A.N.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Signaling Pathways in Melanogenesis. Int. J. Mol. Sci. 2016, 17, 1144. [Google Scholar] [CrossRef]
- Wei, M.; He, X.; Liu, N.; Deng, H. Role of Reactive Oxygen Species in Ultraviolet-Induced Photodamage of the Skin. Cell Div. 2024, 19, 1. [Google Scholar] [CrossRef]
- Hirobe, T. Role of Dermal Factors Involved in Regulating the Melanin and Melanogenesis of Mammalian Melanocytes in Normal and Abnormal Skin. Int. J. Mol. Sci. 2024, 25, 4560. [Google Scholar] [CrossRef]
- Téot, L.; Mustoe, T.A.; Middelkoop, E.; Gauglitz, G.G. Textbook on Scar Management: State of the Art Management and Emerging Technologies; Springer: Berlin/Heidelberg, Germany, 2020; p. 123. [Google Scholar]
- Shah, M.; Heath, R.; Chadwick, S. Abnormal Pigmentation within Cutaneous Scars: A Complication of Wound Healing. Indian J. Plast. Surg. 2012, 45, 403–411. [Google Scholar] [CrossRef]
- Choudhary, V.; Choudhary, M.; Bollag, W.B. Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process. Int. J. Mol. Sci. 2024, 25, 3790. [Google Scholar] [CrossRef] [PubMed]
- Raina, N.; Rani, R.; Thakur, V.K.; Gupta, M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS Omega 2023, 8, 19145–19167. [Google Scholar] [CrossRef] [PubMed]
- Grek, C.L.; Prasad, G.M.; Viswanathan, V.; Armstrong, D.G.; Gourdie, R.G.; Ghatnekar, G.S. Topical Administration of a Connexin43-based Peptide Augments Healing of Chronic Neuropathic Diabetic Foot Ulcers: A Multicenter, Randomized Trial. Wound Repair Regen. 2015, 23, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dai, W.-G. Fundamental Aspects of Solid Dispersion Technology for Poorly Soluble Drugs. Acta Pharm. Sin. B 2014, 4, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Mukesh, S.; Mukherjee, G.; Singh, R.; Steenbuck, N.; Demidova, C.; Joshi, P.; Sangamwar, A.T.; Wade, R.C. Comparative Analysis of Drug-Salt-Polymer Interactions by Experiment and Molecular Simulation Improves Biopharmaceutical Performance. Commun. Chem. 2023, 6, 201. [Google Scholar] [CrossRef]
- Tambe, S.; Jain, D.; Meruva, S.K.; Rongala, G.; Juluri, A.; Nihalani, G.; Mamidi, H.K.; Nukala, P.K.; Bolla, P.K. Recent Advances in Amorphous Solid Dispersions: Preformulation, Formulation Strategies, Technological Advancements and Characterization. Pharmaceutics 2022, 14, 2203. [Google Scholar] [CrossRef] [PubMed]
- Kallakunta, V.R.; Sarabu, S.; Bandari, S.; Batra, A.; Bi, V.; Durig, T.; Repka, M.A. Stable Amorphous Solid Dispersions of Fenofibrate Using Hot Melt Extrusion Technology: Effect of Formulation and Process Parameters for a Low Glass Transition Temperature Drug. J. Drug Deliv. Sci. Technol. 2020, 58, 101395. [Google Scholar] [CrossRef]
- Bhujbal, S.V.; Mitra, B.; Jain, U.; Gong, Y.; Agrawal, A.; Karki, S.; Taylor, L.S.; Kumar, S.; (Tony) Zhou, Q. Pharmaceutical Amorphous Solid Dispersion: A Review of Manufacturing Strategies. Acta Pharm. Sin. B 2021, 11, 2505–2536. [Google Scholar] [CrossRef]
- Sun, D.D.; Ju, T.R.; Lee, P.I. Enhanced Kinetic Solubility Profiles of Indomethacin Amorphous Solid Dispersions in Poly(2-hydroxyethyl methacrylate) Hydrogels. Eur. J. Pharm. Biopharm. 2012, 81, 149–158. [Google Scholar] [CrossRef]
- Zahedi, P.; Lee, P.I. Solid Molecular Dispersions of Poorly Water-Soluble Drugs in Poly(2-hydroxyethyl methacrylate) Hydrogels. Eur. J. Pharm. Biopharm. 2007, 65, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Malik, B.; Bekir, E. Formulation and In Vitro /In Vivo Evaluation of Silymarin Solid Dispersion-Based Topical Gel for Wound Healing. Iraqi J. Pharm. Sci. 2023, 32, 42–53. [Google Scholar] [CrossRef]
- Ruchika; Thakur, N.; Tirpude, N.V.; Saneja, A. Development and Characterization of α-Lipoic Acid Amorphous Solid Dispersion for Improved Oral Bioavailability and Modulation of Allergic Airway Inflammation. Colloids Surf. B Biointerfaces 2025, 254, 114836. [Google Scholar] [CrossRef] [PubMed]
- Rosiak, N.; Tykarska, E.; Cielecka-Piontek, J. Enhanced Antioxidant and Neuroprotective Properties of Pterostilbene (Resveratrol Derivative) in Amorphous Solid Dispersions. Int. J. Mol. Sci. 2024, 25, 2774. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, X.; Zhao, R.; Yang, M.; Liu, W.; Dai, Q.; Bao, X.; Chen, Y.; Ma, J. The Amorphous Solid Dispersion of Chrysin in Plasdone® S630 Demonstrates Improved Oral Bioavailability and Antihyperlipidemic Performance in Rats. Pharmaceutics 2023, 15, 2378. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, S.; Hao, Y.; Fan, K.; Wang, L.; Zhao, X.; He, X. Amorphous Solid Dispersion Preparation via Coprecipitation Improves the Dissolution, Oral Bioavailability, and Intestinal Health Enhancement Properties of Magnolol. Poult. Sci. 2023, 102, 102676. [Google Scholar] [CrossRef]
- Ritters, L.; Reichl, S. Spray-Dried Paracetamol/Polyvinylpyrrolidone Amorphous Solid Dispersions: Part II—Solubility and in Vitro Drug Permeation Behavior. Int. J. Pharm. 2023, 639, 122939. [Google Scholar] [CrossRef] [PubMed]
- Uhljar, L.É.; Kan, S.Y.; Radacsi, N.; Koutsos, V.; Szabó-Révész, P.; Ambrus, R. In Vitro Drug Release, Permeability, and Structural Test of Ciprofloxacin-Loaded Nanofibers. Pharmaceutics 2021, 13, 556. [Google Scholar] [CrossRef] [PubMed]
- Althobaiti, A.A.; Ashour, E.A.; Almutairi, M.; Almotairy, A.; Al Yahya, M.; Repka, M.A. Formulation Development of Curcumin-Piperine Solid Dispersion via Hot-Melt Extrusion. J. Drug Deliv. Sci. Technol. 2022, 76, 103753. [Google Scholar] [CrossRef]
- Zhao, L.; Orlu, M.; Williams, G.R. Electrospun Fixed Dose Combination Fibers for the Treatment of Cardiovascular Disease. Int. J. Pharm. 2021, 599, 120426. [Google Scholar] [CrossRef]
- Meng, F.; Ferreira, R.; Su, Y.; Zhang, F. A Novel Amorphous Solid Dispersion Based on Drug–Polymer Complexation. Drug Deliv. Transl. Res. 2021, 11, 2072–2084. [Google Scholar] [CrossRef]
- Jennotte, O.; Koch, N.; Lechanteur, A.; Evrard, B. Development of Amorphous Solid Dispersions of Cannabidiol: Influence of the Carrier, the Hot-Melt Extrusion Parameters and the Use of a Crystallization Inhibitor. J. Drug Deliv. Sci. Technol. 2022, 71, 103372. [Google Scholar] [CrossRef]
- Corrie, L.; Ajjarapu, S.; Banda, S.; Parvathaneni, M.; Bolla, P.K.; Kommineni, N. HPMCAS-Based Amorphous Solid Dispersions in Clinic: A Review on Manufacturing Techniques (Hot Melt Extrusion and Spray Drying), Marketed Products and Patents. Materials 2023, 16, 6616. [Google Scholar] [CrossRef]
- Łyszczarz, E.; Sosna, O.; Srebro, J.; Rezka, A.; Majda, D.; Mendyk, A. Electrospun Amorphous Solid Dispersions with Lopinavir and Ritonavir for Improved Solubility and Dissolution Rate. Nanomaterials 2024, 14, 1569. [Google Scholar] [CrossRef] [PubMed]
- Potter, C.; Tian, Y.; Walker, G.; McCoy, C.; Hornsby, P.; Donnelly, C.; Jones, D.S.; Andrews, G.P. Novel Supercritical Carbon Dioxide Impregnation Technique for the Production of Amorphous Solid Drug Dispersions: A Comparison to Hot Melt Extrusion. Mol. Pharm. 2015, 12, 1377–1390. [Google Scholar] [CrossRef] [PubMed]
- De Corso, A.R.; De Carolis, A.; Cornolti, L.; Furlan, M.; Widmer, P.; Perale, G.; Castrovinci, A.; Casalini, T. Drug Loading of Bioresorbable Suture Threads by Supercritical CO2 Impregnation: A Proof of Concept for Industrial Scale-Up. J. Supercrit. Fluids 2024, 206, 106157. [Google Scholar] [CrossRef]
- Patil, H.; Tiwari, R.V.; Repka, M.A. Hot-Melt Extrusion: From Theory to Application in Pharmaceutical Formulation. AAPS PharmSciTech 2016, 17, 20–42. [Google Scholar] [CrossRef]
- Simões, M.F.; Pinto, R.M.A.; Simões, S. Hot-Melt Extrusion: A Roadmap for Product Development. AAPS PharmSciTech 2021, 22, 184. [Google Scholar] [CrossRef]
- Sarabu, S.; Bandari, S.; Kallakunta, V.R.; Tiwari, R.; Patil, H.; Repka, M.A. An Update on the Contribution of Hot-Melt Extrusion Technology to Novel Drug Delivery in the Twenty-First Century: Part II. Expert Opin. Drug Deliv. 2019, 16, 567–582. [Google Scholar] [CrossRef]
- Tan, D.K.; Maniruzzaman, M.; Nokhodchi, A. Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery. Pharmaceutics 2018, 10, 203. [Google Scholar] [CrossRef]
- AL-Japairai, K.; Hamed Almurisi, S.; Mahmood, S.; Madheswaran, T.; Chatterjee, B.; Sri, P.; Azra Binti Ahmad Mazlan, N.; Al Hagbani, T.; Alheibshy, F. Strategies to Improve the Stability of Amorphous Solid Dispersions in View of the Hot Melt Extrusion (HME) Method. Int. J. Pharm. 2023, 647, 123536. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Van den Mooter, G. Spray Drying Formulation of Amorphous Solid Dispersions. Adv. Drug Deliv. Rev. 2016, 100, 27–50. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.; Walker, G. Recent Strategies in Spray Drying for the Enhanced Bioavailability of Poorly Water-Soluble Drugs. J. Control. Release 2018, 269, 110–127. [Google Scholar] [CrossRef]
- Poozesh, S.; Bilgili, E. Scale-up of Pharmaceutical Spray Drying Using Scale-up Rules: A Review. Int. J. Pharm. 2019, 562, 271–292. [Google Scholar] [CrossRef] [PubMed]
- Strojewski, D.; Krupa, A. Spray Drying and Nano Spray Drying as Manufacturing Methods of Drug-Loaded Polymeric Particles. Polym. Med. 2022, 52, 101–111. [Google Scholar] [CrossRef]
- Ziaee, A.; Albadarin, A.B.; Padrela, L.; Femmer, T.; O’Reilly, E.; Walker, G. Spray Drying of Pharmaceuticals and Biopharmaceuticals: Critical Parameters and Experimental Process Optimization Approaches. Eur. J. Pharm. Sci. 2019, 127, 300–318. [Google Scholar] [CrossRef] [PubMed]
- Abla, K.K.; Mehanna, M.M. Freeze-Drying as a Tool for Preparing Porous Materials: From Proof of Concept to Recent Pharmaceutical Applications. AAPS PharmSciTech 2025, 26, 159. [Google Scholar] [CrossRef]
- Valkama, E.; Haluska, O.; Lehto, V.-P.; Korhonen, O.; Pajula, K. Production and Stability of Amorphous Solid Dispersions Produced by a Freeze-Drying Method from DMSO. Int. J. Pharm. 2021, 606, 120902. [Google Scholar] [CrossRef]
- Taldaev, A.; Pankov, D.I.; Terekhov, R.P.; Zhevlakova, A.K.; Selivanova, I.A. Modification of the Physicochemical Properties of Active Pharmaceutical Ingredients via Lyophilization. Pharmaceutics 2023, 15, 2607. [Google Scholar] [CrossRef]
- Praphawatvet, T.; Cui, Z.; Williams, R.O. Pharmaceutical Dry Powders of Small Molecules Prepared by Thin-Film Freezing and Their Applications—A Focus on the Physical and Aerosol Properties of the Powders. Int. J. Pharm. 2022, 629, 122357. [Google Scholar] [CrossRef]
- Al-Abduljabbar, A.; Farooq, I. Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers 2022, 15, 65. [Google Scholar] [CrossRef]
- Khan, I.; Hararak, B.; Fernando, G.F. Improved Procedure for Electro-Spinning and Carbonisation of Neat Solvent-Fractionated Softwood Kraft Lignin. Sci. Rep. 2021, 11, 16237. [Google Scholar] [CrossRef]
- Pattnaik, S.; Swain, K.; Ramakrishna, S. Optimal Delivery of Poorly Soluble Drugs Using Electrospun Nanofiber Technology: Challenges, State of the Art, and Future Directions. WIREs Nanomed. Nanobiotechnol. 2023, 15, e1859. [Google Scholar] [CrossRef] [PubMed]
- Modica de Mohac, L.; Keating, A.V.; De Fátima Pina, M.; Raimi-Abraham, B.T. Engineering of Nanofibrous Amorphous and Crystalline Solid Dispersions for Oral Drug Delivery. Pharmaceutics 2018, 11, 7. [Google Scholar] [CrossRef]
- Obaidat, R.M.; Tashtoush, B.M.; Awad, A.A.; Al Bustami, R.T. Using Supercritical Fluid Technology (SFT) in Preparation of Tacrolimus Solid Dispersions. AAPS PharmSciTech 2017, 18, 481–493. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, Y.; Chahar, K.; Kumari, L.; Mishra, L.; Patel, P.; Singh, D.; Kurmi, B. Das Validation of a Novel Supercritical Fluid Extractor/Dryer Combo Instrument. Assay Drug Dev. Technol. 2023, 21, 126–136. [Google Scholar] [CrossRef]
- Antosik-Rogóż, A.; Szafraniec-Szczęsny, J.; Chmiel, K.; Knapik-Kowalczuk, J.; Kurek, M.; Gawlak, K.; Danesi, V.P.; Paluch, M.; Jachowicz, R. How Does the CO2 in Supercritical State Affect the Properties of Drug-Polymer Systems, Dissolution Performance and Characteristics of Tablets Containing Bicalutamide? Materials 2020, 13, 2848. [Google Scholar] [CrossRef] [PubMed]
- Djuris, J.; Milovanovic, S.; Medarevic, D.; Dobricic, V.; Dapčević, A.; Ibric, S. Selection of the Suitable Polymer for Supercritical Fluid Assisted Preparation of Carvedilol Solid Dispersions. Int. J. Pharm. 2019, 554, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Kumari, L.; Choudhari, Y.; Patel, P.; Gupta, G.D.; Singh, D.; Rosenholm, J.M.; Bansal, K.K.; Kurmi, B. Das Advancement in Solubilization Approaches: A Step towards Bioavailability Enhancement of Poorly Soluble Drugs. Life 2023, 13, 1099. [Google Scholar] [CrossRef] [PubMed]
- Ellenberger, D.J.; Miller, D.A.; Williams, R.O. Expanding the Application and Formulation Space of Amorphous Solid Dispersions with KinetiSol®: A Review. AAPS PharmSciTech 2018, 19, 1933–1956. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.K.; Davis, D.A.; Miller, D.A.; Williams, R.O.; Nokhodchi, A. Innovations in Thermal Processing: Hot-Melt Extrusion and KinetiSol® Dispersing. AAPS PharmSciTech 2020, 21, 312. [Google Scholar] [CrossRef]
- Gala, U.; Miller, D.; Williams, R.O. Improved Dissolution and Pharmacokinetics of Abiraterone through KinetiSol® Enabled Amorphous Solid Dispersions. Pharmaceutics 2020, 12, 357. [Google Scholar] [CrossRef]
- Mendonsa, N.; Almutairy, B.; Kallakunta, V.R.; Sarabu, S.; Thipsay, P.; Bandari, S.; Repka, M.A. Manufacturing Strategies to Develop Amorphous Solid Dispersions: An Overview. J. Drug Deliv. Sci. Technol. 2020, 55, 101459. [Google Scholar] [CrossRef]
- Han, J.; Wei, Y.; Lu, Y.; Wang, R.; Zhang, J.; Gao, Y.; Qian, S. Co-Amorphous Systems for the Delivery of Poorly Water-Soluble Drugs: Recent Advances and an Update. Expert Opin. Drug Deliv. 2020, 17, 1411–1435. [Google Scholar] [CrossRef]
- Martínez, L.M.; Cruz-Angeles, J.; Vázquez-Dávila, M.; Martínez, E.; Cabada, P.; Navarrete-Bernal, C.; Cortez, F. Mechanical Activation by Ball Milling as a Strategy to Prepare Highly Soluble Pharmaceutical Formulations in the Form of Co-Amorphous, Co-Crystals, or Polymorphs. Pharmaceutics 2022, 14, 2003. [Google Scholar]
- Czajkowska-Kośnik, A.; Misztalewska-Turkowicz, I.; Wilczewska, A.Z.; Basa, A.; Winnicka, K. Solid Dispersions Obtained by Ball Milling as Delivery Platform of Etodolac, a Model Poorly Soluble Drug. Materials 2024, 17, 3923. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, Y.; Zhao, M.; Xu, H.; Ma, J.; Wang, S. Improved Oral Bioavailability of Probucol by Dry Media-Milling. Mater. Sci. Eng. C 2017, 78, 780–786. [Google Scholar] [CrossRef]
- Hussain, A.; Smith, G.; Khan, K.A.; Bukhari, N.I.; Pedge, N.I.; Ermolina, I. Solubility and Dissolution Rate Enhancement of Ibuprofen by Co-Milling with Polymeric Excipients. Eur. J. Pharm. Sci. 2018, 123, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Li, S.; Luo, J.; Wang, X. Latest Advances on Bacterial Cellulose-Based Antibacterial Materials as Wound Dressings. Front. Bioeng. Biotechnol. 2020, 8, 593768. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, P.; Yang, Z.; Liu, Y.; Yang, K.; Cheng, Y.; Yao, H.; Zhang, Z. Current Progress and Outlook of Nano-Based Hydrogel Dressings for Wound Healing. Pharmaceutics 2022, 15, 68. [Google Scholar] [CrossRef]
- Zeng, Q.; Qi, X.; Shi, G.; Zhang, M.; Haick, H. Wound Dressing: From Nanomaterials to Diagnostic Dressings and Healing Evaluations. ACS Nano 2022, 16, 1708–1733. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Ngoc Le, T.T.; Nguyen, A.T.; Thien Le, H.N.; Pham, T.T. Biomedical Materials for Wound Dressing: Recent Advances and Applications. RSC Adv. 2023, 13, 5509–5528. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, M.; Zhang, Y.; Pei, R. Recent Progress of Highly Adhesive Hydrogels as Wound Dressings. Biomacromolecules 2020, 21, 3966–3983. [Google Scholar] [CrossRef]
- Ribeiro, M.; Simões, M.; Vitorino, C.; Mascarenhas-Melo, F. Hydrogels in Cutaneous Wound Healing: Insights into Characterization, Properties, Formulation and Therapeutic Potential. Gels 2024, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.; Clark, J. Advanced Wound Care Strategies in Patients with NSTIs. J. Clin. Med. 2025, 14, 3514. [Google Scholar] [CrossRef] [PubMed]
- Op ’t Veld, R.C.; Walboomers, X.F.; Jansen, J.A.; Wagener, F.A.D.T.G. Design Considerations for Hydrogel Wound Dressings: Strategic and Molecular Advances. Tissue Eng. Part B Rev. 2020, 26, 230–248. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. The Use of Poly(N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers 2020, 12, 1114. [Google Scholar] [CrossRef] [PubMed]
- Arkaban, H.; Barani, M.; Akbarizadeh, M.R.; Pal Singh Chauhan, N.; Jadoun, S.; Dehghani Soltani, M.; Zarrintaj, P. Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers 2022, 14, 1259. [Google Scholar] [CrossRef]
- Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current Hydrogel Advances in Physicochemical and Biological Response-Driven Biomedical Application Diversity. Signal. Transduct. Target. Ther. 2021, 6, 426. [Google Scholar] [CrossRef]
- Rusdin, A.; Mohd Gazzali, A.; Ain Thomas, N.; Megantara, S.; Aulifa, D.L.; Budiman, A.; Muchtaridi, M. Advancing Drug Delivery Paradigms: Polyvinyl Pyrolidone (PVP)-Based Amorphous Solid Dispersion for Enhanced Physicochemical Properties and Therapeutic Efficacy. Polymers 2024, 16, 286. [Google Scholar] [CrossRef]
- Ho, T.-C.; Chang, C.-C.; Chan, H.-P.; Chung, T.-W.; Shu, C.-W.; Chuang, K.-P.; Duh, T.-H.; Yang, M.-H.; Tyan, Y.-C. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022, 27, 2902. [Google Scholar] [CrossRef]
- Moxon, S.R.; Corbett, N.J.; Fisher, K.; Potjewyd, G.; Domingos, M.; Hooper, N.M. Blended Alginate/Collagen Hydrogels Promote Neurogenesis and Neuronal Maturation. Mater. Sci. Eng. C 2019, 104, 109904. [Google Scholar] [CrossRef]
- Jin, G.-Z.; Kim, H.-W. Effects of Type I Collagen Concentration in Hydrogel on the Growth and Phenotypic Expression of Rat Chondrocytes. Tissue Eng. Regen. Med. 2017, 14, 383–391. [Google Scholar] [CrossRef]
- Tamaddon, M.; Burrows, M.; Ferreira, S.A.; Dazzi, F.; Apperley, J.F.; Bradshaw, A.; Brand, D.D.; Czernuszka, J.; Gentleman, E. Monomeric, Porous Type II Collagen Scaffolds Promote Chondrogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells in Vitro. Sci. Rep. 2017, 7, 43519. [Google Scholar] [CrossRef]
- Mazurek, Ł.; Szudzik, M.; Rybka, M.; Konop, M. Silk Fibroin Biomaterials and Their Beneficial Role in Skin Wound Healing. Biomolecules 2022, 12, 1852. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Li, Y.; Yang, Y.; Jin, M.; Lin, X.; Zhuang, Z.; Guo, K.; Zhang, T.; Tan, W. Application of Collagen-Based Hydrogel in Skin Wound Healing. Gels 2023, 9, 185. [Google Scholar] [CrossRef]
- Pompa-Monroy, D.A.; Vera-Graziano, R.; Dastager, S.G.; Pérez-González, G.L.; Bogdanchikova, N.; Iglesias, A.L.; Villarreal-Gómez, L.J. Low-Cost Gelatin/Collagen Scaffolds for Bacterial Growth in Bioreactors for Biotechnology. Appl. Microbiol. Biotechnol. 2025, 109, 113. [Google Scholar] [CrossRef] [PubMed]
- Mndlovu, H.; Kumar, P.; du Toit, L.C.; Choonara, Y.E. A Review of Biomaterial Degradation Assessment Approaches Employed in the Biomedical Field. Npj Mater. Degrad. 2024, 8, 66. [Google Scholar] [CrossRef]
- Kurakula, M.; Rao, G.S.N.K. Pharmaceutical Assessment of Polyvinylpyrrolidone (PVP): As Excipient from Conventional to Controlled Delivery Systems with a Spotlight on COVID-19 Inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. [Google Scholar] [CrossRef] [PubMed]
- Gounden, V.; Singh, M. Hydrogels and Wound Healing: Current and Future Prospects. Gels 2024, 10, 43. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, W.; Chen, G.; Li, X.; Wang, Y.; Xiong, J.; Wei, L. Preparation and Characterization of Polyvinyl Alcohol-Chitosan/Cerium Hydrogel with Significant Antibacterial Activity. Starch-Stärke 2021, 73, 2000253. [Google Scholar] [CrossRef]
- Sklenářová, R.; Akla, N.; Latorre, M.J.; Ulrichová, J.; Franková, J. Collagen as a Biomaterial for Skin and Corneal Wound Healing. J. Funct. Biomater. 2022, 13, 249. [Google Scholar] [CrossRef]
- Chuah, C.; Wang, J.; Tavakoli, J.; Tang, Y. Novel Bacterial Cellulose-Poly (Acrylic Acid) Hybrid Hydrogels with Controllable Antimicrobial Ability as Dressings for Chronic Wounds. Polymers 2018, 10, 1323. [Google Scholar] [CrossRef]
- Ruiz-Rubio, L.; Alonso, M.; Pérez-Álvarez, L.; Alonso, R.; Vilas, J.; Khutoryanskiy, V. Formulation of Carbopol®/Poly(2-Ethyl-2-Oxazoline)s Mucoadhesive Tablets for Buccal Delivery of Hydrocortisone. Polymers 2018, 10, 175. [Google Scholar] [CrossRef]
- Dickinson, L.E.; Gerecht, S. Engineered Biopolymeric Scaffolds for Chronic Wound Healing. Front. Physiol. 2016, 7, 341. [Google Scholar] [CrossRef] [PubMed]
- Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound Healing. Bioengineering 2021, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Wang, L.; Song, C.; Yao, L.; Xiao, J. Recent Progresses of Collagen Dressings for Chronic Skin Wound Healing. Collagen Leather 2023, 5, 31. [Google Scholar] [CrossRef]
- Cao, H.; Wang, J.; Hao, Z.; Zhao, D. Gelatin-Based Biomaterials and Gelatin as an Additive for Chronic Wound Repair. Front. Pharmacol. 2024, 15, 1398939. [Google Scholar] [CrossRef]
- Wang, J.; Mao, J.; Du, J.; Zhao, X. Review of Gelatin Hydrogel Dressings Based on Cross-Linking Technology in the Healing of Hemorrhagic Wounds: Mechanism Exploration, Application Research, and Future Perspectives. Macromol. Rapid Commun. 2025, 46, e00326. [Google Scholar] [CrossRef] [PubMed]
- Milano, F.; Masi, A.; Madaghiele, M.; Sannino, A.; Salvatore, L.; Gallo, N. Current Trends in Gelatin-Based Drug Delivery Systems. Pharmaceutics 2023, 15, 1499. [Google Scholar] [CrossRef]
- Huang, L.; Liu, G.L.; Kaye, A.D.; Liu, H. Advances in Topical Hemostatic Agent Therapies: A Comprehensive Update. Adv. Ther. 2020, 37, 4132–4148. [Google Scholar] [CrossRef]
- Che, X.; Zhao, T.; Hu, J.; Yang, K.; Ma, N.; Li, A.; Sun, Q.; Ding, C.; Ding, Q. Application of Chitosan-Based Hydrogel in Promoting Wound Healing: A Review. Polymers 2024, 16, 344. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Song, R.; Johnson, M.; Sigen, A.; Shen, P.; Zhang, N.; Lara-Sáez, I.; Xu, Q.; Wang, W. Chitosan-Based Hydrogels for Infected Wound Treatment. Macromol. Biosci. 2023, 23, 2300094. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chang, L.; Xiong, Y.; Peng, Q. Chitosan-Based Hydrogels as Antibacterial/Antioxidant/Anti-Inflammation Multifunctional Dressings for Chronic Wound Healing. Adv. Healthc. Mater. 2024, 13, 2401490. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Rashid, T.U.; Mallik, A.K.; Islam, M.M.; Khan, M.N.; Haque, P.; Khan, M.; Rahman, M.M. Facile Preparation of Biocomposite from Prawn Shell Derived Chitosan and Kaolinite-Rich Locally Available Clay. Int. J. Polym. Sci. 2017, 2017, 6472131. [Google Scholar] [CrossRef]
- Sunarti, T.C.; Febrian, M.I.; Ruriani, E.; Yuliasih, I. Some Properties of Chemical Cross-Linking Biohydrogel from Starch and Chitosan. Int. J. Biomater. 2019, 2019, 1542128. [Google Scholar] [CrossRef]
- Mohammed, M.; Syeda, J.; Wasan, K.; Wasan, E. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017, 9, 53. [Google Scholar] [CrossRef]
- Shahriari-Khalaji, M.; Hong, S.; Hu, G.; Ji, Y.; Hong, F.F. Bacterial Nanocellulose-Enhanced Alginate Double-Network Hydrogels Cross-Linked with Six Metal Cations for Antibacterial Wound Dressing. Polymers 2020, 12, 2683. [Google Scholar] [CrossRef]
- Kelishomi, Z.H.; Goliaei, B.; Mahdavi, H.; Nikoofar, A.; Rahimi, M.; Moosavi-Movahedi, A.A.; Mamashli, F.; Bigdeli, B. Antioxidant Activity of Low Molecular Weight Alginate Produced by Thermal Treatment. Food Chem. 2016, 196, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Abbas, G.; Hanif, M.; Khan, M.A. PH Responsive Alginate Polymeric Rafts for Controlled Drug Release by Using Box Behnken Response Surface Design. Des. Monomers Polym. 2017, 20, 1–9. [Google Scholar] [CrossRef]
- Aderibigbe, B.; Buyana, B. Alginate in Wound Dressings. Pharmaceutics 2018, 10, 42. [Google Scholar] [CrossRef]
- Hassan, M.A.; Basha, A.A.; Eraky, M.; Abbas, E.; El-Samad, L.M. Advancements in Silk Fibroin and Silk Sericin-Based Biomaterial Applications for Cancer Therapy and Wound Dressing Formulation: A Comprehensive Review. Int. J. Pharm. 2024, 662, 124494. [Google Scholar] [CrossRef]
- Chouhan, D.; Thatikonda, N.; Nilebäck, L.; Widhe, M.; Hedhammar, M.; Mandal, B.B. Recombinant Spider Silk Functionalized Silkworm Silk Matrices as Potential Bioactive Wound Dressings and Skin Grafts. ACS Appl. Mater. Interfaces 2018, 10, 23560–23572. [Google Scholar] [CrossRef] [PubMed]
- Vidya, M.; Rajagopal, S. Silk Fibroin: A Promising Tool for Wound Healing and Skin Regeneration. Int. J. Polym. Sci. 2021, 2021, 9069924. [Google Scholar] [CrossRef]
- Huang, L.; Shi, J.; Zhou, W.; Zhang, Q. Advances in Preparation and Properties of Regenerated Silk Fibroin. Int. J. Mol. Sci. 2023, 24, 13153. [Google Scholar] [CrossRef] [PubMed]
- DeBari, M.K.; King, C.I.; Altgold, T.A.; Abbott, R.D. Silk Fibroin as a Green Material. ACS Biomater. Sci. Eng. 2021, 7, 3530–3544. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, S.; Kundu, S.C. Silk Protein-Based Hydrogels: Promising Advanced Materials for Biomedical Applications. Acta Biomater. 2016, 31, 17–32. [Google Scholar] [CrossRef]
- Gholipourmalekabadi, M.; Sapru, S.; Samadikuchaksaraei, A.; Reis, R.L.; Kaplan, D.L.; Kundu, S.C. Silk Fibroin for Skin Injury Repair: Where Do Things Stand? Adv. Drug Deliv. Rev. 2020, 153, 28–53. [Google Scholar] [CrossRef]
- Aldahish, A.; Shanmugasundaram, N.; Vasudevan, R.; Alqahtani, T.; Alqahtani, S.; Mohammad Asiri, A.; Devanandan, P.; Thamaraikani, T.; Vellapandian, C.; Jayasankar, N. Silk Fibroin Nanofibers: Advancements in Bioactive Dressings through Electrospinning Technology for Diabetic Wound Healing. Pharmaceuticals 2024, 17, 1305. [Google Scholar] [CrossRef]
- Suksaeree, J.; Siripornpinyo, P.; Chaiprasit, S. Formulation, Characterization, and In Vitro Evaluation of Transdermal Patches for Inhibiting Crystallization of Mefenamic Acid. J. Drug Deliv. 2017, 2017, 7358042. [Google Scholar] [CrossRef]
- Luo, Y.; Hong, Y.; Shen, L.; Wu, F.; Lin, X. Multifunctional Role of Polyvinylpyrrolidone in Pharmaceutical Formulations. AAPS PharmSciTech 2021, 22, 34. [Google Scholar] [CrossRef]
- Ashfaq, A.; An, J.-C.; Ulański, P.; Al-Sheikhly, M. On the Mechanism and Kinetics of Synthesizing Polymer Nanogels by Ionizing Radiation-Induced Intramolecular Crosslinking of Macromolecules. Pharmaceutics 2021, 13, 1765. [Google Scholar] [CrossRef]
- An, J.-C.; Weaver, A.; Kim, B.; Barkatt, A.; Poster, D.; Vreeland, W.N.; Silverman, J.; Al-Sheikhly, M. Radiation-Induced Synthesis of Poly(Vinylpyrrolidone) Nanogel. Polymers 2011, 52, 5746–5755. [Google Scholar] [CrossRef]
- Awasthi, R.; Manchanda, S.; Das, P.; Velu, V.; Malipeddi, H.; Pabreja, K.; Pinto, T.D.J.A.; Gupta, G.; Dua, K. Poly(Vinylpyrrolidone). In Engineering of Biomaterials for Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 255–272. [Google Scholar]
- Couți, N.; Porfire, A.; Iovanov, R.; Crișan, A.G.; Iurian, S.; Casian, T.; Tomuță, I. Polyvinyl Alcohol, a Versatile Excipient for Pharmaceutical 3D Printing. Polymers 2024, 16, 517. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, F.; Guo, M.; Lei, K.; Jiao, Z.; Li, Z.; Li, H.; Liu, D.; He, M.; Wang, Z.; et al. Shikonin Delivery Strategy through Alkali-Crosslinked Polyvinyl Alcohol Hydrogel Promotes Effective Wound Healing. New J. Chem. 2024, 48, 3492–3500. [Google Scholar] [CrossRef]
- Liang, X.; Zhong, H.-J.; Ding, H.; Yu, B.; Ma, X.; Liu, X.; Chong, C.-M.; He, J. Polyvinyl Alcohol (PVA)-Based Hydrogels: Recent Progress in Fabrication, Properties, and Multifunctional Applications. Polymers 2024, 16, 2755. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.A.; Khan, B.A.; Khan, M.K.; Alqahtani, A.; Alshahrani, S.M.; Hosny, K.M. Fabrication and Characterization of Polymeric Pharmaceutical Emulgel Co-Loaded with Eugenol and Linalool for the Treatment of Trichophyton Rubrum Infections. Polymers 2021, 13, 3904. [Google Scholar] [CrossRef] [PubMed]
- Martinović, M.; Stojanović, N.; Nešić, I. Textural and Sensory Characterization of Carbomeric Gels with Panthenol. Acta Fac. Med. Naissensis 2022, 39, 232–243. [Google Scholar] [CrossRef]
- Song, S.; Liu, Z.; Zhou, J.; Cai, W.; Yang, H.; Ma, L.; Gao, J.; Li, W.; Liao, G. An Adjuvant Compound That Enhances Immunogenicity at Fractional Doses of the Sabin-inactivated Poliovirus Vaccine (SIPV) with a Long Duration of Protection in a Rat Model. J. Med. Virol. 2019, 91, 14–21. [Google Scholar] [CrossRef] [PubMed]
- LaFountaine, J.S.; Prasad, L.K.; Miller, D.A.; McGinity, J.W.; Williams, R.O. Mucoadhesive Amorphous Solid Dispersions for Sustained Release of Poorly Water Soluble Drugs. Eur. J. Pharm. Biopharm. 2017, 113, 157–167. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Guo, B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano 2021, 15, 12687–12722. [Google Scholar] [CrossRef] [PubMed]
- Zakzak, K.; Semenescu, A.-D.; Moacă, E.-A.; Predescu, I.; Drăghici, G.; Vlaia, L.; Vlaia, V.; Borcan, F.; Dehelean, C.-A. Comprehensive Biosafety Profile of Carbomer-Based Hydrogel Formulations Incorporating Phosphorus Derivatives. Gels 2024, 10, 477. [Google Scholar] [CrossRef] [PubMed]
- Asher, D.M. The Transmissible Spongiform Encephalopathy Agents: Concerns and Responses of United States Regulatory Agencies in Maintaining the Safety of Biologics. Dev. Biol. Stand. 1999, 100, 103–118. [Google Scholar] [PubMed]
- Yang, L.; Yu, C.; Fan, X.; Zeng, T.; Yang, W.; Xia, J.; Wang, J.; Yao, L.; Hu, C.; Jin, Y.; et al. Dual-Dynamic-Bond Cross-Linked Injectable Hydrogel of Multifunction for Intervertebral Disc Degeneration Therapy. J. Nanobiotechnol. 2022, 20, 433. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, Z.; Sun, L.; Luo, Z.; Zhao, Y. Multifunctional Fish Gelatin Hydrogel Inverse Opal Films for Wound Healing. J. Nanobiotechnol. 2022, 20, 355. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.I.; Park, K.M. Advances in Gelatin-Based Hydrogels for Wound Management. J. Mater. Chem. B 2021, 9, 1503–1520. [Google Scholar] [CrossRef]
- Ndlovu, S.P.; Ngece, K.; Alven, S.; Aderibigbe, B.A. Gelatin-Based Hybrid Scaffolds: Promising Wound Dressings. Polymers 2021, 13, 2959. [Google Scholar] [CrossRef]
- Salahuddin, B.; Wang, S.; Sangian, D.; Aziz, S.; Gu, Q. Hybrid Gelatin Hydrogels in Nanomedicine Applications. ACS Appl. Bio Mater. 2021, 4, 2886–2906. [Google Scholar] [CrossRef]
- Negm, N.A.; Hefni, H.H.H.; Abd-Elaal, A.A.A.; Badr, E.A.; Abou Kana, M.T.H. Advancement on Modification of Chitosan Biopolymer and Its Potential Applications. Int. J. Biol. Macromol. 2020, 152, 681–702. [Google Scholar] [CrossRef]
- Guo, W.; Ding, X.; Zhang, H.; Liu, Z.; Han, Y.; Wei, Q.; Okoro, O.V.; Shavandi, A.; Nie, L. Recent Advances of Chitosan-Based Hydrogels for Skin-Wound Dressings. Gels 2024, 10, 175. [Google Scholar] [CrossRef]
- Cheung, R.; Ng, T.; Wong, J.; Chan, W. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Mar. Drugs 2015, 13, 5156–5186. [Google Scholar] [CrossRef]
- Sanchez-Ballester, N.M.; Bataille, B.; Soulairol, I. Sodium Alginate and Alginic Acid as Pharmaceutical Excipients for Tablet Formulation: Structure-Function Relationship. Carbohydr. Polym. 2021, 270, 118399. [Google Scholar] [CrossRef]
- Ishfaq, B.; Khan, I.U.; Khalid, S.H.; Asghar, S. Design and Evaluation of Sodium Alginate-Based Hydrogel Dressings Containing Betula Utilis Extract for Cutaneous Wound Healing. Front. Bioeng. Biotechnol. 2023, 11, 1042077. [Google Scholar] [CrossRef]
- Negi, D.; Singh, Y. Gallium Oxide Nanoparticle-Loaded, Quaternized Chitosan-Oxidized Sodium Alginate Hydrogels for Treatment of Bacteria-Infected Wounds. ACS Appl. Nano Mater. 2023, 6, 13616–13628. [Google Scholar] [CrossRef]
- Bâldea, I.; Soran, M.-L.; Stegarescu, A.; Opriș, O.; Kacso, I.; Tripon, S.; Adascalitei, A.; Fericel, I.G.; Decea, R.; Lung, I. Lilium Candidum Extract Loaded in Alginate Hydrogel Beads for Chronic Wound Healing. Gels 2025, 11, 22. [Google Scholar] [CrossRef]
- Duciel, L.; Proust, R.; Ponsen, A.; Ziarelli, F.; Coudreuse, A.; Jeanmichel, L.; Samardzic, M.; Uzan, G.; des Courtils, C. Are All Alginate Dressings Equivalent? J. Biomed. Mater. Res. B Appl. Biomater. 2025, 113, e35557. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, H.; Jing, X.; Wang, X.; Shi, Y.; He, C.; Ma, B.; Nie, J.; Zhang, J.; Ma, G. Injectable In Situ Photocrosslinked Hydrogel Dressing for Infected Wound Healing. ACS Appl. Bio Mater. 2023, 6, 1992–2002. [Google Scholar] [CrossRef]
- Sun, W.; Gregory, D.A.; Tomeh, M.A.; Zhao, X. Silk Fibroin as a Functional Biomaterial for Tissue Engineering. Int. J. Mol. Sci. 2021, 22, 1499. [Google Scholar] [CrossRef]
- Craig, C.L. Evolution of Arthropod Silks. Annu. Rev. Entomol. 1997, 42, 231–267. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Wei, Z.-G.; Zhang, Y.-Q. Dissolution and Regeneration of Silk from Silkworm Bombyx Mori in Ionic Liquids and Its Application to Medical Biomaterials. Int. J. Biol. Macromol. 2020, 143, 594–601. [Google Scholar] [CrossRef]
- Chouhan, D.; Das, P.; Thatikonda, N.; Nandi, S.K.; Hedhammar, M.; Mandal, B.B. Silkworm Silk Matrices Coated with Functionalized Spider Silk Accelerate Healing of Diabetic Wounds. ACS Biomater. Sci. Eng. 2019, 5, 3537–3548. [Google Scholar] [CrossRef]
- Kramer, J.P.M.; Aigner, T.B.; Petzold, J.; Roshanbinfar, K.; Scheibel, T.; Engel, F.B. Recombinant Spider Silk Protein EADF4(C16)-RGD Coatings Are Suitable for Cardiac Tissue Engineering. Sci. Rep. 2020, 10, 8789. [Google Scholar] [CrossRef]
- Sahoo, J.K.; Hasturk, O.; Falcucci, T.; Kaplan, D.L. Silk Chemistry and Biomedical Material Designs. Nat. Rev. Chem. 2023, 7, 302–318. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, Y.; Li, X.; Zhang, Q.; Wu, Y.; Cui, C.; Liu, J.; Liu, W. Arginine-Solubilized Lipoic Acid-Induced β-Sheets of Silk Fibroin-Strengthened Hydrogel for Postoperative Rehabilitation of Breast Cancer. Bioact. Mater. 2024, 40, 667–682. [Google Scholar] [CrossRef]
- Heo, D.N.; Castro, N.J.; Lee, S.-J.; Noh, H.; Zhu, W.; Zhang, L.G. Enhanced Bone Tissue Regeneration Using a 3D Printed Microstructure Incorporated with a Hybrid Nano Hydrogel. Nanoscale 2017, 9, 5055–5062. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Zeng, L.; Zhang, J.; Zuo, J.; Zou, J.; Ding, J.; Chen, X. Polymer Fiber Scaffolds for Bone and Cartilage Tissue Engineering. Adv. Funct. Mater. 2019, 29, 1903279. [Google Scholar] [CrossRef]
- Sornkamnerd, S.; Okajima, M.K.; Kaneko, T. Tough and Porous Hydrogels Prepared by Simple Lyophilization of LC Gels. ACS Omega 2017, 2, 5304–5314. [Google Scholar] [CrossRef]
- Annabi, N.; Nichol, J.W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F. Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. Tissue Eng. Part B Rev. 2010, 16, 371–383. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, X.; Li, Y.; Cui, J.; Shi, Q.; Huang, H.-W.; Huang, Q.; Wang, H. Integrated Cross-Scale Manipulation and Modulable Encapsulation of Cell-Laden Hydrogel for Constructing Tissue-Mimicking Microstructures. Research 2024, 7, 0414. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, X.; You, T.; Zhao, B.; Dong, L.; Huang, C.; Zhou, X.; Xing, M.; Qian, W.; Luo, G. 3D Printing-Based Hydrogel Dressings for Wound Healing. Adv. Sci. 2024, 11, 2404580. [Google Scholar] [CrossRef] [PubMed]
- García-Alvarez, R.; Izquierdo-Barba, I.; Vallet-Regí, M. 3D Scaffold with Effective Multidrug Sequential Release against Bacteria Biofilm. Acta Biomater. 2017, 49, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Alizadehgiashi, M.; Nemr, C.R.; Chekini, M.; Pinto Ramos, D.; Mittal, N.; Ahmed, S.U.; Khuu, N.; Kelley, S.O.; Kumacheva, E. Multifunctional 3D-Printed Wound Dressings. ACS Nano 2021, 15, 12375–12387. [Google Scholar] [CrossRef]
- Mortensen, N.; Toews, P.; Bates, J. Crosslinking-Dependent Drug Kinetics in Hydrogels for Ophthalmic Delivery. Polymers 2022, 14, 248. [Google Scholar] [CrossRef] [PubMed]
- Bastawrous, S.; Wu, L.; Liacouras, P.C.; Levin, D.B.; Ahmed, M.T.; Strzelecki, B.; Amendola, M.F.; Lee, J.T.; Coburn, J.; Ripley, B. Establishing 3D Printing at the Point of Care: Basic Principles and Tools for Success. RadioGraphics 2022, 42, 451–468. [Google Scholar] [CrossRef]
- Galvão Duarte, J.; Piedade, A.P.; Sarmento, B.; Mascarenhas-Melo, F. The Printed Path to Healing: Advancing Wound Dressings through Additive Manufacturing. Adv. Healthc. Mater. 2025, 14, 2402711. [Google Scholar] [CrossRef]
- Tanfani, J.D.; Monpara, J.D.; Jonnalagadda, S. 3D Bioprinting and Its Role in a Wound Healing Renaissance. Adv. Mater. Technol. 2023, 8, 2300411. [Google Scholar] [CrossRef]
- Musso, F.; Murmura, F.; Bravi, L. Organizational and Supply Chain Impacts of 3D Printers Implementation in the Medical Sector. Int. J. Environ. Res. Public Health 2022, 19, 7057. [Google Scholar] [CrossRef]
- Kim, D.; Wu, Y.; Oh, Y.-K. On-Demand Delivery of Protein Drug from 3D-Printed Implants. J. Control. Release 2022, 349, 133–142. [Google Scholar] [CrossRef]
- Tran, T.S.; Balu, R.; Mettu, S.; Roy Choudhury, N.; Dutta, N.K. 4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery. Pharmaceuticals 2022, 15, 1282. [Google Scholar] [CrossRef]
- Bettini, S.; Bonfrate, V.; Syrgiannis, Z.; Sannino, A.; Salvatore, L.; Madaghiele, M.; Valli, L.; Giancane, G. Biocompatible Collagen Paramagnetic Scaffold for Controlled Drug Release. Biomacromolecules 2015, 16, 2599–2608. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Xu, F.; Han, Z.; Wei, D.; Jia, D.; Zhou, Y. Tough Magnetic Chitosan Hydrogel Nanocomposites for Remotely Stimulated Drug Release. Biomacromolecules 2018, 19, 3351–3360. [Google Scholar] [CrossRef]
- Tang, J.; Qiao, Y.; Chu, Y.; Tong, Z.; Zhou, Y.; Zhang, W.; Xie, S.; Hu, J.; Wang, T. Magnetic Double-Network Hydrogels for Tissue Hyperthermia and Drug Release. J. Mater. Chem. B 2019, 7, 1311–1321. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Chen, C.; Cheng, Y. Magnetic-Responsive Hydrogels: From Strategic Design to Biomedical Applications. J. Control. Release 2021, 335, 541–556. [Google Scholar] [CrossRef]
- Ha, J.H.; Lim, J.H.; Lee, J.M.; Chung, B.G. Electro-Responsive Conductive Blended Hydrogel Patch. Polymers 2023, 15, 2608. [Google Scholar] [CrossRef]
- Usta, A.; Asmatulu, R. Synthesis and Analysis of Electrically Sensitive Hydrogels Incorporated with Cancer Drugs. J. Pharm. Drug Deliv. Res. 2016, 5, 2. [Google Scholar] [CrossRef]
- Muñoz-Galán, H.; Enshaei, H.; Silva, J.C.; Esteves, T.; Ferreira, F.C.; Casanovas, J.; Worch, J.C.; Dove, A.P.; Alemán, C.; Pérez-Madrigal, M.M. Electroresponsive Thiol–Yne Click-Hydrogels for Insulin Smart Delivery: Tackling Sustained Release and Leakage Control. ACS Appl. Polym. Mater. 2024, 6, 8093–8104. [Google Scholar] [CrossRef]
- Resina, L.; El Hauadi, K.; Sans, J.; Esteves, T.; Ferreira, F.C.; Pérez-Madrigal, M.M.; Alemán, C. Electroresponsive and PH-Sensitive Hydrogel as Carrier for Controlled Chloramphenicol Release. Biomacromolecules 2023, 24, 1432–1444. [Google Scholar] [CrossRef]
- Sim, P.; Strudwick, X.L.; Song, Y.; Cowin, A.J.; Garg, S. Influence of Acidic PH on Wound Healing In Vivo: A Novel Perspective for Wound Treatment. Int. J. Mol. Sci. 2022, 23, 13655. [Google Scholar] [CrossRef]
- Devi, N.; Kakati, D.K. Smart Porous Microparticles Based on Gelatin/Sodium Alginate Polyelectrolyte Complex. J. Food Eng. 2013, 117, 193–204. [Google Scholar] [CrossRef]
- Hu, C.; Yang, L.; Wang, Y. Recent Advances in Smart-responsive Hydrogels for Tissue Repairing. MedComm-Biomater. Appl. 2022, 1, e23. [Google Scholar] [CrossRef]
- Mirani, B.; Pagan, E.; Currie, B.; Siddiqui, M.A.; Hosseinzadeh, R.; Mostafalu, P.; Zhang, Y.S.; Ghahary, A.; Akbari, M. An Advanced Multifunctional Hydrogel-Based Dressing for Wound Monitoring and Drug Delivery. Adv. Healthc. Mater. 2017, 6, 1700718. [Google Scholar] [CrossRef]
- Tsegay, F.; Elsherif, M.; Alam, F.; Butt, H. Smart 3D Printed Auxetic Hydrogel Skin Wound Dressings. ACS Appl. Bio Mater. 2022, 5, 5545–5553. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Han, L.; Yin, R.; Yang, T.; Liu, Y.; Mou, C.; Pang, F.; Wang, T. Micro-3D Printed Concanavalin A Hydrogel Based Photonic Devices for High-Sensitivity Glucose Sensing. Sens. Actuators B Chem. 2023, 386, 133707. [Google Scholar] [CrossRef]
- Guo, H.; Bai, M.; Zhu, Y.; Liu, X.; Tian, S.; Long, Y.; Ma, Y.; Wen, C.; Li, Q.; Yang, J.; et al. Pro-Healing Zwitterionic Skin Sensor Enables Multi-Indicator Distinction and Continuous Real-Time Monitoring. Adv. Funct. Mater. 2021, 31, 2106406. [Google Scholar] [CrossRef]
- Mirani, B.; Hadisi, Z.; Pagan, E.; Dabiri, S.M.H.; van Rijt, A.; Almutairi, L.; Noshadi, I.; Armstrong, D.G.; Akbari, M. Smart Dual-Sensor Wound Dressing for Monitoring Cutaneous Wounds. Adv. Healthc. Mater. 2023, 12, 2203233. [Google Scholar] [CrossRef]
- Wang, Z.; Hao, Z.; Yu, S.; Huang, C.; Pan, Y.; Zhao, X. A Wearable and Deformable Graphene-Based Affinity Nanosensor for Monitoring of Cytokines in Biofluids. Nanomaterials 2020, 10, 1503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, T.; Zhao, C.; Li, J.; Huang, R.; Zhang, Q.; Li, Y.; Li, X. An Integrated Smart Sensor Dressing for Real-Time Wound Microenvironment Monitoring and Promoting Angiogenesis and Wound Healing. Front. Cell Dev. Biol. 2021, 9, 701525. [Google Scholar] [CrossRef]
- Hossain, M.I.; Zahid, M.S.; Chowdhury, M.A.; Hossain, M.M.M.; Hossain, N.; Islam, M.A.; Mobarak, M.H. Smart Bandage: A Device for Wound Monitoring and Targeted Treatment. Results Chem. 2024, 7, 101292. [Google Scholar] [CrossRef]
- Cheng, Q.-P.; Hsu, S. A Self-Healing Hydrogel and Injectable Cryogel of Gelatin Methacryloyl-Polyurethane Double Network for 3D Printing. Acta Biomater. 2023, 164, 124–138. [Google Scholar] [CrossRef]
- Ashtariyan, A.; Mollania, H.; Annabestani, N.; Mollania, N.; Malayjerdi, F.; Dolatabadi, M.; Ghomi, E.R.; Khoshsima, A.; Neisiany, R.E. Synergistic Effect of Cydonia Oblonga and Its Extracted Silver Nanoparticles for Improving Antioxidant and Antibacterial Activity of 3D Printed Alginate-Based Hydrogel as Wound Dressing. Int. J. Biol. Macromol. 2024, 276, 133989. [Google Scholar] [CrossRef]
- He, Y.; Wang, F.; Wang, X.; Zhang, J.; Wang, D.; Huang, X. A Photocurable Hybrid Chitosan/Acrylamide Bioink for DLP Based 3D Bioprinting. Mater. Des. 2021, 202, 109588. [Google Scholar] [CrossRef]
- Long, J.; Etxeberria, A.E.; Nand, A.V.; Bunt, C.R.; Ray, S.; Seyfoddin, A. A 3D Printed Chitosan-Pectin Hydrogel Wound Dressing for Lidocaine Hydrochloride Delivery. Mater. Sci. Eng. C 2019, 104, 109873. [Google Scholar] [CrossRef]
- Nizioł, M.; Paleczny, J.; Junka, A.; Shavandi, A.; Dawiec-Liśniewska, A.; Podstawczyk, D. 3D Printing of Thermoresponsive Hydrogel Laden with an Antimicrobial Agent towards Wound Healing Applications. Bioengineering 2021, 8, 79. [Google Scholar] [CrossRef] [PubMed]
- Taghdi, M.H.; Al-Masawa, M.E.; Muttiah, B.; Fauzi, M.B.; Law, J.X.; Zainuddin, A.A.; Lokanathan, Y. Three-Dimensional Bioprinted Gelatin—Genipin Hydrogels Enriched with HUCMSC-Derived Small Extracellular Vesicles for Regenerative Wound Dressings. Polymers 2025, 17, 1163. [Google Scholar] [CrossRef]
- Newman, A.; Nagapudi, K.; Wenslow, R. Amorphous Solid Dispersions: A Robust Platform to Address Bioavailability Challenges. Ther. Deliv. 2015, 6, 247–261. [Google Scholar] [CrossRef]
- Hiew, T.N.; Zemlyanov, D.Y.; Taylor, L.S. Balancing Solid-State Stability and Dissolution Performance of Lumefantrine Amorphous Solid Dispersions: The Role of Polymer Choice and Drug–Polymer Interactions. Mol. Pharm. 2022, 19, 392–413. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.D.; Lee, P.I. Crosslinked Hydrogels—A Promising Class of Insoluble Solid Molecular Dispersion Carriers for Enhancing the Delivery of Poorly Soluble Drugs. Acta Pharm. Sin. B 2014, 4, 26–36. [Google Scholar] [CrossRef]
- Zheng, Y.; Liang, Y.; Zhang, D.; Sun, X.; Liang, L.; Li, J.; Liu, Y.-N. Gelatin-Based Hydrogels Blended with Gellan as an Injectable Wound Dressing. ACS Omega 2018, 3, 4766–4775. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Dou, Z.; Zhang, Y.; Li, F.; Xing, B.; Hu, Z.; Li, X.; Liu, Z.; Yang, W.; Liu, Z. Smart Responsive and Controlled-Release Hydrogels for Chronic Wound Treatment. Pharmaceutics 2023, 15, 2735. [Google Scholar] [CrossRef]
Mechanism | Clinical Relevance | Sources |
---|---|---|
Bacterial infections | Persistent microbial presence delays healing and increases the risk of complications. | [43,44] |
Biofilm formation | Biofilms protect bacteria, sustain inflammation, and reduce the effectiveness of antibiotics, a significant factor in chronic infections. | [45,46,47] |
Debridement | Removes necrosis and biofilm, resets the wound bed, and enhances response to therapies. | [43,48,49] |
Inflammation | Dysregulated, prolonged inflammation keeps wounds in a non-healing state. | [50,51] |
Oxidative stress | Excess ROS damages tissue, sustains inflammation, and hinders healing. | [52,53,54] |
Hypoxia | Chronic hypoxia impairs cellular function, including fibroblasts; HIF-1α guides adaptive repair. | [55,56] |
Angiogenesis | New vessel growth restores blood flow and promotes granulation and epithelialization. | [57,58] |
Wound closure | Complete closure is the most significant patient-centered outcome; it supports regulatory and clinical decisions. | [59,60] |
Melanin overproduction | Post inflammatory hyperpigmentation is linked to injury and inflammation; it impacts quality of life and clinical evaluation of wounds. | [61,62] |
API | Polymer | Method of Amorphization | Improvement in Solubility | Metric Type | Source |
---|---|---|---|---|---|
α-Lipoic acid | Soluplus® | Lyophilization | 12.7 ± 5.8% → 87.7 ± 5.5% | Percentage | [145] |
Pterostilbene | PVP K30 | Ball milling | ~1417-fold (vs. native) | Fold Increase | [146] |
Chrysin | Plasdone® S630 | Solvent evaporation | 20–25% → 60–80% (pH 6.8) | Percentage | [147] |
Magnolol | HPMC-AS | Antisolvent coprecipitation | Cmax 1.76×; AUC0–48 2.17× | Cmax and AUC | [148] |
Paracetamol | PVP-VA | Spray drying | Up to 6× vs. saturated solution | Fold Increase | [149] |
Ciprofloxacin | PVP | Electrospinning | 41 ± 3% → 94 ± 6% (12× vs. raw ciprofloxacin) | Percentage and Fold Increase | [150] |
Curcumin | Soluplus® | Hot Melt Extrusion | Up to 9× vs. pure curcumin | Fold Increase | [151] |
Spironolactone, nifedipine | Ethyl cellulose | Electrospinning | 75 mg/L vs. 5.9 and 22 mg/L | Absolute Concentration | [152] |
Rafoxanide | PVP K25 | Spray drying | Physical mixture: 0%; ASD: ~100% | Percentage | [153] |
Cannabidiol | Eudragit® EPO | Hot Melt Extrusion | 80% (35× vs. pure CBD) | Percentage and Fold Increase | [154] |
Method | Temperature | Solvent | Advantages | Limitations | Sources |
---|---|---|---|---|---|
Hot Melt Extrusion | Moderate/ High | No | Solvent-free and scalable; suitable for APIs prone to oxidation and hydrolysis; no need for further processing; high product purity | Not suitable for thermolabile APIs; high energy consumption; requires high flow properties of raw materials; a large batch size is needed for analysis | [159,160,161,162,163] |
Spray Drying | Moderate | Yes (mostly organic) | High surface area, fast, and effective for industrial scale-up | Use of organic solvents; risk of partial crystallization; requires careful condition optimization | [164,165,166,167,168] |
Freeze Drying | Low | Yes (mostly aqueous) | Suitable for thermolabile APIs; enables creation of porous structures | Slow; high energy consumption; mostly suitable for water-soluble substances | [169,170,171,172] |
Electrospinning | Low | Yes (mostly organic) | Allows nanostructure formation; suitable for thermolabile APIs | Complex setup, slow process, difficult to scale up | [173,174,175,176] |
Supercritical Fluid Technology | Variable | No | Leaves no solvent residues; suitable for oxidation- and hydrolysis-sensitive APIs | High cost; limited infrastructure availability | [177,178,179,180,181] |
KinetiSol® | Medium/ High | No | Short exposure to elevated temperatures, rapid amorphization; suitable for APIs with high melting points or poor thermal stability | Requires specialized equipment; potential degradation of heat- or shear-sensitive APIs; risk of local overheating for materials with low thermal conductivity | [182,183,184,185] |
Ball milling | Low/ Moderate | No | Does not require additional excipients; easy to use; applicable at lab scale | Possible temperature rise during milling; limited amorphization efficiency; hard to scale up; relatively high recrystallization risk | [186,187,188,189,190] |
Polymer | Properties | Impact on Wound Healing as a Dressing | Sources |
---|---|---|---|
PVP | Adhesive to skin; prevents recrystallization; chemically and biologically inert | Absorbs exudates; facilitates removal of necrotic tissues | [211,212,213] |
PVA | Adhesive to skin; chemically and biologically inert; biodegradable | Absorbs exudates; facilitates removal of necrotic tissues | [213,214] |
PAA | Chemically and biologically inert; biodegradable; pH-responsive; mucoadhesive | Absorbs exudates; facilitates removal of necrotic tissues | [200,215,216] |
Collagen | Biocompatible; degradable in wound environment; natural component of skin; high similarity to natural ECM; hygroscopic properties; substrate for endogenous MMPs | Supports cell migration, proliferation, and differentiation; facilitates blood clot formation and immune response; promotes M2 macrophage, angiogenesis (type I), and epithelialization; reduces ECM degradation and sustains matrix remodeling; absorbs exudates; promotes removal of necrotic tissues | [208,217,218,219] |
Gelatin | Biocompatible; degradable in wound environment; rheological and thermal stability in pH range 5–9 | Supports cell migration and proliferation; facilitates blood clot formation; absorbs exudates; promotes removal of necrotic tissues | [220,221,222,223] |
Chitosan | Biocompatible; hygroscopic; biodegradable; nontoxic; thermally stable; soluble in acidic solutions; mucoadhesive; hemostatic | Supports cell migration, proliferation, and differentiation; facilitates blood clot formation; provides antibacterial and antiinflammatory effects; absorbs exudates; promotes removal of necrotic tissues | [224,225,226,227,228,229] |
Sodium alginate | Biocompatible; swellable; biodegradable; nontoxic; pH-sensitive; gelates in acidic conditions; ion-crosslinked forms may release ions at wound site | Absorbs large amounts of exudate; keeps wound moist; reduces oxidative stress | [230,231,232,233] |
Silk fibroin | Biocompatible; biodegradable; nontoxic; inhibits tyrosinase; chelates ferrous ions; hemostatic; improves hydrogel mechanical strength | Supports cell migration and proliferation; facilitates blood clot formation; exhibits anti-inflammatory activity; promotes ECM formation, angiogenesis, collagen synthesis, re-epithelialization, and wound contraction | [234,235,236,237,238,239,240,241] |
Polymeric Compound | Picture | Comment | Source |
---|---|---|---|
Gelatin methacryloyl and dialdehyde-functionalized polyurethane | Example of a self-healing hydrogel, where fragments fuse upon contact over time, allowing the formation of more complex three-dimensional structures. Exposure to UV radiation stabilizes the structure but also removes the ability for further self-repair. | Reproduced with permission from [312] | |
(a,b) Sodium alginate; (c,d) Sodium alginate and active ingredients | Photographs show changes in printed dressings for (a) and (c) after crosslinking with calcium chloride by immersing the structures in a crosslinking solution in the image (b) and (d). This process enhances mechanical strength and may also influence the release of active substances as well as the degradation of the hydrogel. | Reproduced with permission from [313] | |
Acrylamide and chitosan modified with methacryloyl groups | Structures produced using 3D printing with digital light processing allow the fabrication of high-resolution, complex spatial architectures. The applied polymers and crosslinking strategy impart shape-memory properties, enabling the structures to return to their original form after deformation. (a) the Computer Aided Design (CAD) model and the printed construct of nose. (b) the CAD model and the printed construct of ear auricle with helical fold. (c) and (d) Lattice structures of chitosan modified with methacryloyl groups/polyacrylamide hydrogels with different mesh size produced by digital light processing. | Reproduced with permission from [314] | |
Chitosan and pectin | 3D-printed dressings, after shaping, can undergo lyophilization. Water removal ensures the stability of the intended shape, results in a more compact size, and decreases the risk of hydrolysis of polymers and active substances, as well as microbial growth. The lyophilized dressing can be rehydrated before use or regenerated by wound exudate at the application site. (a) freshly printed, (b) lyophilised and (c) flexibility of a lyophilised scaffold. | Reproduced with permission from [315] | |
Poly(N-isopropylacrylamide), precursors, sodium alginate and methylcellulose | An example of thermoresponsive hydrogels that alter their shape and size with temperature changes. Printed objects can be programmed to show different actuation behaviors at various temperatures (42 °C and 10 °C). Cyclic swelling happens at 20 °C and deswelling occurs at 37 °C. (a) 3D-printed thermoresponsive tube showing high ink printability; diameter changes with temperature. (b) Flower-like object with thermoresponsive petals and inert core. (c) Hydrogel propeller. (d) Hydrogel disc. Objects (b–d) exhibit programmable actuation at 42 °C and 10 °C. Scale bars: 1 cm. (e, f) Swelling rates at 20 °C and 37 °C in water and PBS. (g) Cyclic swelling (20 °C) and de-swelling (37 °C) measured as changes in height, diameter, and mass. | Reproduced from Nizioł et al., under CC BY license [316] | |
Gelatin | Example of polymeric hydrogel crosslinking, where the degree of crosslinking correlates with color intensity, which is proportional to the polymer concentration. Crosslinking agent: genipin. (a) Non-crosslinked gelatin hydrogel; (b) crosslinked 8% gelatin hydrogel; (c) crosslinked 10% gelatin hydrogel. Crosslinked with 0.3% genipin. | Reproduced from Taghdi et al., under CC BY license [317] | |
Sodium alginate | Illustration of a concept where chemical pH indicators help monitor wounds in situ while also delivering antibacterial agents. This method is connected to portable devices for real-time color-change analysis. (d) Synthetic Brilliant Yellow and naturally derived cabbage juice served as model pH indicators for creating the sensors. Sensor arrays enable spatial detection of pH variations at the wound site. Drug-eluting scaffolds release high doses of antibiotics locally to eliminate residual bacteria each time the dressing is changed. (A) Schematic of GelDerm treatment with pH-sensitive and drug-eluting components. (B-i–iii) Porous sensors fabricated via 3D bioprinter with co-axial nozzle; arrays allow large-scale dressing production. (C) Dressings can be lyophilized and sterilized for storage. (D) Brilliant Yellow and cabbage juice used as pH indicators; sensor arrays detect spatial pH variations, while drug-eluting scaffolds release antibiotics to eradicate residual bacteria. (E) GelDerm maintains conformal contact with irregular surfaces. | Reproduced from Malekmohammadi et al., under CC BY license [304] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ignacyk, M.; Krasiński, Z.; Michniak-Kohn, B.; Cielecka-Piontek, J. Innovative Wound Healing Strategy Through Amorphization of Active Pharmaceutical Ingredients as an Effective Approach for Hydrogel Formulation. Pharmaceuticals 2025, 18, 1427. https://doi.org/10.3390/ph18101427
Ignacyk M, Krasiński Z, Michniak-Kohn B, Cielecka-Piontek J. Innovative Wound Healing Strategy Through Amorphization of Active Pharmaceutical Ingredients as an Effective Approach for Hydrogel Formulation. Pharmaceuticals. 2025; 18(10):1427. https://doi.org/10.3390/ph18101427
Chicago/Turabian StyleIgnacyk, Miłosz, Zbigniew Krasiński, Bozena Michniak-Kohn, and Judyta Cielecka-Piontek. 2025. "Innovative Wound Healing Strategy Through Amorphization of Active Pharmaceutical Ingredients as an Effective Approach for Hydrogel Formulation" Pharmaceuticals 18, no. 10: 1427. https://doi.org/10.3390/ph18101427
APA StyleIgnacyk, M., Krasiński, Z., Michniak-Kohn, B., & Cielecka-Piontek, J. (2025). Innovative Wound Healing Strategy Through Amorphization of Active Pharmaceutical Ingredients as an Effective Approach for Hydrogel Formulation. Pharmaceuticals, 18(10), 1427. https://doi.org/10.3390/ph18101427