Ethnomedicinal Usage, Phytochemistry and Pharmacological Potential of Solanum surattense Burm. f.
Abstract
:1. Introduction
- -
- Reviewing the current scientific research on the species and evaluate the extent of the knowledge that has been published in a broad range of reputable scientific databases;
- -
- Representing the ethnomedicinal potential of Solanum surattense and validating the knowledge scientifically;
- -
- Highlight the identification, characterization, and potentialities of isolated secondary metabolites in terms of drug discovery and development;
- -
- Documentation of more up-to-date information concerning the pharmacological effects of the species. Conclusively, by analyzing the gaps in prior research, providing a detailed account of the species’ ethnomedicinal uses, chemical constituents, and pharmacological properties. This will enable researchers and medical professionals to have access to the most recent scientific evidence, facilitating the development of new herbal medications and promoting the safe and effective use of these traditional medicinal plants.
2. Results and Discussion
2.1. Selection of the Information
2.2. Ethnomedicinal Uses
2.3. Phytochemistry
- Phenolic amides such as N-trans-feruloyl tyramine (1) and N-p-trans-coumaroyl tyramine (2) were identified in the whole plant of S. surattense. The compound 2-propenamide, N-[2-(dimethylamino)ethyl]-(3) was identified from the absolute alcohol extract of S. surattense leaf. Additionally, compounds such as dihydro-N-feruloyltyramine, N-trans-coumaroyltyramine, N-trans-coumaroyloctopamine, N-[2-(3,4-dihydroxyphenyl)-2-hydroxyethyl]-3-(4-ethoxyphenyl)-prop-2-enamide, and 3-(4-hydroxy)-N-[2-(3-methoxyphenyl-4-hydroxyphenyl)-2-hydroxy] (4–8) were identified from ethanolic extracts of the fruit part [7,8,12];
- Phenolic acids such as ferulic acid (9) were found in the methanolic extract of the whole plant [104], and evofolin B (10) was also recorded from the same plant part [106]. Chlorogenic acid (11) was isolated from methanolic extracts of the leaf, fruit, stem bark, and root [110,111]. Caffeic acid (12) was extracted from the methanol extract of aerial parts [112]. Compounds such as (1R,3R,4R,5R)-(-)-quinic acid (13) and 2-octylcyclopropene-1-heptanol (14) were recorded from ethanol and methanol extracts of the leaf [107,113]. Eugenol (15) was recorded from hydro-distilled oil extracts of the leaf and fruit, while methyl eugenol (16) and (E)-isoeugenol (17) were identified only from the fruit [114]. Butanedioic acid (18) was found in the ethanolic extract of the fruit part [115];
- Vanillin (19), a phenolic aldehyde, was identified in the ethanolic extract of S. surattense leaf, stem, and fruit, though it was found in significant amounts in the root. Some phenolic glycosides, including chlorogenic acid ethyl ester-4′-O-β-D-glucopyranoside (20), chlorogenic acid methyl ester-4′-O-β-D-glucopyranoside (21), and p-hydroxyphenyl acetonitrile-O-(6′-O-acetyl)-β-D-glucopyranoside (22), were identified from the ethanolic extract of S. surattense fruit [109];
- The flavonoid apigenin (23) was isolated from the methanolic extract of various plant parts, including leaf, fruit, petals, stem, and root. Other compounds such as isoquercitrin (24), gallocatechin (25), catechin (26), quercetin (27), flavone (28), luteolin (29), 4H-1-benzopyran-4-one, 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-methoxy-(30), 5,7,4′-trihydroxy-8-methoxyflavone (31), 5,7,4′-trihydroxy-6-methoxyflavone (32), 5-hydroxy-8-methoxy-6,7-methylenedioxyflavone (33), 7-hydroxy-6-methoxycoumarin (34), fraxetin (35), 5-hydroxy-6,7,3′,4′-tetramethoxyflavone (36), 5-hydroxy-4′,6,7-trimethoxyflavone (37), and 5,3′-dihydroxy-6,7,4′-trimethoxyflavone (38) were identified from fruit parts using different solvents such as methanol (70%, 50%, and 30%), ethanol (95%), and aqueous ethanolic solutions [108,115,117,118]. Acetovanillone (39) was found only in the ethanolic extract of the fruit [115];
- Coumarins, including scopoline (40), scopoletin (41), esculin (42), and esculetin (43), were identified from petroleum ether and chloroform extracts of the leaf, fruit, and root parts [119]. The anthraquinone emodin (44) was extracted from the 50% ethanolic extract of the leaf, stem, and root parts;
- The lignans, including threo-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[(E)-3-hydroxy-1-propenyl]-2-methoxyphenoxy}-1,3-propanediol (45), syringaresinol (46), coniferol (47), simulanol (48), balanophonin (49), glycosmisic acid (50), and tribulusamide A (51), were isolated from the whole plant of S. surattense [106]. Additionally, other lignans such as (7R,8S)-threo-glehlinoside C (52), 2Z-(7S,8R)-aegineoside (53), (7R,8R)-3,5-dimethoxy-8′-carboxy-7′-en-3′,8-epoxy-7,4′-oxyneolignan-4,9-diol (54), and glycerol α-guiacyl ether (55) were identified from the ethanolic extract of the fruit [109,115]. Only one tannin compound, quinic acid (56), was characterized from the ethanolic extract of the fruit [115].
- Quinoline alkaloids, isoquinoline (57) was isolated from the ethanolic extract of S. surattense fruit [115].
- Twenty steroidal alkaloids (58–77) have been reported from S. surattense [104,105,110,120,121,122,123,124,125,126,127,128,129,130,131]. Among them, compounds (58–64) were isolated from the methanolic extract of whole plant parts [104,120]. Five compounds (63–64, 66–68) were found in aerial parts using different solvents such as methanol, ethanol, petroleum ether, and chloroform. Ten compounds (63, 65, 67, 71–77) were characterized from the fruit parts, and two compounds (69–70) were isolated from the alcoholic extract of seeds. Notably, compounds 63, 64, and 67 were commonly found in the whole plant, aerial parts, fruit, and shoot [104,105,110,121,122,123,124,125,126]. Seven compounds (71–77) were characterized from S. surattense fruit extract using different solvents, including ethanol, and petroleum ether [127,128,129,130,131].
- Eight monoterpenoids (78–85), including 7Z-roseoside (78), linalool (79), camphor (80), α-terpineol (81), geraniol (82), isobornyl acetate (83), (E)-β-ionone (84), and dihydroactinidiolide (85), have been isolated from S. surattense leaf, fruit, seed, and root extracts using solvents like ethanol and aqueous solutions [105,132].
- Eleven aldehydes, including nonanal (233), (2E,4E)-decadienal (234), dodecanal (235), tridecanal (236), tetradecanal (237), pentadecanal (238), hexadecanal (239), 9,12,15-octadecatrienal (240), tetracosanal (241), pentacosanal (242), and hexacosanal (243), have been isolated from aqueous extracts of S. surattense, especially from the fruit [114].
- Three fatty alcohols, 1-octanol (244), (6Z)-nonenol (245), and (Z)-dihydroapofarnesol (246), were isolated from aqueous extracts of the fruit and seed, while two fatty amides, (9Z)-octadecenamide (247) and octadecanamide (248), were identified from the seed [114].
- Additionally, eight sphingolipids (249–256), seven oxylipins (257–263), and three phenolic lipids (264–266) have been identified from the fruit of S. surattense [142].
2.4. Pharmacological Studies
2.4.1. Anti-Inflammatory Activity
- Groups 1 and 2: Normal topical control with Carbopol gel and normal oral control with distilled water;
- Groups 3 and 4: Diabetic topical control and diabetic oral control with Carbopol gel and distilled water, respectively;
- Groups 5 and 6: Diabetic treated topically with aloe vera cream and orally with aloe vera juice;
- Groups 7–10: Diabetic treated topically and orally with ethanolic extract of S. surattense ESX gel (5% w/w and 10% w/w) and ESX (100 mg/kg and 200 mg/kg), respectively;
- Group 11: Diabetic treated with both topical (ESX gel 10%) and oral (200 mg/kg) treatments.
2.4.2. Anti-Diabetic Activity
2.4.3. Anti-Tumor Activity
2.4.4. Antioxidant Activity
2.4.5. Antibacterial Activity
2.4.6. Antiviral Activity
2.4.7. Antifungal Activity
2.4.8. Antihelminthic Activity
2.4.9. Cardiovascular Activity
2.4.10. Hepatoprotective Activity
2.5. Pharmacological Activity of Secondary Metabolites of S. surattense
2.6. Clinical Studies
2.7. Toxicological Studies
2.8. Other Uses
3. Materials and Methods
3.1. Search Strategy
3.2. Data Inclusion and Exclusion Criteria
3.2.1. Inclusion Criteria
- Relevant studies on S. surattense concerning medicinal importance.
- Full text in English.
3.2.2. Exclusion Criteria
- Duplicate scientific publications;
- Not directly related to the medicinal issues;
- Containing non-relevant or incomplete information.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- POWO (Plants of the World Online). Facilitated by the Royal Botanic Gardens, Kew. 2017. Available online: https://powo.science.kew.org/ (accessed on 22 December 2023).
- Linnaeus, C. Verbena. In Species Plantarum, 1st ed.; Impensis GC Nauk: Berlin, Germany, 1753; pp. 18–21. [Google Scholar]
- Burman, N.L. Burmanii, Flora Indica: Cui Accedit Series Zoophytorum Indicorum, Nec Non Prodromus Florae Capensis; Cornelius Haek: Amsterdam, The Netherlands, 1768; p. 544. [Google Scholar] [CrossRef]
- Scharder, H.A.; Wendland, I.C. Sertvm Hannoveranvm Sev Plantae Rariores Qvae. In Hortis Regiis Hannoverae Vicinis Colvntvr; Vandenhoeck Et Ruprecht: Goettingae, Hannoverae, 1795; Volume 1, p. 600. Available online: https://digitale-sammlungen.gwlb.de/resolve?PPN=742569349 (accessed on 15 December 2023).
- Clarke, C.B. Solanaceae. In Flora of British India; New Connaught Place: Dehradun, India, 1885; Volume 4, p. 236. [Google Scholar]
- Rechinger, K.H. Solanaceae. In Symbolae Afghanicae; Kommission hos Ejnar Munksgaard: Copenhagen, Denmark, 1958; pp. 85–88. [Google Scholar]
- Cooke, R.J. Flora of Presd. Bomb; Bombay Press: Mumbai, India, 1967; Volume 2, p. 348. [Google Scholar]
- Nasir, J.Y. Solanaceae. In Flora of Pakistan; Fascicle; National Herbarium, Pakistan Agricultural Research Council: Islamabad, Pakistan, 1985; Volume 168, pp. 1–61. [Google Scholar]
- Ahmed, Z.U.; Begum, Z.N.T.; Hassan, M.A.; Khondker, M.; Kabir, S.M.H.; Ahmad, M.; Ahmed, A.T.A.; Rahman, A.K.A.; Haque, E.U. Encyclopedia of Flora and Fauna of Bangladesh; Asiatic Society: Dhaka, Bangladesh, 2009. [Google Scholar]
- Pharmacopoeias. The Ayurvedic Pharmacopoeia of India, Part-1; Government of India Ministry of Health and Family Welfare, Department of AYUSH: New Delhi, India, 1999; Volume 1, pp. 59–60. [Google Scholar]
- Flora of China Editorial Committee. Flora of China Editorial Committee. Flora of China (Checklist & Addendum). In Unpaginated; Wu, C.Y., Raven, P.H., Hong, D.Y., Eds.; Fl. China; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2013. [Google Scholar]
- Khare, C. Solanum xanthocarpum S. & W. In Indian Medicinal Plants; Springer: New York, NY, USA, 2007; Available online: https://10.1007/978-0-387-70638-2_1525.pdf (accessed on 15 December 2023).
- Vattakaven, T.; George, R.; Balasubramanian, D.; Réjou-Méchain, M.; Muthusankar, G.; Ramesh, B.; Prabhakar, R. India biodiversity portal: An integrated, interactive and participatory biodiversity informatics platform. Biodivers. Data J. 2016, 4, e10279. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P. A review on the pharmaceutical activity of Solanum surattense. GSC Adv. Res. Rev. 2021, 7, 38–44. [Google Scholar] [CrossRef]
- Tekuri, S.K.; Pasupuleti, S.K.; Konidala, K.K.; Amuru, S.R.; Bassaiahgari, P.; Pabbaraju, N. Phytochemical and pharmacological activities of Solanum Surattense Burm f.—A Review. J. App. Pharm. Sci. 2019, 9, 126–136. [Google Scholar] [CrossRef]
- Parmar, S.; Gangwal, A.; Navin, S. Solanum Xanthocarpum (Yellow Berried Night Shade): A Review. Der. Pharm. Lett. 2010, 2, 373–383. [Google Scholar]
- Joghee, S. Solanum Xanthocarpum: A Review. IPCM 2019, 3, 1–7. [Google Scholar] [CrossRef]
- Laware, S.G.; Shirole, N.L. A systematic review on Solanum xanthocarpum (solanaceae) plant and its potential pharmacological activities. Inter. Res. J. Plant Sci. 2022, 13, 01–09. [Google Scholar]
- Malik, S.; Ahmad, S.; Sadiq, A.; Alam, K.; Wariss, H.M.; Ahmad, I.; Hayat, M.Q.; Anjum, S.; Mukhtar, M. A comparative ethno-botanical study of cholistan (an arid area) and pothwar (a semi-arid area) of Pakistan for traditional medicines. J. Ethnobiol Ethnomed. 2015, 11, 31. [Google Scholar] [CrossRef]
- Ahmed, N.; Mahmood, A.; Mahmood, A.; Tahir, S.S.; Bano, A.; Malik, R.N.; Hassan, S.; Ishtiaq, M. Relative importance of indigenous medicinal plants from Layyah district, Punjab province, Pakistan. J. Ethnopharmacol. 2014, 155, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Khan, M.R.; Shah, N.A.; Shah, S.A.; Majid, M.; Farooq, M.A. Ethnomedicinal plant use value in the Lakki Marwat district of Pakistan. J. Ethnopharmacol. 2014, 158, 412–422. [Google Scholar] [CrossRef]
- Yabesh, J.E.M.; Prabhu, S.; Vijayakumar, S. An ethnobotanical study of medicinal plants used by traditional healers in silent valley of Kerala, India. J. Ethnopharmacol. 2014, 154, 774–789. [Google Scholar] [CrossRef]
- Jeeva, S.; Femila, V. Ethnobotanical investigation of Nadars in Atoor village, Kanyakumari district, Tamilnadu, India. Asian Pac. J. Trop. Biomed. 2012, 2, S593–S600. [Google Scholar] [CrossRef]
- Pandey, M.M.; Rastogi, S.; Rawat, A.K.S. Indian traditional ayurvedic system of medicine and nutritional supplementation. Evid. Based Complement. Altern. Med. 2013, 2013, 376327. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.P.; Malla, S.B.; Rajbhandari, S.B.; Manandhar, A. Medicinal plants of Nepal—Retrospect and Prospects. Econ. Bot. 1979, 33, 185–198. [Google Scholar] [CrossRef]
- Govindan, S.; Viswanathan, S.; Vijayasekaran, V.; Alagappan, R. A pilot study on the clinical efficacy of Solanum xanthocarpum and Solanum trilobatum in bronchial asthma. J. Ethnopharmacol. 1999, 66, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Yadav, G.; Meena, M. Bioprospecting of endophytes in medicinal plants of Thar Desert: An attractive resource for biopharmaceuticals. Biotechnol. Rep. 2021, 30, e00629. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Pandey, V.C.; Singh, A.G.; Tewari, D.D. Traditional uses of medicinal plants for dermatological healthcare management practices by the Tharu tribal community of Uttar Pradesh, India. Genet. Resour. Crop Evol. 2013, 60, 203–224. [Google Scholar] [CrossRef]
- Meena, A.K.; Rao, M.M. Folk herbal medicines used by the Meena community in Rajasthan. Asian J. Tradit. Med. 2010, 5, 19–31. [Google Scholar]
- Mallik, B.K.; Panda, T.; Padhy, R.N. Traditional herbal practices by the ethnic people of Kalahandi district of Odisha, India. Asian Pac. J. Trop. Biomed. 2012, 2, S988–S994. [Google Scholar] [CrossRef]
- Ramazani, A.; Zakeri, S.; Sardari, S.; Khodakarim, N.; Djadidt, N.D. In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense. Malar. J. 2010, 9, 1–8. [Google Scholar] [CrossRef]
- Pirbalouti, A.G.; Jahanbazi, P.; Enteshari, S.; Malekpoor, F.; Hamedi, B. Antimicrobial activity of some Iranian medicinal plants. Arch. Biol. Sci. 2010, 62, 633–642. [Google Scholar] [CrossRef]
- Gilani, S.A.; Khan, A.M.; Qureshi, R.A.; Sherwani, S.K.; Khan, R.U.; Bokhari, T.Z. Advances in bioresearch ethno-medicinal treatment of common gastrointestinal disorders by indigenous people in Pakistan. Adv. Biores. 2014, 5, 42–49. [Google Scholar]
- Umair, M.; Altaf, M.; Bussmann, R.W.; Abbasi, A.M. Ethnomedicinal uses of the local flora in Chenab Riverine Area, Punjab Province Pakistan. J. Ethnobiol. Ethnomed. 2019, 15, 7. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Ditta, A.; Ibrahim, F.H.; Murtaza, G.; Rajpar, M.N.; Mehmood, S.; Saleh, M.N.B.; Imtiaz, M.; Akram, S.; Khan, W.R. Quantitative ethnobotanical analysis of medicinal plants of high-temperature areas of Southern Punjab, Pakistan. Plants 2021, 10, 1974. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.U.; Ullah, Z.; Ali, A.; Aziz, M.A.; Alam, N.; Sher, H.; Ali, I. Traditional knowledge of medicinal flora among tribal communities of Buner Pakistan. Phytomed. Plus 2022, 2, 100277. [Google Scholar] [CrossRef]
- Shuaib, M.; Ahmed, S.; Ali, K.; Ilyas, M.; Hussain, F.; Urooj, Z.; Shah, S.S.; Kumar, T.; Shah, M.; Khan, I.; et al. Ethnobotanical and ecological assessment of plant resources at district Dir, Tehsil Timergara, Khyber Pakhtunkhwa, Pakistan. Acta Ecol. Sin. 2019, 39, 109–115. [Google Scholar] [CrossRef]
- Tareen, R.B.; Bibi, T.; Khan, M.A.; Ahmad, M.; Zafar, M. Indigenous knowledge of folk medicine by the women of Kalat and Khuzdar Regions of Balochistan, Pakistan. Pak. J. Bot. 2010, 42, 1465–1485. [Google Scholar]
- Haq, F.; Ahmad, H.; Alam, M. Traditional uses of medicinal plants of Nandiar Khuwarr catchment (district Battagram), Pakistan. J. Medicinal Plants. 2011, 5, 39–48. [Google Scholar]
- Khan, M.F.; Mashwani, Z.-R.; Mehmood, A.; Qureshi, R.; Sarwar, R.; Ahmad, K.S.; Quave, C.L. An ethnopharmacological survey and comparative analysis of plants from the Sudhnoti District, Azad Jammu and Kashmir, Pakistan. J. Ethnobiol. Ethnomed. 2021, 17, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Matin, A.; Khan, M.A.; Ashraf, M.; Qureshi, R.A. Traditional use of herbs, shrubs and trees of Shogran valley, Mansehra, Pakistan. Pak. J. Biol. Sci. 2001, 4, 1101–1107. [Google Scholar] [CrossRef]
- Ahmed, T.; Kanwal, R.; Ayub, N.; Hassan, M. Assessment of antibacterial activity of Solanum surrattense against waterborne pathogens isolated from surface drinking water of the Potohar region in Pakistan. HERA 2009, 15, 624–635. [Google Scholar] [CrossRef]
- Lama, S.; Santra, S.C. Development of Tibetan plant medicine. Sci. Cult. 1976, 45, 262–265. [Google Scholar]
- Mali, M.C.; Harsh, N. Nutritional value estimation of the leaves and seeds of Solanum Surattense. J. Medicinal Plants 2015, 3, 27–29. [Google Scholar]
- Dangwal, L.R.; Sharma, A. Indigenous traditional knowledge recorded on some medicinal plants in Narendra Nagar Block (Tehri Garhwal), Uttarakhand. Indian J. Nat. Prod. Resour. 2011, 2, 110–115. [Google Scholar]
- Swain, S.S.; Padhy, R.N. In vitro antibacterial efficacy of plants used by an Indian aboriginal tribe against pathogenic bacteria isolated from clinical samples. J. Taibah Univ. Med. Sci. 2015, 10, 379–390. [Google Scholar] [CrossRef]
- Dilshad, S.M.R.; Iqbal, Z.; Muhammad, G.; Iqbal, A.; Ahmed, N. An inventory of the ethnoveterinary practices for reproductive disorders in cattle and buffaloes, Sargodha district of Pakistan. J. Ethnopharmacol. 2008, 117, 393–402. [Google Scholar] [CrossRef]
- Sinhababu, A.; Banerjee, A. Ethno-botanical study of medicinal plants used by tribals of Bankura Districts, West Bengal, India. J. Med. Plants Stud. 2013, 1, 98–104. [Google Scholar]
- Rehman, F.; Hussain, T.; Abdullah, M.; Ashraf, I.; Ch, K.M.; Rafay, M.; Bibi, I. Ethnobotanical survey; common medicinal plants used by people of Cholistan desert. Prof. Med. J. 2015, 22, 1367–1372. [Google Scholar] [CrossRef]
- Rajalakshmi, S.; Vijayakumar, S.; Arulmozhi, P. Ethnobotanical survey of medicinal plants in Thanjavur and its surrounding (Tamil Nadu–India). Acta Ecologica Sinica 2019, 39, 380–397. [Google Scholar] [CrossRef]
- Bhatia, H.; Sharma, Y.P.; Manhas, R.K.; Kumar, K. Ethnomedicinal plants used by the villagers of district Udhampur, J&K, India. J. Ethnopharmacol. 2014, 151, 1005–1018. [Google Scholar] [CrossRef]
- Pullaiah, T. Medicinal Plants in India; Regency Publications: New Delhi, India, 2002; Volume 2, pp. 474–475. [Google Scholar]
- Qureshi, R.; Waheed, A.; Arshad, M.; Umbreen, T. Medico-ethnobotanical inventory of tehsil Chakwal, Pakistan. Pak. J. Bot. 2009, 41, 529–538. [Google Scholar]
- Fatima, A.; Ahmad, M.; Zafar, M.; Yaseen, G.; Zada Khan, M.P.; Butt, M.A.; Sultana, S. Ethnopharmacological relevance of medicinal plants used for the treatment of oral diseases in Central Punjab-Pakistan. J. Herb. Med. 2018, 12, 88–110. [Google Scholar] [CrossRef]
- Shah, S.A.; Iqbal, W.; Sheraz, M.; Javed, B.; Zehra, S.S.; Abbas, H.A.B.E.; Hussain, W.; Sarwer, A.; Mashwani, Z.-R. Ethnopharmacological study of medicinal plants in Bajwat wildlife sanctuary, district Sialkot, Punjab province of Pakistan. Evid. Based Complement. Altern. Med. 2021, 2021, 5547987. [Google Scholar] [CrossRef]
- Qureshi, R.; Raza Bhatti, G.; Memon, R.A. Ethnomedicinal uses of herbs from Northern part of Nara desert, Pakistan. Pak. J. Bot. 2010, 42, 839–851. [Google Scholar]
- Badshah, L.; Hussain, F. People preferences and use of local medicinal flora in district Tank, Pakistan. J. Med. Plants Res. 2011, 5, 22–29. [Google Scholar]
- Napagoda, M.T.; Sundarapperuma, T.; Fonseka, D.; Amarasiri, S.; Gunaratna, P. Traditional uses of medicinal plants in Polonnaruwa district in North Central Province of Sri Lanka. Scientifica 2019, 2019, 9737302. [Google Scholar] [CrossRef]
- Qasim, M.; Abideen, Z.; Adnan, M.Y.; Ansari, R.; Gul, B.; Khan, M.A. Traditional ethnobotanical uses of medicinal plants from coastal areas of Pakistan. J. Coast. Life. Med. 2014, 2, 22–30. [Google Scholar]
- Iqbal, H.; Sher, Z.; Khan, Z.U. Medicinal plants from salt range Pind Dadan Khan, district Jhelum, Punjab, Pakistan. J. Med. Plants Res. 2011, 5, 2157–2168. [Google Scholar]
- Rahmatullah, M.; Mollik, M.A.H.; Ahmed, M.N.; Bhuiyan, M.A.Z.; Hossain, M.M.; Azam, M.N.K.; Seraj, S. A survey of medicinal plants used by folk medicinal practitioners in two villages of Tangail district, Bangladesh. Am. Eurasian J. Sustain. Agric. 2010, 4, 357–362. [Google Scholar]
- Vedavathy, S.; Rao, K.N. Antipyretic activity of six indigenous medicinal plants of Tirumala Hills, Andhra Pradesh, India. J. Ethnopharmacol. 1991, 33, 193–196. [Google Scholar] [CrossRef]
- Munuswamy, H.; Thirunavukkarasu, T.; Rajamani, S.; Elumalai, E.K.; Ernest, D. A review on antimicrobial efficacy of some traditional medicinal plants in Tamilnadu. J. Acute Dis. 2013, 2, 99–105. [Google Scholar] [CrossRef]
- Jain, S.K. Medicinal plant lore of the tribals of bastar. Econ. Bot. 1965, 19, 236–250. [Google Scholar] [CrossRef]
- Sisubalan, N.; Velmurugan, S.; Malayaman, V.; Thirupathy, S.; Basha, G.M.H.; Kumar, R.R. Ethnomedicinal studies on villages of thenpuranadu, Tamil Nadu. India. Spatula DD 2014, 4, 41–47. [Google Scholar] [CrossRef]
- Kumar, N.; Choyal, R. Traditional use of some plants of Hamirpur district of Himachal pradesh for the treatment of jaundice, hepatitis and other liver disorders. Int. J. Theor. Appl. Sci. 2012, 4, 201–205. [Google Scholar]
- Solouki, M.; Hoshyar, H.; Ramroudi, M.; Tavassoli, A. Comparison and evaluation of steroid alkaloid solasodine on In vivo and In vitro cultures of Solanum surattense Burm L. Afr. J. Microbiol. Res. 2011, 5, 3981–3985. [Google Scholar] [CrossRef]
- Manandhar, N.P. Ethnobotanical notes on certain medicinal plants used by Tharus of dang-deokhuri district, Nepal. Int. J. Crude Drug Res. 1985, 23, 153–159. [Google Scholar] [CrossRef]
- Manandhar, N.P. Traditional practice for oral health care in Nepal. J. Econ. Taxon. Bot. 1996, 12, 408–413. [Google Scholar]
- Poongodi, A.; Thilagavathi, S.; Aravindhan, V.; Rajendran, A. Observations on some ethnomedicinal plants in sathyamangalam forests of erode district, Tamil Nadu, India. J. Med. Plant Res. 2011, 5, 4709–4714. [Google Scholar]
- Abbasi, A.M.; Khan, S.M.; Ahmad, M.; Khan, M.A.; Quave, C.L.; Pieroni, A. Botanical ethnoveterinary therapies in three districts of the lesser Himalayas of Pakistan. J. Ethnobiol. Ethnomedicine. 2013, 9, 84. [Google Scholar] [CrossRef]
- Ullah, I.; Ullah, I.; Ali, M.; Durrani, F.; Khan, S.U.; Hussain, D.; Mehmood, S.; Khan, S.U.; Ullah, M.; Hussain, K.; et al. Quantitative study of medicinal plants and biological activities of two common species used by inhabitants of district Bannu, Pakistan. Acta. Ecol. Sin. 2021, 43, 271–287. [Google Scholar] [CrossRef]
- Shah, A.; Poudel, R.C.; Ishtiaq, M.; Sarva, R.; Shahzad, H.; Abbas, A.; Shoaib, S.; Nuzhat, R.; Noor, U.D.; Mahmooda, H.; et al. Ethnobotanical study of medicinal plants of Namal Valley, Salt range, Pakistan. Appl. Ecol. Environ. Res. 2019, 17, 4725–4805. [Google Scholar] [CrossRef]
- Yaseen, G.; Ahmad, M.; Sultana, S.; Suleiman Alharrasi, A.; Hussain, J.; Zafar, M.; Shafiq-Ur-Rehman. Ethnobotany of medicinal plants in the Thar desert (Sindh) of Pakistan. J. Ethnopharmacol. 2015, 163, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Qureshi, R.; Iqbal, Z.; Rahman, I.U.; Ali, N.; Shah, M.; Afzal, A.; Ijaz, F.; Ullah, S.; Raza, A.; et al. Ethnomedicinal flora of frontier region tank, Fata, Pakistan. Acta Ecol. Sin. 2019, 39, 321–327. [Google Scholar] [CrossRef]
- Shaheen, S.; Abbas, S.; Hussain, J.; Mabood, F.; Umair, M.; Ali, M.; Ahmad, M.; Zafar, M.; Farooq, U.; Khan, A. Knowledge of medicinal plants for Children diseases in the environs of district Bannu, Khyber Pakhtoonkhwa (KPK). Front. Pharmacol. 2017, 8, 430. [Google Scholar] [CrossRef]
- Mehwish, M.; Ajaib, M.; Khizar Hayat, B.; Ishtiaq, M.; Humaira, K.; Tanveer, H.; Ghani, A.; Waheeda, M. Traditional knowledge-based inventory of wild plants of Watala National Park and Allied villages from Bhimber district, Azad Jammu and Kashmir, Pakistan. Appl. Ecol. Environ. Res. 2019, 17, 12023–12055. [Google Scholar] [CrossRef]
- Ahmad, K.; Ahmad, M.; Huber, F.K.; Weckerle, C.S. Traditional medicinal knowledge, and practices among the tribal communities of Takht-e-Sulaiman hills, Pakistan. BMC Complement. Med. Ther. 2021, 21, 1–21. [Google Scholar] [CrossRef]
- Shinwari, M.I.; Khan, M.A. Folk use of medicinal herbs of Margalla hills National Park, Islamabad. J. Ethnopharmacol. 2000, 69, 45–56. [Google Scholar] [CrossRef]
- Arshad, M.; Ahmad, M.; Ahmed, E.; Saboor, A.; Abbas, A.; Sadiq, S. An ethnobiological study in Kala Chitta hills of Pothwar region, Pakistan: Multinomial logit specification. J. Ethnobiol. Ethnomed. 2014, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, A.N.; Bhutani, K.K. Ayurveda and gynecological disorders. J. Ethnopharmacol. 2005, 97, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Pandey, H.P. Seed fume of Solanum surattense: A traditional panacea for teeth and gums. Indian J. Tradit. Knowl. 2004, 3, 206–207. [Google Scholar]
- Gupta, R.; Vairale, M.G.; Deshmukh, R.R.; Chaudhary, P.R.; Wate, S.R. Ethnomedicinal uses of some plants used by Gond tribe of Bhandara district, Maharashtra. Indian J. Tradit. Knowl. 2010, 9, 5. [Google Scholar]
- Rahaman, C.H.; Karmakar, S. Ethnomedicine of santal tribe living around susunia hill of Bankura District, West Bengal, India: The quantitative approach. J. Applied Pharmaceut. Sci. 2015, 5, 127–136. [Google Scholar] [CrossRef]
- Pandey, H.P.; Chauhan, S.K. Antiseptic property of Solanum surattense Burm. f. J. Econ. Taxon. Bot. 1999, 23, 41–42. [Google Scholar]
- Abbasi, A.M.; Khan, M.A.; Ahmed, M.; Zafar, M. Herbal medicines used to cure various ailments by the inhabitants of Abbottabad District, Northwest Frontier Province, Pakistan. Indian J. Tradit. Knowl. 2010, 9, 175–183. [Google Scholar]
- Sharma, N.; Tanwer, B.S.; Vijayvergia, R. Study of medicinal plants in Aravali regions of Rajasthan for treatment of kidney stone and urinary tract troubles. Int. J. Pharmtech Res. 2011, 3, 110–113. [Google Scholar]
- Shah, A.; Bharati, K.A.; Ahmad, J.; Sharma, M.P. New ethnomedicinal claims from Gujjar and Bakerwals tribes of Rajouri and Poonch districts of Jammu and Kashmir, India. J. Ethnopharmacol. 2015, 66, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Katewa, S.S.; Chaudhary, B.L.; Jain, A. Folk herbal medicines from tribal area of Rajasthan, India. J. Ethnopharmacol. 2004, 92, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Bedi, S.J. Ethnobotany of the Ratan Mahal Hills, Gujarat, India. Econ. Bot. 1978, 32, 278–284. [Google Scholar] [CrossRef]
- Talukdar, S.; Gupta, A. Ethnomedicinal knowledge of the Garo community of two villages in Western Assam, India. J. Herb. Med. 2020, 20, 100229. [Google Scholar] [CrossRef]
- Prachi; Chauhan, N.; Kumar, D.; Kasana, M.S. Medicinal plants of Muzaffarnagar district used in treatment of urinary tract and kidney stones. IJTK 2009, 8, 191–195. [Google Scholar]
- Ghosh, A. Ethnomedicinal plants used in West Rarrh region of West Bengal. Nat. Prod. Radiance. 2008, 7, 461–465. [Google Scholar]
- Panda, T.; Mishra, N.; Tripathy, B.K.; Das, P.K.; Mohanty, R.B. Ethno-medico-biology of Bhadrak district, Odisha, India. J. For. Res. 2013, 24, 187–192. [Google Scholar] [CrossRef]
- Modak, B.K.; Gorai, P.; Pandey, D.K.; Dey, A.; Malik, T. An evidence-based efficacy and safety assessment of the ethnobiologicals against poisonous and non-poisonous bites used by the tribals of three westernmost districts of West Bengal, India: Anti-phospholipase A2 and genotoxic effects. PLoS ONE 2020, 15, e0242944. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Katewa, S.S.; Chaudhary, B.L.; Galav, P. Folk herbal medicines used in birth control and sexual diseases by tribals of Southern Rajasthan, India. J. Ethnopharmacol. 2004, 90, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, A.; Samant, L.R. Traditional medication of pachamalai hills, Tamilnadu, India. Glob. J. Pharmacol. 2012, 6, 47–51. [Google Scholar]
- Mandal, S.K.; Rahaman, C.H. Inventorization and consensus analysis of ethnoveterinary medicinal knowledge among the local people in Eastern India: Perception, cultural significance, and resilience. Front. Pharmacol. 2022, 13, 861577. [Google Scholar] [CrossRef] [PubMed]
- Uprety, Y.; Poudel, R.C.; Gurung, J.; Chettri, N.; Chaudhary, R.P. Traditional use and management of NTFPs in Kangchenjunga landscape: Implications for conservation and livelihoods. J. Ethnobiol. Ethnomedicine. 2016, 12, 1–59. [Google Scholar] [CrossRef] [PubMed]
- Barkatullah, M.I.; Hussain, F. Ethnobotanical studies of plants of Charkotli Hills, Batkhela District, Malakand, Pakistan. Front. Biol. China 2009, 4, 539. [Google Scholar] [CrossRef]
- Ahmad Jan, H.; Wali, S.; Ahmad, L.; Jan, S.; Ahmad, N.; Ullah, N. Ethnomedicinal survey of medicinal plants of Chinglai valley, Buner district, Pakistan. Eur. J. Integr. Med. 2017, 13, 64–74. [Google Scholar] [CrossRef]
- Taru, P.; Syed, S.; Kute, P.; Shikalgar, M.; Kad, D.; Gadakh, A. Dashamoola: A systematic overview. GIS-Zeitschrift fü Geoinformatik 2022, 9, 1334–1345. [Google Scholar]
- Lingaraju, D.P.; Sudarshana, M.S.; Rajashekar, N. Ethnopharmacological survey of traditional medicinal plants in tribal areas of Kodagu district, Karnataka, India. J. Pharm. Res. 2013, 6, 284–297. [Google Scholar] [CrossRef]
- Mukhtar, M.; Nazir, M.; Riaz, N.; Tousif, M.I.; Khan, S.; Ashraf, M.; Ali, M.S.; Ahmad, I.; Jabbar, A.; Saleem, M. Isolation and enzyme inhibitory studies of steroids and alkaloidal steroid saponins from Solanum surattense Burm. f. J. Chem. Soc. Pak. 2018, 40, 556. [Google Scholar]
- Lu, Y.; Luo, J.; Kong, L. Steroidal alkaloid saponins and steroidal saponins from Solanum surattense. Phytochemistry 2011, 72, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Yin, H.L.; Dong, J.X. Phenylpropanoids from Solanum surattense. Mil. Med. Sci. 2013, 37, 130–134. [Google Scholar]
- Hema, R.; Kumaravel, S.; Alagusundaram, K. GC-MS Study on the bioactive components and anti-cancer activities of Solanum surattense. Cancer Biol. 2011, 1, 13–17. [Google Scholar]
- Diao, K.-P. A new flavonoid isolated from fruits of Solanum virginianum. Chin. Tradit. Herb. Drugs 2020, 24, 3845–3849. [Google Scholar]
- Xu, Z.-P.; Liu, Y.; Wang, S.-Y.; Li, Z.-W.; Lu, D.-X.; Jiang, P.; Pan, J.; Guan, W.; Kuang, H.-X.; Yang, B.-Y. Phenolic compounds of Solanum xanthocarpum play an important role in anti-inflammatory effects. Arabian J. Chem. 2022, 15, 103877. [Google Scholar] [CrossRef]
- Siddiqui, B.; Siddiqui, S.; Faizi, S. Studies in the chemical constituents of the fresh berries of Solanum xanthocarpum Schrad. and Wendle. J. Chem. Soc. Pak. 2011, 5, 99. [Google Scholar]
- Preet, R.; Gupta, R.C. HPTLC Analysis of Solanum xanthocarpum Schrad. and Wendl., a Siddha Medicinal Herb. Adv. Pharmacol. Sci. 2018, 2018, 8546306. [Google Scholar] [CrossRef] [PubMed]
- Javaid, U.; Javaid, S.; Ashraf, W.; Rasool, M.F.; Noman, O.M.; Alqahtani, A.S.; Majeed, A.; Shakeel, W.; Albekairi, T.H.; Alqahtani, F.; et al. Chemical profiling and dose-dependent assessment of fear reducing and memory-enhancing effects of Solanum virginianum in rats. Dose-Response 2021, 19, 1559325821998486. [Google Scholar] [CrossRef]
- Nithya, M.; Ragavendran, C.; Natarajan, D. Antibacterial and free radical scavenging activity of a medicinal plant Solanum xanthocarpum. Int. J. Food Prop. 2018, 21, 313–327. [Google Scholar] [CrossRef]
- Satyal, P.; Maharjan, S.; Setzer, W.N. Volatile constituents from the leaves, fruits (berries), stems and roots of Solanum xanthocarpum from Nepal. Nat. Prod. Com. 2015, 10, 361–364. [Google Scholar] [CrossRef]
- Shivnath, N.; Siddiqui, S.; Rawat, V.; Khan, M.S.; Arshad, M. Solanum xanthocarpum fruit extract promotes chondrocyte proliferation In vitro and protects cartilage damage in collagenase induced osteoarthritic rats. J. Ethnopharm. 2021, 274, 114028. [Google Scholar] [CrossRef] [PubMed]
- Dubey, P.; Gupta, P.C. A new flavonol glycoside from the flowers of Solanum xanthocarpum. Phytochemistry 1978, 17, 2138. [Google Scholar] [CrossRef]
- Yasir, M.; Sultana, B.; Anwar, F. LC–ESI–MS/MS based characterization of phenolic components in fruits of two species of Solanaceae. J. Food Sci. Technol. 2018, 55, 2370–2376. [Google Scholar] [CrossRef] [PubMed]
- Saraswathi, K.R.; Bharkavi, A.K.; Sivaraj, C.; Arumugam, P.; Alghamdi, S.; Dablool, A.S.; Almehmadi, M.; Bannunah, A.M.; Sahibzada, M.U.K. Assessment on in vitro medicinal properties and chemical composition analysis of Solanum virginianum dried fruits. Arabian J. Chem. 2021, 14, 103442. [Google Scholar] [CrossRef]
- Tupkari, S.; Saoji, A.; Deshmukh, V. Phytochemical study of Solanum xanthocarpum. Planta Med. 1972, 22, 184–187. [Google Scholar] [CrossRef]
- Nawaz, H.; Ahmed, E.; Sharif, A.; Arshad, M.; Batool, N.; Rasool, M.A. Two new steroidal glycosides from Solanum surattense. Chem. Nat. Compd. 2014, 49, 1091–1094. [Google Scholar] [CrossRef]
- Kusano, G.; Beisler, J.; Sato, Y. Steroidal constituents of Solanum xanthocarpum. Phytochem. 1973, 12, 397–401. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sharma, M.C.; Dobhal, M.P. Isolation of natural chemical constituents from aerial part of Solanum surattens. Der Pharm. Lett. 2013, 5, 355–361. Available online: https://www.cabdirect.org/globalhealth/abstract/20133123004 (accessed on 15 December 2023).
- Shanker, K.; Gupta, S.; Srivastava, P.; Srivastava, S.K.; Singh, S.C.; Gupta, M.M. Simultaneous determination of three steroidal glycoalkaloids in Solanum xanthocarpum by high performance thin layer chromatography. J. Pharm. Biomed. Anal. 2011, 54, 497–502. [Google Scholar] [CrossRef]
- Maurya, A.; Manika, N.; Verma, R.K.; Singh, S.C.; Srivastava, S.K. Simple and reliable methods for the determination of three steroidal glycosides in the eight species of Solanum by reversed phase HPLC coupled with diode array detection. Phytochem. Anal. 2012, 24, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Kohli, S.; Chaudhary, A.S. Isolation of solasodine from the unripe fruits of Solanum xanthocarpum Schrad and Wendl. (Solanaceae) and its anti-cancer activity against HeLa and U937 cell lines. Australas. Medical J. 2013, 12, 199–213. [Google Scholar]
- Heble, M.R.; Narayanaswami, S.; Chadha, M.S. Diosgenin and beta-Sitosterol: Isolation from Solanum xanthocarpum tissue cultures. Science 1968, 161, 1145. [Google Scholar] [CrossRef]
- Gupta, M.P.; Dutta, S. Chemical examination of the seeds of Solanum xanthocarpum (Schard & Wendel). Part II. The constituents. J. Indian Chem. Soc. 1938, 15, 95–100. [Google Scholar]
- Manjunath, B.L.; Shadaksharaswamy, M. Re-examination of the alkaloids of the fruits of Solanum xanthocarpum. J. Mysore Univ. 1942, 3, 117. [Google Scholar]
- Fazil, P.; Ali, R.A. Isolation of a New steroidal glycoalkaloid from Solanum xanthocarpum. J. Basic Appl. Sci. 2021, 10, 28–32. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; Wang, C.J.; Li, G.L.; Xia, S.Z.; Wei, F.H. Purification of the effective component from Solanum xanthocarpum and its effect against Oncomelania snails. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi (Chin. J. Parasitol. Parasit. Dis.) 2005, 23, 206–208. [Google Scholar]
- Saiyed, I.Z.; Kanga, D.D. Chemical examination of the fruits of Solanum xanthocarpum. In Proceedings of the Indian Academy of Sciences-Section A; Springer: Delhi, India, 1936; pp. 255–260. [Google Scholar]
- Liu, Y.; Liu, S.; Xu, Z.P.; Wang, S.Y.; Jiang, Y.K.; Guan, W.; Pan, J.; Kuang, H.X.; Yang, B.Y. Terpenoid compounds from the fruits of Solanum virginianum. Zeitschrift für Naturforschung C. 2023, 78, 415–420. [Google Scholar] [CrossRef]
- Haribal, M.J.; Renwick, A.A.; Attygalle, A.B.; Kiemle, D. A feeding stimulant for Manduca sexta from Solanum surattenses. J. Chem. Eco. 2006, 32, 2687–2694. [Google Scholar] [CrossRef]
- Xu, Z.P.; Liu, Y.; Wang, S.Y.; Li, Z.W.; Li, X.M.; Lu, D.X.; Pan, J.; Kuang, H.X.; Yang, B.Y. Eight undescribed steroidal saponins including an unprecedented 16, 26-epoxy-furostanol saponin from Solanum xanthocarpum and their cytotoxic activities. Phytochemstry 2022, 199, 113171. [Google Scholar] [CrossRef]
- Xu, Z.-P.; Liu, Y.; Wang, S.-Y.; Li, X.-M.; Lu, D.-X.; Li, Z.-W.; Pan, J.; Kuang, H.-X.; Yang, B.-Y. Cholesaponins A-F, six new rare cholestane saponins including two unprecedented 14-Methyl C28 cholestane saponins from Solanum xanthocarpum. Tetrahedron 2022, 109, 132674. [Google Scholar] [CrossRef]
- Sato, Y.; Latham, H.G. The isolation of diosgenin from Solanum xanthocarpum. J. Amer. Chem. Soc. 1953, 75, 6067. [Google Scholar] [CrossRef]
- Xu, Z.-P.; Liu, Y.; Li, X.-M.; Wang, S.-Y.; Jiang, P.; Pan, J.; Jiang, Y.-K.; Kuang, H.-X.; Yang, B.-Y. Xanthosaponins A and B, two unusual steroidal saponins with an unprecedented 16,17-Seco-Cholestane skeleton from Solanum xanthocarpum and their cytotoxic activities. New J. Chem. 2022, 46, 1815–1820. [Google Scholar] [CrossRef]
- Husanappa, D.G.Y.; Tippanna, D.B.S. Pharmacognostic studies of kantakari root (Solanum xanthocarpum Schard& Wend.): An experimental study. IJMSCI 2014, 1, 420–430. [Google Scholar]
- Kusano, G.; Takemoto, T.; Beisler, J.A.; Sato, Y. Steroidal constituents of Solanum xanthocarpum. Phytochemestry 1975, 14, 529–532. [Google Scholar] [CrossRef]
- Preet, R.; Gupta, R.C. Determination of fatty acids in Solanum Surattense Burm. F. by using gas chromatography. Asian J. Mr. Pharm. Res. 2017, 10, 60–62. [Google Scholar] [CrossRef]
- Gupta, M.P.; Dutta, S. The chemical examination of Solanum xanthocarpum, Schard and Wendle. Part I. The constituents of the oil from the seeds. J. Indian Chem. Soc. 1936, 13, 613–618. [Google Scholar] [CrossRef]
- Xu, Z.-P.; Algradi, A.M.; Liu, Y.; Wang, S.-Y.; Jiang, Y.-K.; Guan, W.; Pan, J.; Kuang, H.-X.; Yang, B.-Y. Bioactive lipids from the fruits of Solanum xanthocarpum and their anti-inflammatory activities. Fitoterapia 2022, 157, 105134. [Google Scholar] [CrossRef]
- Heble, M.R.; Narayanaswami, S.; Chadha, M.S. Hormonal control of steroid synthesis in Solanum xanthocarpum tissue cultures. Phytochemestry 1971, 10, 2393–2394. [Google Scholar] [CrossRef]
- Jaggi, R.K.; Bhatnagar, J.K.; Qadry, J.S.; Kapoor, V.K. Static callus cultures of fruit of Solanum xanthocarpum. Indian J. Pharm. Sci. 1987, 49, 210–212. [Google Scholar]
- Emmanuel, S.; Ignacimuthu, S.; Perumalsamy, R.; Amalraj, T. Anti-inflammatory activity of Solanum trilobatum. Fitoterapia 2006, 77, 611–612. [Google Scholar] [CrossRef] [PubMed]
- Muruhan, S.; Selvaraj, S.; Viswanathan, P.K. In vitro antioxidant activities of Solanum surattense leaf extract. Asian Pac. J. Trop. Biomed. 2013, 3, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Bhardwaj, R.I.C.H.A.; Sharma, R.A. Free radical scavenging potential of the Solanum surattense Burm f.: An important medicinal plant. Int. J. Pharm. Pharm. Sci. 2014, 6, 39–42. [Google Scholar]
- Azhar, N.; Khan, M.Q.; Bibi, A.; Shoaib, M.; Mumtaz, S.; Batool, T.; Ashraf, S.; Ijaz, S.; Firdous, S.; Sharif, F. Evaluation of antimicrobial, antioxidant, total phenolic, total flavonoids, metal content and proximate potential of Solanum xanthocarpum L. (Solanaceae). BioRxiv 2020, 2020-02. [Google Scholar] [CrossRef]
- Nithiyanantham, S.; Varadharajan, S.; Siddhuraju, P. Differential effects of processing methods on total phenolic content, antioxidant and antimicrobial activities of three species of Solanum. J. Food Drug Ana. 2012, 20, 21. [Google Scholar] [CrossRef]
- Joseph, J.M.; Sowndhararajan, K.; Rajendrakumaran, D.; Manian, S. In vitro antioxidant potential of different parts of Solanum surattense Burm. f. Food Sci. Biotechnol. 2011, 20, 477–483. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Medicinal attributes of Solanum xanthocarpum fruit consumed by several tribal communities as food: An in vitro antioxidant, anticancer and anti-HIV perspective. BMC Complement. Altern. Med. 2014, 14, 112. [Google Scholar] [CrossRef]
- Pandey, R.K.; Shukla, S.S.; Jain, A.; Jain, A.; Gupta, V.B.; Deb, L. Evaluation of comparative immunomodulatory potential of Solanum xanthocarpum root and fruits on experimental animal. Indian J. Pharm. Educ. Res. 2018, 52, S237–S245. [Google Scholar] [CrossRef]
- Natarajan, P.; Sorimuthu, A.; Muruganantham, S.; Marimuthu, M. Antibacterial activity of extracts of Solanum xanthocarpum, Aegle marmelos and Capparis spinose against antibiotic resistant Staphylococcus cohnii. Int. J. Pharm. Investig. 2020, 10, 559–563. [Google Scholar] [CrossRef]
- Choudhary, P.K.; Bhatia, A.K.; Goel, A. Efficacy of antimicrobial and antioxidant activity of Solanum xantocarpum whole plant hot aqueous extracts. J. Appl. Microbiol. 2016, 10, 1403–1408. [Google Scholar]
- Garedaghi, Y.; Khaki, A. Evaluation of the effectiveness of ethanolic extract of Solanum surattense against Plasmodium berghei in comparison with Chloroquine in sourian mice using In vivo tests. Crescent J. Med. Biol. Sci. 2014, 1, 76–79. [Google Scholar]
- Khan, A.W.; Khan, A.U. Antidepressant effect of Solanum surattense Burn F. J. Anim. Plant Sci. 2019, 29, 1188–1192. [Google Scholar]
- Mustafa, G.; Ahmed, S.; Ahmed, N.; Jamil, A. Phytochemical and antibacterial activity of some unexplored medicinal plants of Cholistan Desert. Pak. J. Bot. 2016, 48, 2057–2062. [Google Scholar]
- Hameed, I.; Hussain, F.; Sher, Z.; Bacha, N.; Khan, A.A. Cytotoxicity and phytotoxicity of some selected medicinal plants of family Solanaceae. Pak. J. Bot. 2013, 45, 1749–1754. [Google Scholar]
- Priya, P.; Pal, J.A.; Aditya, G.; Gopal, R. Anti-microbial, antioxidant and anthelmintic activity of crude extract of Solanum xanthocarpum. Pharmacogn. J. 2010, 2, 400–404. [Google Scholar] [CrossRef]
- Andleeb, S.; Ahmed, M.M.; Saqib, F.; Hussain, M.; Hanif, M.; Shah, S.N.H. Folkloric use of Solanum surattense Burm. In Proceedings of the 20th Istanbul International Conference on “Agricultural, Biological and Medical Sciences” (IABMS-19), IABMS, Istanbul, Turkey, 5–6 December 2019; pp. 48–54. [Google Scholar]
- Aswar, U.; Gurav, M.; More, G.; Rashed, K.; Aswar, M. Effect of aqueous extract of Solanum xanthocarpum Schrad. & Wendl. on postmenopausal syndrome in ovariectomized rats. J. Integr. Med. 2014, 12, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Baskar, K.; Ananthi, J.; Ignacimuthu, S. Toxic effects of Solanum xanthocarpum Sch & Wendle against Helicoverpa armigera (Hub.), Culex quinquefasciatus (Say.) and Eisenia fetida (Savigny, 1826). Environ. Sci. Pollut. Res. 2018, 25, 2774–2782. [Google Scholar] [CrossRef]
- Mukhtar, M.; Khan, S.; Riaz, N.; Tousif, M.I.; Nazir, M.; Jabbar, A.; Saleem, M. Anticancer agents from Solanum surattense. Front. Chem. Sci. 2020, 1, 15–20. [Google Scholar] [CrossRef]
- Birari, R.B.; Tote, M.V.; Patil, S.A.; Jalalpure, S.S.; Shid, S.L.; Habade, B.M. Anticonvulsant activity of whole plant of Solanum surattense burm against mes and ptz induced seizures in rats. Pharmacology 2010, 1, 479–486. [Google Scholar]
- Menghani, E.; Sharma, S.K. Antimicrobial Activity of Juniperus communis and Solanum xanthocarpum. Int. J. Pharm. Sci. Res. 2012, 3, 2815–2818. [Google Scholar] [CrossRef]
- Narayanan, M.; Jayashree, T.; Kandasamy, S.; Natarajan, D.; Liu, G.; Elesawy, B.H.; Elfasakhany, A.; Pugazhendhi, A. An In vitro investigation of the antidermatophytic, antioxidant, and nephroprotective activity of Solanum surattense. Process Biochem. 2021, 109, 178–185. [Google Scholar] [CrossRef]
- Parmar, K.M.; Shende, P.R.; Katare, N.; Dhobi, M.; Prasad, S.K. Wound healing potential of Solanum xanthocarpum in Streptozotocin-induced diabetic rats. J. Pharm. Pharmacol. 2018, 70, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- Sethi, G.; Shanmugam, M.K.; Warrier, S.; Merarchi, M.; Arfuso, F.; Kumar, A.P.; Bishayee, A. Pro-apoptotic and anti-cancer properties of diosgenin: A comprehensive and critical review. Nutrients 2018, 10, 645. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Z.; Liu, J.Z.; Hu, J.X.; Chen, H.L.; Li, W.L.; Hai, C.X. Double antioxidant activities of rosiglitazone against high glucose-induced oxidative stress in hepatocyte. Toxicol. In Vitro 2011, 25, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Thaakur, S.; Pendyala, V. Phytochemical and pharmacological evaluation of Solanum surattense for antidepressant activity in albino mice. Int. J. Toxicol. Pharmacol. Res. 2016, 8, 368–371. [Google Scholar]
- Brattiya, K.; Jagdish, R.; Ahamed, A.; Anuradha, C.; Jeyasudha, J. Anti-obesity and anticancer activity of Solanum xanthocarpum leaf extract: An in vitro study. Natl. J. Physiol. Pharm. Pharmacol. 2023, 13, 845–848. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, P.; Yan, L.; Liu, L. Synthesis of gold nanoparticles with Solanum xanthocarpum extract and their In vitro anticancer potential on nasopharyngeal carcinoma cells. Int. J. Nanomedicine 2018, 13, 7047–7059. [Google Scholar] [CrossRef] [PubMed]
- Poongothai, K.; Ponmurugan, P.; Ahmed, K.S.Z.; Kumar, B.S.; Sheriff, S. Antihyperglycemic and antioxidant effects of Solanum xanthocarpum leaves (field grown & In vitro raised) extracts on alloxan induced diabetic rats. Asian Pac. J. Trop. Med. 2011, 4, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Bahuguna, Y.; Juyal, V.; Gusain, K. Pharmacological evaluation of Solanum surattense leaf for antiulcer activity. J. Pharm. Res. 2008, 2, 253–259. [Google Scholar]
- Huque, A.; Biswas, S.; Mamun, M.A.A.; Bhuiyan, J.R.; Rashid, M.H.; Jahan, A. Analgesic, anti-inflammatory and anxiolytic activity evaluation of methanol extract of Solanum surattense leaf in Swiss albino mice model. Int. J. Pharm. Clin. Res. 2015, 7, 68–76. [Google Scholar]
- Kumar, P. Molluscicidal efficacy of medicinal plant Solanum surattense against Fasciola vector snail, Lymnaea acuminata. Int. J. Biol. Sci. 2021, 3, 120–126. [Google Scholar] [CrossRef]
- Sridevi, M.; Senthil, S.; Pugalendi, K.V. Anti-hyperglycemic effect of Solanum surattense leaf extract in streptozotocin induced diabetic rats. J. Pharmacol. Toxicol. 2007, 2, 621–629. [Google Scholar] [CrossRef]
- Sridevi, M.; Kalaiarasi, P.; Pugalendi, K.V. Anti-hyperlipidemic activity of alcoholic leaf extract of Solanum surattense in streptozotocine diabetic rats. Asian Pac. J. Trop. Biomed. 2011, 1, 5278–5280. [Google Scholar] [CrossRef]
- Sheeba, E. Antibacterial activity of Solanum surattense burm. f. Kathmandu Univ. J. Sci. Eng. Technol. 2010, 6, 1–4. [Google Scholar] [CrossRef]
- Raja, W.; Nosalova, G.; Ghosh, K.; Sivova, V.; Nosal, S.; Ray, B. In vivo antitussive activity of a pectic arabinogalactan isolated from Solanum virginianum L. in guinea pigs. J. Ethnopharmacol. 2014, 156, 41–46. [Google Scholar] [CrossRef]
- Mani, M.; Chang, J.H.; Dhanesh Gandhi, A.; Kayal Vizhi, D.; Pavithra, S.; Mohanraj, K.; Mohanbabu, B.; Babu, B.; Balachandran, S.; Kumaresan, S. Environmental and biomedical applications of AgNPs synthesized using the aqueous extract of Solanum surattense leaf. Inorg. Chem. Commun. 2020, 121, 108228. [Google Scholar] [CrossRef]
- Velu, P.; Vijayalakshmi, A.; Iyappan, P.; Indumathi, D. Evaluation of antioxidant and stabilizing lipid peroxidation nature of Solanum xanthocarpum leaves in experimentally diethylnitrosamine induced hepatocellular carcinogenesis. Biomed. Pharmacother. 2016, 84, 430–437. [Google Scholar] [CrossRef]
- Ghassam, J.B.; Ghaffari, H.; Prakash, H.S.; Kini, K.R. Antioxidant and hepatoprotective effects of Solanum xanthocarpum leaf extracts against CCl4-induced liver injury in rats. Pharm. Biol. 2014, 52, 1060–1068. [Google Scholar] [CrossRef]
- Parvez, M.K.; Al-Dosari, M.S.; Arbab, A.H.; Alam, P.; Alsaid, M.S.; Khan, A.A. Hepatoprotective effect of Solanum surattense leaf extract against chemical-induced oxidative and apoptotic injury in rats. BMC Complement. Altern. Med. 2019, 19, 1–9. [Google Scholar] [CrossRef]
- Reddy, R.V.R.; Rao, K.U.M.; Vangoori, Y.; Sundharam, J.M. Evaluation of diuretic and anti-inflammatory property of ethanolic extract of solanum surattense in experimental animal models. Int. J. Pharm. Pharm. Sci. 2014, 6, 387–389. [Google Scholar]
- Gaherwal, S.; Shiv, G.; Wast, N. Anti-fungal activity of Solanum xanthocarpum (kantkari) leaf extract. World J. Zool. 2014, 9, 111–114. [Google Scholar]
- Rana, S.; Prakash, V.; Sagar, A. Antibacterial activity of Solanum xanthocarpum leaf extract. Int. J. Curr. Microbiol. App. Sci. 2016, 5, 323–328. [Google Scholar] [CrossRef]
- Poongothai, K.; Ponmurugan, P.; Ahmed, K.S.Z. A comparative study of antibacterial potential and phytochemical analysis between field grown and tissue cultured plant—Solanum xanthocarpum Schrad. and Wendl. J. Pharm. Res. 2010, 3, 1958–1960. [Google Scholar]
- Dewangan, H.; Bais, M.; Jaiswal, V.; Verma, V.K. Potential wound healing activity of the ethanolic extract of Solanum xanthocarpum Schrad and Wendl leaves. Pak. J. Pharm. Sci. 2012, 25, 189–194. [Google Scholar]
- Parmar, S.K.; Gangwal, A.P.; Prajapati, T.R.; Pandya, K.B.; Ranpariya, V.L.; Sheth, N.R. Evaluation of anti-asthmatic activity of ethanolic extract of Solanum xanthocarpum leaves. Pharmacology 2010, 2, 410–424. [Google Scholar]
- Usman, H.; Jan, H.; Zaman, G.; Khanum, M.; Drouet, S.; Garros, L.; Tungmunnithum, D.; Hano, C.; Abbasi, B.H. Comparative analysis of various plant-growth-regulator treatments on biomass accumulation, bioactive phytochemical production, and biological activity of Solanum virginianum L. callus culture extracts. Cosmetics 2022, 9, 71. [Google Scholar] [CrossRef]
- Vadnere, G.P.; Gaud, R.S.; Singhai, A.K. Evaluation of anti-asthmatic property of Solanum xanthocarpum flower extracts. Pharmacology 2008, 1, 513–522. [Google Scholar]
- Singh, H.; Prakash, A.; Kalia, A.N.; Majeed, A.B.A. Synergistic hepatoprotective potential of ethanol extract of Solanum xanthocarpum and Juniperus communis against paracetamol and azithromycin induced liver injury in rats. J. Tradit. Complement. Med. 2016, 6, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.K.; Patel, M.A.; Vyas, B.A.; Shah, D.R.; Gandhi, T.R. Antiurolithiatic activity of saponin rich fraction from the fruits of Solanum xanthocarpum Schrad. & Wendl. (Solanaceae) against ethylene glycol induced urolithiasis in rats. J. Ethnopharmacol. 2012, 144, 160–170. [Google Scholar] [CrossRef]
- Abbas, K.; Niaz, U.; Hussain, T.; Saeed, M.A.; Javaid, Z.; Idrees, A.; Rasool, S. Antimicrobial activity of fruits of Solanum nigrum and Solanum xanthocarpum. Acta Pol. Pharm. 2014, 71, 415–421. [Google Scholar]
- Singh, O.M.; Subharani, K.; Singh, N.I.; Devi, N.B.; Nevidita, L. Isolation of steroidal glycosides from Solanum xanthocarpum and studies on their antifungal activities. Nat. Prod. Res. 2007, 21, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.R.; Khan, H.; Khan, S.; Muhammad, N.; Khan, F.U.; Muhammad, A.; Khan, Y.M. Cytotoxic, antioxidant and phytotoxic effect of Solanum surattense Burm.f. fruit extracts. Int. J. Pharmacogn. Phytochem. 2013, 28, 1154–1158. [Google Scholar]
- Singh, C.S.; Gupta, S.; Jain, A.P. In-vitro anti-inflammatory activity of S. surattense and A. officinarum herb by human red blood cell membrane stabilization method. JDDT 2019, 9, 663–666. [Google Scholar]
- Raul, S.; Padhy, G.; Charan, S.; Gurubarik, N. Comparative evaluation of anthelmintic potential of Cucurbita maxima seeds, Moringa oleifera seeds and Solanum surattense fruits. Res. J. Pharmacogn. Phytochem. 2014, 6, 187–189. [Google Scholar]
- Nayak, B.S.; Jena, P.K.; Sahu, N.P.; Nayak, U.K.; Patro, K.B. Comparative study of anthelmintic activity between aqueous and ethanolic extract of Solanum surattense Linn. Int. J. Pharm. Pharm. Sci. 2009, 1, 103–107. [Google Scholar]
- Hussain, T.; Gupta, R.K.; Sweety, K.; Eswaran, B.; Vijayakumar, M.; Rao, C.V. Nephroprotective activity of Solanum xanthocarpum fruit extract against gentamicin–induced nephrotoxicity and renal dysfunction in experimental rodents. Asian Pac. J. Trop. Med. 2012, 5, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Mal, M.; Bhattacharya, P. Evaluation of hyperglycemia potential of Solanum xanthocarpum (Solanaceae) fruits in normal and streptozotocin induced diabetic rats. Eur. Bull. Drug Res. 2005, 13, 51–55. [Google Scholar]
- Gupta, R.K.; Hussain, T.; Panigrahi, G.; Das, A.; Singh, G.N.; Sweety, K.; Faiyazuddin, M.; Rao, C.V. Hepatoprotective effect of Solanum xanthocarpum fruit extract against ccl4 induced acute liver toxicity in experimental animals. Asian Pac. J. Trop. Med. 2011, 4, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Anwikar, S.; Bhitre, M. Study of the synergistic anti-inflammatory activity of Solanum xanthocarpum Schrad and Wendl and Cassia fistula Linn. Int. J. Ayurveda Res. 2010, 1, 167–171. [Google Scholar] [CrossRef]
- Barik, C.S.; Parida, N.; Sahu, D.; Sahoo, A.R. Solanum surattense: Evaluation of anthelmintic activity. J. Pharm. Adv. Res. 2018, 1, 240–246. [Google Scholar]
- Ahmed, M.M.; Andleeb, S.; Saqib, F.; Hussain, M.; Khatun, M.N.; Ch, B.A.; Rahman, H. Diuretic and serum electrolyte regulation potential of aqueous methanolic extract of Solanum surattense fruit validates its folkloric use in dysuria. BMC Complement. Altern. Med. 2016, 16, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Changbunjong, T.; Wongwit, W.; Leemingsawat, S.; Tongtokit, Y.; Deesin, V. Effect of crude extract of Solanum xanthocarpum against snails and mosquito larvae. Southeast Asian J. Trop. Med. Public Health 2010, 41, 320–325. Available online: https://pubmed.ncbi.nlm.nih.gov/20578514/ (accessed on 15 December 2023). [PubMed]
- Kumar, P.M.; Murugan, K.; Kovendan, K.; Panneerselvam, C.; Prasanna Kumar, K.; Amerasan, D.; Subramaniam, J.; Kalimuthu, K.; Nataraj, T. Mosquitocidal activity of Solanum xanthocarpum fruit extract and copepod Mesocyclops thermocyclopoides for the control of dengue vector Aedes Aegypti. Parasitol. Res. 2012, 111, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.H.; Xu, X.J.; Liu, J.B.; Dai, Y.H.; Dussart, G.; Trigwell, J. Toxicology of a potential molluscicide derived from the plant Solanum xanthocarpum: A preliminary study. Ann. Trop. Med. Parasitol. 2002, 96, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Gupta, R.K.; Sweety, K.; Khan, M.S.; Hussain, M.S.; Arif, M.D.; Hussain, A.; Faiyazuddin, M.D.; Rao, C.V. Evaluation of antihepatotoxic potential of Solanum xanthocarpum fruit extract against antitubercular drugs induced hepatopathy in experimental rodents. Asian Pac. J. Trop. Biomed. 2012, 2, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.A.; Joshi, V.G.; Sambrekar, S.N.; Desai, N.S. Hepatoprotective and antioxidant potential of extracts from whole plant of Solanum surattense Burm.f. Res. J. Pharm. Phytochem. 2011, 3, 17–21. [Google Scholar]
- Kar, D.M.; Maharana, L.; Pattnaik, S.; Dash, G.K. Studies on hypoglycaemic activity of Solanum xanthocarpum Schrad. & Wendl. fruit extract in rats. J. Ethnopharmacol. 2006, 108, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Arumuganainar, D.; Subramaniam, G.; Kurumathur Vasudevan, A.; Subbusamy Kanakasabapathy, B. An in vitro evaluation of the antibacterial efficacy of Solanum xanthocarpum extracts on bacteria from dental plaque biofilm. Cureus 2023, 15, e45202. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.B.; Rathod, I.; Patel, J.; Brahmbhatt, M.R. Anti-Urolithiatic and Natriuretic Activity of Steroidal Constituents of Solanum Xanthocarpum. Der Pharma Chemica 2010, 2, 173–176. [Google Scholar]
- Gunaselvi, G.; Kulasekaren, V.; Gopal, V. Anthelmintic activity of the extracts of Solanum xanthocarpum Schrad And Wendl fruits (solanaceae). Inter. J. Pharm. Tech. Res. 2010, 2, 1772–1774. [Google Scholar]
- Kumar, N.; Dhan, P.; Kumar, P. Wound healing activity of Solanum xanthocarpum Schrad. & Wendl. fruits. Indian J. Nat. Prod. Res. 2010, 1, 470–475. [Google Scholar]
- Thirumalai, T.; David, E.; Viviyan, T.S.; Elumalai, E. Effect of Solanum surattense seed on the oxidative potential of cauda epididymal spermatozoa. Asian Pac. J. Trop. Biomed. 2012, 2, 21–23. [Google Scholar] [CrossRef] [PubMed]
- David, E.; Elumalai, E.K.; Sivakumar, C.; Therasa, S.V.; Thirumalai, T. Evaluation of antifungal activity and phytochemical screening of Solanum surattense seeds. J. Pharm. Res. 2010, 3, 684–687. [Google Scholar]
- Amirtharaj, L.V.; Srinivasan, N.; Abburi, S.; Karthikeyan, K.; Mahalaxmi, S. Evaluating the analgesic efficacy of Solanum surattense (herbal seed extract) in relieving pulpal pain-an in-vivo study. Dentistry 2015, 5, 1000288. [Google Scholar] [CrossRef]
- Parmar, K.M.; Prakash, R.; Joshi, I.A.; Prasad, S.K. Anti-psoriatic potential of Solanum xanthocarpum stem in imiquimod-induced psoriatic mice model. J. Ethnopharmacol. 2017, 198, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Sharma, A.K.; Dobhal, M.P.; Sharma, M.C.; Gupta, R.S. Antidiabetic and antioxidant potential of β-Sitosterol in Streptozotocin-induced experimental hyperglycemia. J. Diabet. 2011, 3, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Ahmad, M.; Khan, Z.; Khan, F. Biological and Leishmanicidal activities of Solanum surattense bark extract. Topclass J. Herb. Med. 2014, 3, 17–21. Available online: http://www.topclassglobaljournals.org (accessed on 15 December 2023).
- Singh, K.D.; Dass, S.; Yadav, S. Antihyperglycemic activity of ethanol extract of Solanum surattense root. Int. J. Pharm. Sci. Res. 2013, 4, 2777–2781. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sharma, T.C.; Gupta, N. In vitro evaluation of antifungal activity of methanol root extract of Solanum surattens against candida species. J. Adv. Sci. Res. 2021, 12, 302–304. [Google Scholar] [CrossRef]
- Bhatt, M.; Reddy, M.N. Antimetastatic, superoxide anion and nitric oxide reduction potential of Solanum xanthocarpum on human lung cancer cell line A549. Indian J. Trad. Knowl. 2018, 17, 468–473. [Google Scholar]
- Jinal, H.N.; Amaresan, N. Characterization of medicinal plant-associated biocontrol Bacillus subtilis (SSL2) by liquid chromatography-mass spectrometry and evaluation of compounds by in silico and In vitro methods. J. Biomol. Struct. Dyn. 2020, 38, 500–510. [Google Scholar] [CrossRef]
- Singh, S.; Singh, P. Phenolic content of Solanum xanthocarpum and their diuretic potential. J. Interdiscip. Multidiscip. Res. 2023, 18, 40–53. [Google Scholar]
- Eranezhath, S. Retraction: Phytochemical and antimicrobial studies of extracts of Solanum xanthocarpum. Anc. Sci. Life 2016, 35, 191. [Google Scholar] [CrossRef]
- Bansal, S.K.; Singh, K.V.; Kumar, S. Larvicidal Activity of the Extracts from Different Parts of the Plant Solanum xanthocarpum against important mosquito vectors in the arid region. J. Environ. Biol. 2009, 30, 221–226. [Google Scholar]
- Devi, E.C.; Devi, J.; Kalita, P.P.; Talukdar, N.; Bhattacharjee, M.; Sarma, M.P. Phytochemical analysis of Solanum virginianum and its effect on human pathogenic microbes with special emphasis on Salmonella typhi. J. Forensic Toxicol. Pharmacol. 2016, 5, 2. [Google Scholar] [CrossRef]
- Udayakumar, R.; Velmurugan, K.; Srinivasan, D.; Krishna, R.R. Phytochemical and antimicrobial studies of extracts of Solanum xanthocarpum. Anc. Sci. Life 2003, 23, 90–94. [Google Scholar]
- Madhumithaa, S.; Vishnupriya, V.; Gayathri, R.; Selvaraj, J. Antihemolytic activity of Solanum virginianum. Drug Invent. Today 2019, 11, 1549–1552. [Google Scholar]
- Devi, G.B.; Ramya, K.S.; Josthna, P.; Naidu, C.V. Qualitative, quantitative screening, antioxidant and antibacterial activity of various parts of Solanum surattense. J. Emer. Tech. Inn. Res. 2022, 9, 1–11. [Google Scholar]
- Gabay, O.; Sanchez, C.; Salvat, C.; Chevy, F.; Breton, M.; Nourissat, G.; Wolf, C.; Jacques, C.; Berenbaum, F. Stigmasterol: A phytosterol with potential anti-osteoarthritic properties. Osteoarthr. Cartil. 2010, 18, 106–116. [Google Scholar] [CrossRef]
- Bhattacharya, T.K.; Ghosh, M.N.; Subramanian, S.S. A note on anti-inflammatory activity of carpesterol. Fitoterapia 1980, 51, 265–268. [Google Scholar]
- Shizuka, H.; Taku, U.; Noriko, M.; Joo, Y.L.; Keiko, T.; Yuki, N.; Shohei, H.; Nobuaki, T.; Toshihiko, N.; Rina, Y.; et al. Diosgenin attenuates inflammatory changes in the interaction between adipocytes and macrophages. Mol. Nutr. Food Res. 2010, 54, 797–804. [Google Scholar] [CrossRef]
- Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer lett. 2009, 285, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, N.K.; Bagavan, A.; Rahuman, A.A.; Zahir, A.A.; Kamaraj, C.; Elango, G.; Jayaseelan, C.; Kirthi, A.V.; Santhoshkumar, T.; Marimuthu, S.; et al. Evaluation of antiplasmodial activity of medicinal plants from North Indian Buchpora and South Indian Eastern Ghats. Malar. J. 2015, 14, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, K.K.; Paul, A.T.; Fayad, W.; Linder, S. Apoptosis inducing activity of steroidal constituents from Solanum xanthocarpum and Asparagus racemosus. Phytomedicine 2010, 17, 789–793. [Google Scholar] [CrossRef] [PubMed]
- Siddique, Y.H.; Beg, T.; Afzal, M. Antigenotoxic effect of apigenin against anti-cancerous drugs. Toxicol. In Vitro 2008, 22, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Burger, T.; Mokoka, T.; Fouché, G.; Steenkamp, P.; Steenkamp, V.; Cordier, W. Solamargine, a bioactive steroidal alkaloid isolated from Solanum aculeastrum induces non-selective cytotoxicity and P-glycoprotein inhibition. BMC Complement. Altern. Med. 2018, 18, 137. [Google Scholar] [CrossRef] [PubMed]
- Hata, K.; Hori, K.; Takahashi, S. Role of P38 MAPK in lupeol-induced B16 2F2 mouse melanoma cell differentiation. J. Biochem. 2003, 134, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Kuo, K.W.; Hsu, S.H.; Li, Y.P.; Lin, W.L.; Liu, L.F.; Chang, L.C.; Lin, C.C.; Lin, C.N.; Sheu, H.M. Anticancer activity evaluation of the solanum glycoalkaloid solamargine: Triggering apoptosis in human hepatoma cells. Biochem. Pharmacol. 2000, 60, 1865–1873. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Phenolic content, reducing power and membrane protective activities of Solanum xanthocarpum root extracts. Vegetos 2013, 26, 301–307. [Google Scholar] [CrossRef]
- Cham, B.E. Solasodine, solamargine and mixtures of solasodine rhamnosides: Pathway to expansive clinical anticancer therapies. Internat. J. Clin. Med. 2017, 8, 692–713. [Google Scholar] [CrossRef]
- Erdemoglu, N.; Turan, N.N.; Cakõcõ, I.; Sener, B.; Aydõn, A. Antioxidant activities of some Lamiaceae plant extracts. Phytother. Res. 2006, 20, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Mickymaray, S.; Al Aboody, M.S.; Rath, P.K.; Annamalai, P.; Nooruddin, T. Screening and antibacterial efficacy of selected Indian medicinal plants. Asian Pac. J. Trop. Biomed. 2016, 6, 185–191. [Google Scholar] [CrossRef]
- Pasnani, J.S.; Hemavathi, K.G.; Gulati, O.D.; Rajani, A.P. Effects of Abana, an ayurvedic preparation, on rabbit atrium and intestine. J. Ethnopharm. 1988, 24, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Najmi, A.K.; Pillai, K.K.; Pal, S.N.; Aqil, M. Free radical scavenging and hepatoprotective activity of jigrine against galactosamine induced hepatopathy in rats. J. Ethnopharm. 2005, 97, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Khalid, H.R.; Aamir, M.; Tabassum, S.; Alghamdi, Y.S.; Alzamami, A.; Ashfaq, U.A. Integrated System Pharmacology Approaches to Elucidate Multi-Target Mechanism of Solanum Surattense against Hepatocellular Carcinoma. Molecules 2022, 27, 6220. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.; Al Mahamud, R.; Jannat, K.; Afroze, T.; Bondhon, B.N.F.; Fariba, M.H.; Jahan, R.; Rahmatullah, M. Phytochemicals from Solanum surattense Burm. f. have high binding affinities for C-3 like main protease of COVID-19 (SARS-CoV-2). J. Med. Plants Stud. 2020, 8, 20–26. [Google Scholar]
- Sahu, N.; Madan, S.; Walia, R.; Saxena, S. In-silico Approach for the treatment of Psoriasis by Solanum xanthocarpum. In Proceedings of the Conference Pharmaceutical Technology, Phytopharmaceuticals and Biologicals: Trends (PTPPBT 2023), Amity University, Uttar Pradesh, Noida, India, 17–18 March 2023. [Google Scholar]
- Govindan, S.; Viswanathan, S.; Vijayasekaran, V.; Alagappan, R. Further studies on the clinical efficacy of Solanum xanthocarpum and Solanum trilobatum in bronchial asthma. Phytother. Res. 2004, 18, 805–809. [Google Scholar] [CrossRef]
- Divya, K.; Tripathi, J.S.; Samaria, J.K.; Tiwari, S.K. Antiasthmatic effect of standardized extract of ayurvedic compounds via nasal spray actuation (in aerosol form) in rodents and its comparative clinical study. Adv. Nat. Sci. 2013, 6, 1–13. [Google Scholar] [CrossRef]
- Joshi, S.G.; Shettar, L.G.; Agnihotri, P.S.; Acharya, A.B.; Thakur, S.L. Solanum xanthocarpum and Acacia catechu Willd—an ayurvedic soothe: A randomized clinical trial. J. Ayu. Her. Med. 2021, 7, 1–4. [Google Scholar] [CrossRef]
- Jihong, Q. Solanum xanthocarpum Extract, Preparation Method and Use Thereof. Patent number CN101337001B. Medicilon/MPI Preclinical Research (Shanghai) CO. 15 February 2008. Available online: https://patents.google.com/patent/CN101337001B/en (accessed on 5 January 2024).
- Sravanthi, K.; Ramana, K.V.; Sumalatha, G.; Neeraja, K. Evaluation of anti-inflammatory and analgesic potency of whole plant extract of Solanum Surattense in experimental animals. Res. J. Pharmacol. Pharmacodyn. 2013, 5, 101–105. [Google Scholar]
- Gupta, R.K.; Swain, S.; Sahoo, J.; Rao, C.V.; Gupta, A. Antioxidant and hepatoprotective activity of Solanum xanthocarpum Schrad and Wendl. fruit extract against ethanol induced liver toxicity in experimental rodents. Asian J. Pharm. Health Sci. 2016, 6, 1531–1535. [Google Scholar]
- Verma, P.; Paswan, S.; Singh, S.P.; Shrivastva, S.; Rao, C.V. Assessment of hepatoprotective potential of Solanum xanthocarpum (whole plant) Linn. against isoniazid & rifampicin induced hepatic toxicity in wistar rats. Elixir Appl. Botany 2015, 87, 35578–35583. [Google Scholar]
- Devi, O.A.; Das, M.; Saikia, A.; Das, P.; Sharma, D. Evaluation of total mineral, calcium, selenium, iron content of ten medicinal plants extracts of manipur having anti-inflammatory properties. J. Med. Plants Stud. 2016, 4, 189–194. [Google Scholar]
- Tayade, S.V.; Pandey, S.; Giri, A.S.G. Green extraction of dyes from Solanum xanthocarpum leaves. Chem. Sci. Rev. Lett. 2016, 5, 41–45. [Google Scholar]
Synonyms | Solanum arabicum Dunal; Solanum armatum Forssk.; Solanum ferox Burm. f.; Solanum gula Buch.-Ham.; Solanum jacquinii Willd.; Solanum jacquinii Miq.; Solanum macannii Santapau; Solanum mairei H.Lév., Solanum melongena Wall.; Solanum surattense Burm.f.; Solanum surattense var. awanicum Yousaf, Mir A.Khan and Shinwari.; Solanum virginicum L.; Solanum xanthocarpum Schrad.; Solanum xanthocarpum var. geoffrayi Bonati; Solanum xanthocarpum var. jacquinii (Willd.) Dunal; Solanum xanthocarpum var. schraderi Dunal |
Local names | kantakari, katabegun (Bangladesh); mao guo qie (China); kateli, oonth kateli, katali, bhatakataiya, chhotikateri, ringani, leipungkhanga, kateringani, kantankattiri, kandan katri, kandanghathiri, kantakariccunta, kantakarivalutana, nelamulaka, vakudu, chinnamulaka, mulaka, pinnamulaka, bhoringan, baiga-kateli, bhurangi, dhaturi etc (India) |
Formulation Number | Formulation | Ref. |
---|---|---|
Pf1 | Solanum surattense whole plant (10%), Tribulus terrestris fruit (25%), Zingiber officinale root (10%), Crataeva nurvala bark (25%) Tinospora cordifolia stem (10%) Asparagus racemosus root (10%) Tephrosia purpurea leaf (10%) | [24] |
Pf2 | Solanum surattense whole plant (25%), Piper longum fruit (10%), Adhatoda vasica leaf (25%), Zingiber officinale root (10%), Curcuma zedoaria root (10%), Ocimum sanctum leaf (10%), Phyllanthus emblica fruit (10%) | [24] |
Pf3 | Solanum surattense whole plant (15%), Piper longum fruit (10%), Withania somnifera root (10%), Terminalia chebula fruit (10%), T. bellerica fruit (10%), Curcuma zedoaria root (15%), Phyllanthus emblica fruit (15%), Ricinus communis root (15%) | [24] |
Pf4 | Solanum surattense whole plant (10%), Phyllanthus emblica fruit (25%), Adhatoda vasica leaf (20%), Ocimum sanctum leaf (10%), Piper longum fruit (10%), Zingiber officinale root (10%), Glycyrrhiza glabra root (15%) | [24] |
Pf5 | Solanum surattense whole plant (20%), Glycyrrhiza glabra root (30%), Terminalia chebula fruit (10%), T. bellerica fruit (10%), Piper longum fruit (10%), Sida cordifolia root (10%), Phyllanthus emblica fruit (10%) | [24] |
Pf6 | Solanum surattense root (50 g), Oroxylum indicum bark (100 g) and flowers (3), Ocimum tenuiflorum leaf (10–15), Clerodendrum villosum root (50 g) and flowers (10–15), Curcuma aromatica rhizome (50 g), Musa paradisiaca root (25 g) and Breonia chinensis leaf (3) | [91] |
Pf7 | Solanum surattense root (½ kg) and Saccharum bengalense Retz. root (½ kg) | [71] |
Pf8 | Solanum surattense root (5 g) and a whole mature plant of Andrographis paniculata along with black pepper (10 g) and Ajwain (Trachyspermum ammi L.) (10 g) | [98] |
Pf9 (Dasamula) | A mixture of 10 roots of different species (Solanum surattense, Aegle marmelos, Premna obtusifolia/Clerodendrum phlomidis, Gmelina arborea, Oroxylum indicum, Stereospermum suaveolens, Desmodium gangeticum, Uraria picta, Solanum indica, and Tribulus terrestris) | [102] |
Species | Phytochemical Content | Plant Part | Extract | Results | Ref. |
---|---|---|---|---|---|
S. surattense | Total phenolic contents | L | ethanol | 46.7 GAE/mg | [146] |
methanol | 25.9 GAE/mg | [147] | |||
methanol | 14.7 Pmol GA/ug | [148] | |||
methanol | 28.3 ± 2.0 GAE/mg | [113] | |||
acetone | 26.2 ± 1.5 GAE/mg | [113] | |||
ethyl acetate | 23.2 ± 1.2 GAE/mg | [113] | |||
chloroform | 24.2 ± 1.0 GAE/mg | [113] | |||
hexane | 21.2 ± 1.7 GAE/mg | [113] | |||
F | methanol | 12.3 ± 1.73 Pmol GA/ug | [148] | ||
methanol | 7.6 ± 0.3 (for raw) and 6.1 ± 0.3 (for boiled) g/100 g | [149] | |||
methanol | 4.975 GAE/mg | [147] | |||
St | methanol | 5.87 GAE/mg | [147] | ||
Stb | methanol | 21.1 ± 2.88 Pmol GA/ug | [148] | ||
R | acetone | 28.9 g/100 g | [150] | ||
Rb | methanol | 23.2 ±1.3 Pmol GA/ug | [148] | ||
Total flavonoid contents | L | methanol | 17.7 (QE)/mg | [147] | |
methanol | 25.2 ± 1.2 Rutin/µg | [113] | |||
acetone | 17.1 ± 0.8 Rutin/µg | [113] | |||
ethyl acetate | 22.1 ± 0.5 Rutin/µg | [113] | |||
chloroform | 16.5 ± 1.3 Rutin/µg | [113] | |||
hexane | 23.2 ± 1.0 Rutin/µg | [113] | |||
methanol methanol | 2.48 ± 0.6 Rutin/µg | [148] | |||
F | 5.21 QE/mg | [147] | |||
hexane | 71.8 ± 0.08 μg QE/mg | [151] | |||
benzene | 69.7 ± 0.12 μg QE/mg | [151] | |||
chloroform | 59.5 ± 0.13 μg QE/mg | [151] | |||
ethyl acetate | 162.4 ± 0.15 μg QE/mg | [151] | |||
acetone | 148 ± 0.18 μg QE/mg | [151] | |||
ethyl alcohol | 71.4 ± 0.14 μg QE/mg | [151] | |||
aqueous | 10.2 ± 0.12 μg QE/mg | [151] | |||
methanol | 8.33 ± 1.7 Rutin/µg | [148] | |||
St | methanol | 3.129 QE/mg | [147] | ||
Stb Rb | methanol | 15.3 ± 2.3 Rutin/µg 17.8 ± 1.7 Rutin/µg | [148] | ||
methanol | [148] | ||||
Total tannin contents | F | methanol acetone | 7.0 ± 0.4 (for raw) and 5.6 ± 0.4 (for boiled) g/100 g 18.7 g/100 g extract | [149] [150] | |
R | |||||
Total terpenoid contents | L | methanol | 6.3 ± 1.2 GAE/mg | [113] | |
acetone | 6.1 ± 1.0 GAE/mg | [113] | |||
ethyl acetate | 5.7 ± 0.3 GAE/mg | [113] | |||
chloroform | 4.5 ± 1.0 GAE/mg | [113] | |||
hexane | 5.2 ± 1.4 GAE/mg | [113] |
Plant Part | Solvent/Compound | Biological Activity | Model Organisms | Study Design | Assay/Route of Administration | Tested Concentration | Results | Ref. |
---|---|---|---|---|---|---|---|---|
Wp | methanol, ethanol, chloroform | antimicrobial | bacteria (Staphylococcus cohnii) | in vitro | disk diffusion | 25, 50, 75, 100 µL | MIC values of 0.06 mg/mL in methanol extract, 0.51 mg/mL in ethanol, and 0.60 mg/mL in chloroform extract | [153] |
aqueous | antimicrobial | bacteria (Bacillus subtilis, S. aureus, E. coli, P. aeruginosa) | in vitro | disk diffusion | 125, 250, 500 and 1000 mg/mL | the highest antimicrobial activity showed in highest concentration after 24 h exposures | [154] | |
antioxidant | in vitro | DPPH radical scavenging activity | 0.25, 0.50, 1.0 and 2.0 mg per 10 mL | percentage of inhibition of free radicals is dose dependent | ||||
ethanol | anti-malarial | mice | in vivo | parasite lactate dehydrogenase (pLDH) | 20, 100, 300, and 450 mg/kg | concentration of 450 mg/kg showed a significant impact in reducing parasitaemia in infected mice (p < 0.05) | [155] | |
methanol 70% | antidepressant | mice | in vivo | oral administration | 100–200 mg/kg | reduce immobility time, influence the antidepressant effect | [156] | |
methanol | antimicrobial | bacteria (E. coli) | in vitro | disc diffusion | 1 mg/mL | inhibition zone 14.8 ± 0.5 mm | [157] | |
ethanol | antipyretic | albino rats | in vivo | oral administration | 250–600 mg/kg | significant antipyretic effects were observed, which were comparable to standard, aspirin | [62] | |
acetone, methanol | phytotoxic | Lemna minor | in vitro | growth inhibitor (paraquate) | 10–1000 µg/mL | significant activity showed at 10 µg/mL to 100 µg/mL | [158] | |
Wp | cytotoxic | Artemia salina | in vitro | brine shrimp lethality | 10, 100 and 1000 µg/mL | acetone extracts showed a very low cytotoxic effect | ||
ethanol, hydroethanol | antimicrobial | bacteria (E. coil MTCC 2960, P. auruginosssa MTTC 4676, S. aureus MTTC 3160, Klebsiella oxytoca MTTC 3030, B. subtilis MTCC 1790), fungi (Candida albicans MTCC 183) | in vitro | agar well diffusion | 50 μg/mL | ethanol extract was found to be having more potent anti-microbial activity than hydroethanol extract | [159] | |
antioxidant | in vitro | FRAP and DPPH assays | mild activity | |||||
anthelmintic | Eisenia fetida | in vitro | adult motility assay (AMA) | 100 mg/mL | ethanol extract was having more significant than hydroethanolic extract | |||
methanol | anti-constipation and anti-diarrheal | rabbit (jejunum) | in vivo | 3–5 mg/mL | EC50 value 3.17 | [160] | ||
aqueous | estrogenic | albino rats | in vivo | oral administered | 200 mg/kg | significantly improved all the parameters of sexual behavior (p < 0.01), caused vaginal cornification, and increased serum estradiol and uterine weight | [161] | |
hexane: ethyl acetate (70:30) | pupicidal | Helicoverpa armigera | in vitro | dose mortality test | 125, 250, 375 and 500 mg/L | pupicidal activity against H. armigera with EC50 value of 345.34 mg/L at 1000 mg/L | [162] | |
Wp | larvicidal | Culex quinquefasciatus | in vitro | dose mortality test | 125, 250, 375 and 500 mg/L | maximum larvicidal activity against C. quinquefasciatus with LC50 value of 225.70 mg/L at 500 mg/L | ||
methanol | cytotoxic | NIH-3T3 fibroblast cancer cell line | in vitro | MTT assay | 30 μg/mL | showed strong cytotoxicity against 3T3 cell line | [163] | |
methanol and aqueous | anticonvulsant | albino mice (male) | in vivo | maximum electric shock (MES), pentylenetetrazole (PTZ) induced methods/oral administration | 200 mg/kg b.w. | showed significant activity in MES induced seizures by reducing tonic hind limb extension (7.16 ± 0.47 s and 0.17 ± 0.47 s); and delayed the onset of clonus (92.33 ± 1.66 s, 86.33 ±0.49 s) induced by PTZ | [164] | |
ethanol | antimicrobial | fungi (Enterobacter aerogenes, C. albicians, A. niger) | in vitro | disc Diffusion Method | 1, 5, and 10 mg | maximum activity was shown against E. aerogenes (10 mm); C. albicians (10 mm) and A. niger (7.6 mm) | [165] | |
Wp (except root) | methanol | antimicrobial | fungi (Trichophyton rubrum, C. albicans, and Epidermophyton floccosum) | in vitro | plate hole diffusion | Con. 5–25% | mycelial inhibition up to 18 ± 1.3 to 0.3 03± 0.4 mm on T. rubrum, 16 ± 0.8 to 00 ± 0.0 mm on C. albicans, and 20 ± 1.1 to 00 ± 0.0 mm on E. floccosum | [166] |
antioxidant | in vitro | DPPH | significant antioxidant activity with IC50 = 10.15 g/mL | |||||
nephroprotective | human embryonic kidney cell lines (HEK293) | in vitro | MTT | 50–500 μg/mL | protect up to 95.31% of human embryonic kidney-293 cells from cisplatin nephrotoxicity | |||
Ap | alcohol | anti-inflammatory | albino rats | in vivo | topical and oral administration | 200 mg/kg | the highest efficacy in healing was observed at 10% gel (topical) and 200 mg/kg (orally) in diabetic rats, where the maximum healing power was observed when treated both orally and topically | [167] |
ethyl acetate | anti-malarial | 3D7 and INDO strains | in vitro | 100 μg/mL | resistant INDO, IC50—7 μg/mL and sensitive 3D7 IC50—17 μg/mL and TC50—75 μg/mL | [168] | ||
cytotoxic | hela cell line | in vitro | MTT assay | not mentioned | ||||
ethanol | antimicrobial | bacteria (E. coli, S. aureus, Salmonella typhi, P. aeruginosa and Serratia marcescens) | in vitro | 30 mg (concentration) | extract showed the activity against only E. coli (10.10 ± 0.91) mm | [169] | ||
ethanol | anti-malarial | P. falciparum K1 (chloroquine-resistant strain) and CY27 (chloroquine-sensitive strain) and P. berghei (ANKA strain) | in vitro | parasite lactate dehydrogenase (pLDH) assay | 50 μg/mL | IC50 ≤ 50 μg/mL for K1; 40.88 μg/mL for CY27 | [31] | |
Ap | alcohol | antidepressant | albino mice | in vitro and in vivo | TST and FST/oral administration | 50 and 100 mg/kg p.o. | decreased the immobility periods significantly in a dose-dependent manner in both TST and FST, showing significant antidepressant-like activity | [170] |
L | aqueous, powder | cytotoxic | MCF cell line | in vitro | MTT assay | 200, 400, 600, 800, and 1000 µg/dL | 50% reduction in the viability of cancer cells at con. of 62.5 and 31.2 µg/mL for aqueous and powder extract | [171] |
aqueous, powder | anti-obesity | porcine pancreatic lipase enzyme | in vitro | pancreatic lipase inhibition assay | 200, 400, 600, 800, and 1000 µg/dL | pancreatic lipase inhibitory activity of the dry and fresh leaf extract showed in a dose-dependent manner | ||
100 mL of sterile distilled water; 1 mM auric chloride solution | cytotoxic | C666-1 cell line (nasopharyngeal cancer (NPC) cell line) | in vitro | MTT and TUNEL | 15 µg/mL | significant decrease in viability of C666-1 cells upon treatment with 15 µg/mL Sx-AuNPs by autophagy and mitochondrial-dependent apoptotic pathway | [172] | |
methanol | antidiabetic | albino rat | in vivo | 100–200 mg/kg bw | showed efficient anti-hyperglycemic activity at a con. of 200 mg/kg b.w. | [173] | ||
antioxidant | in vitro | enhanced the level of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH) peroxidase in alloxan-induced animal models | ||||||
L | petroleum, ethanol, chloroform | antiulcer | in vivo | 100 mg/kg | significant results showed as antiulcer potential | [174] | ||
methanol | analgesic, anti-inflammatory, and anxiolytic | albino mice | in vivo | oral administration | 100–200 mg/kg | effective against analgesic as well as anti-inflammatory activity but did not ensure anxiolytic and tranquilizing activity except at high doses | [175] | |
ethanol, chloroform, methanol, acetone | molluscicidal | Lymnaea acuminata | in vitro | mortality test | 157.33 mg/L and 150.26 mg/L | ethanol extract of dried leaf powder was found more toxic; LC50 was 157.33 mg/L and at 96h 150.26 mg/L | [176] | |
ethanol | antidiabetic | albino rats | in vivo | oral administration | 100, 200 and 300 mg/kg | significantly decrease the glucose level in blood and an increase in plasma insulin level at 100 mg/kg | [177] | |
ethanol | antidiabetic and anti-hyperlipidemic | albino rats | in vivo | oral administration | 100 mg/kg b.w. | significantly increase in plasma insulin; control the function of T), TG, PL and FFA in the plasma; increase HDL-C as well as maintained the level of levels of linolenic and arachidonic acids | [178] | |
ethanol | antimicrobial | bacteria (S. aureus, Streptococcus sp.; B. subtilis, E. coli, P. aeruginosa, S. typhi, Shigella dysenteriae and V. cholerae) | in vitro | agar-well diffusion method | 50–500 µg/mL | maximum zone of inhibition was observed in 500 µg concentration of leaf extract of all bacteria screened except S. dysenteriae | [179] | |
L | ethanol | antioxidant | in vitro | hydroxyl radical scavenging | 50–250 μg/mL | (IC50 value 154.03 μg/mL) | [146] | |
in vitro | scavenging of hydrogen peroxide | 50–250 μg/mL | (IC50 value 147.23 μg/mL) | |||||
in vitro | superoxide anion scavenging activity | 50–250 μg/mL | (IC50 value 145.22 μg/mL) | |||||
in vitro | DPPH | 20–100 μg/mL | (IC50 value 55.62 μg/mL) | |||||
in vitro | ABTS | 20–160 μg/mL | (IC50 value 89.28 μg/mL) | |||||
aqueous | antitussive | guinea pig | in vivo | oral administration | 25 mg/kg | provides a molecular entity, that induces antitussive activity | [180] | |
methanol | antioxidant | in vitro | DPPH | different conc. | highest radical scavenging effect was observed with IC50 = 22.936 ± 2.685 µg/mL | [147] | ||
silver nanoparticle solution | cytotoxic | MCF-7 cancer Cell line | in vitro | MTT | 50 µg/mL | toxic activity showed against MCF-7 | [181] | |
ethanol | hepatoprotective | albino rats | in vivo | intragastric intubation (oral) | 150 mg/kg b.w. | to prevent tumor incidence and restored the elevated activities of liver marker enzymes and antioxidant status to near normal with decreased lipid peroxide levels | [182] | |
hexane, acetone, ethyl acetate, chloroform, and methanol | antimicrobial | bacteria (E. coli, S. aureus, S. typhi, P. aeruginosa) | in vitro | agar well diffusion | 100 μg/mL (dissolved in 10% DMSO) | methanol extract showed significant inhibitory effect against P. aeruginosa (12 ± 0.5 mm), S. typhi (10 ± 0.6 mm), S. aureus (9 ± 1.0 mm), and E. coli (7 ± 1.3 mm) | [113] | |
L | antioxidant | in vitro | DPPH | 20, 40, 60, 80, and 100 μL/mL | antioxidant activity was observed in chloroform and methanol extract on the DPPH radical scavenging activity with the lowest IC50 value of 197.245 μg/mL (chloro-form) and 201.04 μg/mL (methanol) | |||
methanol | antioxidant | in vitro | DPPH | 5–25 mg/mL | significant free radical scavenging activity showed with IC50 value 11.72 μg | [183] | ||
in vitro | ABTS | highest ABTS radical scavenging activity (IC50, 17.99 μg) | ||||||
hepatoprotective | albino rats | in vivo | oral administration | 100 and 200 mg/kg b.w. | significantly enhanced levels of SOD (1.78 ± 0.13), CAT (34.63 ± 1.98), GST (231.64 ± 14.28), and GSH (8.23 ± 0.48) in liver homogenates | |||
ethanol | hepatoprotective | HepG2 cells | in vitro | MTT | 50–200 μg/mL | hepatoprotective and anti-apoptotic potential against chemical-induced liver damage | [184] | |
anti-apoptotic | Caspase-3/7 | 50–200 μg/mL | ||||||
ethanol | diuretic | albino rats | in vivo | oral administration | 500–1000 mg/kg | increase total urine volume and levels of sodium, potassium, and chloride | [185] | |
anti-inflammatory | albino rats | in vivo | oral administration | 500–1000 mg/kg | reduced paw edema | |||
L | aqueous, hexanic | antimicrobial | fungi (A. niger and C. albicans) | in vitro | agar well-diffusion | 100–500 µg/mL | maximum inhibition zone 2.5 and 6 mm at 500 µg/mL was found in hexane extract | [186] |
methanol and acetone | antimicrobial | bacteria (E. coli, Yersinia pestis, P. aeruginosa, S. aureus) | in vitro | agar well diffusion method | Con.30, 50, 70 and 100% | methanolic and acetone extract were most effective against S. aureus (18 and 16 mm) and minimum inhibition in P. aeruginosa (13 and 12 mm) at 100% | [187] | |
aqueous, ethanol, acetone, methanol | antimicrobial | bacteria (S. aureus, S. pyrogens, S.mutans, B. Sphaericus, S. parathypi, E. coli, P. aeru-ginosa, Proteus vulgaris, K. pneumoniae, S. marcescens) | in vitro | agar well diffusion method | 75, 50, 25, and 10 mg/mL | ethyl acetate extract exhibited highest degree of activity against S. pyrogens (26 mm, 26 mm), aqueous extracts of leaf (field grown, tissue cultured) showed the highest inhibition against E. coli (20 mm, 18 mm) | [188] | |
anti-inflammatory | albino rat | in vivo | excision and incision wound/topically applied | 10% w/v | reduced the epithelization period and the scar area, and increased tensile strength of control and ethanol extract, respectively, and results showed in significant | [189] | ||
ethanol (95%) | anti-asthmatic | guinea pigs | in vivo | histamine and acetylcholine-induced bronchospasm | 50, 100, 200, 300 mg/kg b.w. | 200 and 300 mg/kg have shown significant bronchoprotection (80 and 70%) against histamine, but not on acetylcholine | [190] | |
L | ethanol (95%) | anti-inflammatory | sprague–dawley rats | in vivo | histamine, carrageenan, dextran, formaldehyde—induced hind paw edema; cotton pellet granuloma | 50, 100, 200 and 400 mg/kg | significantly reduced the paw edema at the dose of 200 and 300 mg/kg b.w in all assays (inhibition (%) range 45.25 to 61.11) | |
L (shoot) | methanol | antioxidant | in vitro | DPPH (2,2-diphenyl-1-picrylhydrazyl) assay | 10 mg/L | The highest DPPH antioxidant values were observed at 10 mg/L of TDZ (94.6 ± 2.29% RSA), 2.5 mg/L of BAP (92.6 ± 3.10% RSA), and 5 mg/L of TDZ (92 ± 3.49% RSA), whereas the lowest DPPH value was | [191] | |
FRAP (ferric antioxidant power) assay | 2.5 mg/L | recorded at 10 mg/L of NAA (71.4% RSA); maximum FRAP and ABTS antioxidant activities were obtained with 5 mg/L of TDZ (654 ± 5.39 µM TEAC and 402.5 ± 5.16 µM TEAC, respectively) | ||||||
ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay | 5 mg/L | |||||||
antiaging | inhibition of AGE formation | 5 mg/L (AGEs-Vesper lysine); 2.5 mg/L (AGEs-Pentosidine) | The highest inhibition against vesper lysine-like AGEs (51.55 ± 2.67%) and the formation and inhibition of tyrosinase (32.87 ± 2.04%) and collagenase (49.52 ± 2.69%) enzymes, while the extract obtained from the | |||||
Tyrosinase—inhibition | 5 mg/L | |||||||
L (shoot) | Elastase—inhibition | 1.0 mg/L | callus treated with 2.5 mg/L of TDZ showed the maximum inhibition (59.75 ± 3.15) against pentosidine-like AGE formation | |||||
anti-inflammatory | COX2 (human) and COX1 (ovine) enzymes | in vitro | secretory phospholipase (sPLA2)—Inhibition | 0.1 mg/L | greatest anti-inflammatory action was found for: the extract obtained from the S. virginianum callus culture treated with 0.1 mg/L of TDZ (11.3 ± 1.02%) against sPLA2; 5 mg/L of TDZ (38.5 ± 2.29%) against 15-LOX; 10 mg/L of TDZ (38.06 ± 2.49%) against COX-1; and 2.5 mg/L of TDZ (15.5 ± 0.71%) against COX-2 | |||
15-lipoxygenase (15-LOX) | 5 mg/L | |||||||
cyclooxygenases 1 and 2 (COX1 and COX2) | 10 mg/L (1); 2.5 mg/L (2) | |||||||
Fl | ethanol (95%) | anti-asthmatic | male albino mice | in vivo | milk- induced eosinophilia method | 100 mg/kg | significantly (p < 0.05) reduced milk induced eosinophilia (18.16 ± 0.912) | [192] |
in vivo | mast cell degranulation | 25, 50 and 100 mg/kg | mast cells were protected at a dose of 50 and 100 mg/kg by 74.39% and 78.26%, respectively | |||||
in vivo | capillary permeability | 25, 50 and 100 mg/kg | decrease in intestinal capillary permeability of 62% | |||||
aqueous | antagonistic | goat tracheal chain | in vivo | sensitivity | 2, 4 and 10 mg/mL | at a dose of 10 mg/mL (44.71 ± 0.947) exhibited significant antagonistic effect | ||
F | ethanol | hepatoprotective | albino rats | in vivo | oral administration | 200 and 400 mg/kg | combination of S. surattense and Juniperus communis showed significant hepatoprotective potential against AZM and PCM induced liver toxicity | [193] |
methanol | antiurolithiatic | albino rats (male) | in vivo | oral administration | 100, 200, and 400 mg/kg | reduced and prevented the growth of urinary stones and maintaining balance between stone promoters and inhibitors constituents | [194] | |
petroleum ether, chloroform, dichloromethane, ethyl acetate, acetone, methanol and aqueous | antimicrobial | bacteria (Micrococcus varians, M. luteus, S. aureus, Pasteurella maltocida, S. typhi, E. coli); fungi (A. niger, A. flavus, A. fumigatus) | in vitro | hole-plate diffusion method | 5, 10 and 15 mg/mL | significant zones of inhibition were showed against all organisoms in case of MeOH extract | [195] | |
methanol | antimicrobial | bacteria (A. niger, Trichoderma viride) | in vitro | NT | exhibited inhibitory effects on the radial growth of A. niger and T. viride | [196] | ||
ethanol | anti-rheumatic | chondrocyte cells | in vitro | MTT assay | 25, 50, 100, 250, 500 μg/mL | enhanced the cell proliferation in a dose-dependent manner and has no cytotoxic effect on primary chondrocytes | [115] | |
anti-rheumatic | sprague dawley rats | in vivo | oral administration | 250 and 500 mg/kg body wt. | restored the synthesis of collagen and proteoglycan, vital factors for cartilage restoration, and reduced the arthritic score, and protect the cartilage destruction | |||
F | ethanol–aqueous (1:1) | antiurolithiatic | albino rats | in vivo | 20 and 40 mg/kg | simultaneous administration of SXS, prevent renal tissue and cellular injury, decreased antioxidant enzyme catalase activities of the kidneys and raised level of glycosaminoglycan, a stone inhibitor | [194] | |
in vitro | nucleation and aggregation | 10–100 μg/m | ||||||
methanol extract (80%) | cytotoxic | A. salina | in vitro | brine shrimp lethality bioassay | 100, 250, 500, 1000 µg/mL | significant cytotoxicity showed at concentration of 500 µg/mL | [197] | |
antioxidant | in vitro | DPPH assay | 50–500 µg/mL | significant antioxidant showed | ||||
petroleum ether, ethanol | anti-inflammatory | human red blood cell (HRBC) | in vitro | HRBC membrane stabilizing activity assay | 1–6 mg/mL | ethanol extract at concentration 6 mg/mL showed 50.1% protection of HRBC in hypotonic solution | [198] | |
ethanol | antihelmenthic | Pheritima posthuma | in vitro/adult motility assay (AMA) | 10, 25, 50 mg/mL | paralyzed and cause of death at a concentration of 10 and 50 mg/mL | [199] | ||
aqueous, ethanol | antihelmenthic | Pheritima posthuma | in vitro/adult motility assay (AMA) | 10, 15, 20 mg/mL, 25 mg/mL, 30 mg/mL and 35 mg/mL | water extract showed better anthelmintic activity in comparison to the Ethanol extract | [200] | ||
ethanol (50%) | nephroprotective | albino rats | in vivo/intraperitoneal administration | 200 and 400 mg/kg/d | acts as a potent scavenger of free radicals to prevent the toxic effects of gentamicin both in the biochemical and histopathological parameters | [201] | ||
aqueous | hypoglycemic | albino rats | in vivo/oral administration | 100 and 200 mg/kg | exhibited a potent blood glucose-lowering property | [202] | ||
F | ethanol (50%) | hepatoprotective | sprague-dawley rat; albino mice | in vivo/oral administration | 400 mg/kg | extract significantly (up to p < 0.001) reduced the lipid peroxidation in the liver tissue and restored activities of defence antioxidant enzymes GSH, SOD and catalase towards normal levels | [203] | |
hexane, benzene, chloroform, ethyl acetate, acetone, ethyl alcohol and aqueous | antioxidant | DPPH radical scavenging assay | 250, 500, 1000 μg/mL | antioxidant activities of the extracts varied significantly with different concentrations | [151] | |||
cytotoxic | lungs (HOP-62) and leukemia (THP-1) cell lines | in vitro | sulforhodamine-B assay | 100 μL test extract in DMSO (100 μg/well) | cytotoxic potential showed against HOP-62 (lung) and THP-1 (leukemia) human cancer cell lines in presence of 100 μg of extract per weel | |||
antimicrobial | virus (HIV) | RT assay kit (Roche) | 0.6 and 6.0 μg/mL. | inhibitory activity was observed in non-polar extracts against HIV reverse transcriptase enzyme | ||||
aqueous, ethanol | cytotoxic | HepG2 cell line | in vitro | antiproliferative assay | 200–400 mg/mL | ethanol extract revealed higher cytotoxicity (49.25 ± 0.38–73.2 ± 0.3%) than the aqueous extract (32.23 ± 0.34–54.82 ± 0.26%) with significant morphological changes | [118] | |
antioxidant | in vitro | DPPH assay; ABTS+ assay; Ferric (Fe3+) reduction assay | 20–120 mg/mL; 2–12 mg/mL; 20–120 mg/mL | all extracts showed significant scavenging of DPPH, ABTS+ radicals and also in ferric reducing power | ||||
F | antidiabetic | in vitro | Starch-iodine assay | 20–120 mg/mL | water extract (54.12 ± 0.44–86.80 ± 0.27%) higher rate of a-amylase inhibition than ethanol extract (23.07 ± 0.47–81.61 ± 0.43%) | |||
aqueous and ethanol | anti-inflammatory | in vitro | 20–100 mg/mL | hemolysis inhibition (46.19 ± 0.14–66.21 ± 0.17%) higher than the ethanol extract (12.67 ± 0.19–38.03 ± 0.41%) while diclofenac showed (48.26 ± 0.11–70.39 ± 0.28%) | ||||
ethanol | antimicrobial | bacteria (S. aureus) | in vitro | 500 mg/mL | MIZ = 22.3–0.6 mm | |||
aqueous | anti-inflammatory | albino rat | in vivo | carrageenan-induced paw edema model/oral administration | 500 mg/kg | showed the maximum percentage inhibition of 75%, which was comparable with the positive standard diclofenac synergistic effect | [204] | |
anthelmintic | Pheretima posthuma | used directly (surface film method) | 10 mg/mL | Solanum surattense exhibited greater anthelmintic activity that aqueous extract | [205] | |||
methanol (70%) | diuretic | albino rats | in vivo | administered intraperitoneally | 100 mg/kg | significantly increased the urinary electrolyte excretion, especially calcium (p < 0.05); urine volume = 2.72 ± 0.09 mL | [206] | |
ethanol | molluscicidal | Biomphalaria glabrata Say and Indoplanorbis exustus | dose mortality | 125, 150, 175, 200, 225 and 250 mg/L | LC50 against B. glabrata and I. exustus were reported at 163.85 and 198.00 mg/L while LC90 were 219.33 and 236.80 mg/L, respectively | [207] | ||
F | larvicidal | Aedes aegypti and C. quinquefasciatus | 125, 150, 175, 200, 225 and 250 mg/L | LC50 against A. aegypti and C. quinquefasciatus were 788.10 and 573.20 mg/l, while LC90 were 1288.91 and 1066.93 mg/L, respectively | ||||
methanol | larvicidal | A. aegypti | dose mortality | 100, 150, 200, 250, and 300 mg/L | LC50 and LC90 against the first to fourth instar larvae and pupae were 170.91, 195.07, 221.45, 253.18, and 279.52 mg/l and 320.62, 366.48, 410.20, 435.16, and 462.10 mg/l, respectively | [208] | ||
ethanol | molluscicidal | Oncomelania hupensis, B. glabrata, Lymnaea stagnalis L. | dose mortality | 0.0675–8.640 mg/L | significant toxicity showed with the LC50 value of 0.332, 0.858 and 0.747 mg/L | [209] | ||
ethanol (50%) | hepatoprotective | albino mice | in vivo | oral administration | 100, 200 and 400 mg/kg bw | showed that attenuated the hepatocellular necrosis and led to reduction of inflammatory cells infiltration at 400 mg/kg | [210] | |
ethanol, aqueous | hepatoprotective | albino rats (male) | in vivo | oral administration | 2 mL/kg (for 7 days) | alcoholic and aqueous extract showed significant (p < 0.001) reduction in serum marker enzymes and antioxidant levels to near normal against CCl4-induced rats and protected liver from CCl4 damage | [211] | |
F | aqueous | hypoglycaemic | albino rats | in vivo | oral administration | 100 and 200 mg/kg | decrease the glucose level in normoglycemic, alloxan induced diabetic and glucose loaded hyperglycaemic rats at 100 and 200 mg/kg, with the value of 78.98 ± 2.18 and 68.21 ± 3.0 mg/dL; 128.47 ± 6.27 and 109.34 ± 5.91 mg/dL and 93.0 ± 4.24 and 83.5 ± 2.12 mg/dL, respectively, after 10 h exposures | [212] |
aqueous, hexane, ethyl acetate, chloroform, and ethanol. | antimicrobial | bacteria (Micrococcus varians, M. luteus, and S. aureus, S. typhi, Pasteurella multocida, E. coli, K. pneumoniae, V. cholerae); fungi (A. niger, A. flavus, A. fumigatus) | In vitro | dental plaque biofilm | 25, 50, 75, and 100 mg/mL | maximum inhibition of microbial growth, MIC was evaluated at 0.625 g/mL against all microbial agents | [213] | |
methanol | antiurolithiatic | albino rats | in vivo | electrolyte flame photometery/oral administration | 40 to 300 mg/kg b. W. | showed significant antiurolithiatic activity at 80 mg/kg b.w. | [214] | |
aqueous/ethanol | anthelmintic | P. posthuma | in vitro | 25, 50, and 100 mg/mL | produced paralysis as well as death of worms in a less time at higher concentration of 100 mg/mL | [215] | ||
F | methanol | anti-inflammatory | sprague-dowlay rat | in vivo | excision and incision wound/topically applied | 10% w/w | effectively increased (30%) the contraction of open wound, tensile strength (37.5%), and significantly (p < 0.01) enhanced the wound healing process | [216] |
aqueous (normal and boiled) | antioxidant | in vitro | DPPH assay | 1.9 g extract/g DPPH | exhibited good scavenging, reducing potentiality with the value of 2.1 ± 0.2 and 2.5 ± 0.0 (boiled) g extract/g | [147] | ||
ABTS+ assay | 236.1 µmol/g | exhibited good scavenging reducing potentiality with the value of 7.0 ± 0.0 and 28.5 ± 0.0 (boiled) µg extract/mmol fe(ii) | ||||||
S | aqueous | oxidative potential | albino rats | in vivo | oral administration | 10 mg/kg b.w. | depleted the oxidative stress of cauda epididymal spermatozoa | [217] |
aqueous, ethanol and methanol | antimicrobial | fungi (C. albicans, C. tropicalis, C. krusei, C. kefyr, A. niger, A. fumigates, A. flavus, Rhizopus oryzae) | in vitro | agar-well diffusion method | ethanol seed extracts showed high antimicrobial activity against C. albicans, C. tropicalis, A. niger, A. fumigates and A. flavus; in methanol extracts showed activity against A. fumigatus and R. oryzae; and aqueous extracts showed C. albicans but did not show activity against C. tropicalis, C. krusei, C. kefyr, A. niger, A. fumigatus, A. flavus, R. oryzae | [218] | ||
S | ethanol | analgesic | human (Homo sapiens) | in vivo | mouth rinse | 5 g/50 mL | results showed 68% reduction in pulpal pain | [219] |
St | ethanol | anti-psoriatic | albino mice | oral and topical | 10% (topical) and 200 and 400 mg/kg (oral) | significant inhibition in the expression of TNF-α, IL-1β, IL-6 and IL-17 in treated animal tissues; also showed significant restoration of the altered biochemical parameters along with reduced hyperkeratinisation; the effect was found to be more prominent topically than orally | [220] | |
Stb | methanol | antidiabetic and antioxidant | albino rats | in vivo | oral administration | 10, 15 and 20 mg⁄kg (β-sitosterol) | resulted in decreased inglycated hemoglobin, serum glucose, and nitric oxide, with concomitant increases in serum insulin level; treatment with BS doses also increased pancreatic antioxidant levels | [221] |
B | methanol | leishmanicidal | Leishmania tropica | 45 mg/mL (after 96 h) | showed significant leishmanicidal, antioxidant and anti-microbial potential activity | [222] | ||
antioxidant | DPPH | in vitro | effective scavenging concentrations (50 to 500) μg/mL | |||||
antimicrobial | bacteria (S. aureus, E. coli and K. pneumoniae) | in vitro | 1 mg/m | |||||
R | ethanol | antidiabetic | albino rats | in vivo | intraperitoneal administered | 200–400 mg/kg | EESS root elicited significant (p < 0.01) reductions of blood glucose, lipid parameters and serum enzymes and significant (p < 0.01) reductions of blood glucose | [223] |
methanol | antimicrobial | fungi (C. albicans, C. glabrata, C. krusei and C. tropicalis) | in vitro | agar well diffusion method | 20–80 μL/well | methanol root extract showed significant activity | [224] | |
ethyl acetate, chloroform | antimetastatic, cytotoxic | carcinoma A549 cell line | in vitro | wound healing scratch; MTT assay; production in A549 cells; superoxide anion determination (NTB) | 20 μg/mL (MTT assay) | wound healing efficiently inhibited migration of A549 cells as well as and decreased levels of | [225] | |
ethyl acetate, citrulline and chloramphenicol | antimicrobial | bacteria (Ralstonia solanacearum) and fungi (Fusarium oxysporum) | in silico and in vitro | dual-plate technique | 1–10 mg/mL | ethyl acetate extracts showed biocontrol activity against R. solanacearum (1 cm inhibition zone) and F. oxysporum (37.5% inhibition of mycelial growth). Both citrulline and chloramphenicol inhibited the growth of two microbial agents. | [226] | |
aqueous | diuretic | albino rat | in vivo | oral administered | 200, 400 mg/kg | showed significant urine output, increased Na+ and Cl− excretion after 24 h, and significant decrease in K+ concentration in urine only at 6h | [227] | |
L, F, S | petroleum ether, alcohol and acetone | antimicrobial | bacteria (K. pneumoniae, E. coli, S. typhi, B. cereus) | in vitro | disk diffusion | 5% w/v solution (extract), dissolving 250 mg (extract), with 5 mL of dimethyl formamide | showed high sensitivity to K. pneumoniae and S. typhi, moderate sensitivity to E. coli, and less sensitivity and resistance to Bacillus cereus. | [228] |
F, S | methanol | larvicidal | Ae. Aegypti, Anopheles stephensi, A. culicifacies and C. quinquefasciatus | dose mortality | 25–400 mg/L | significant mortality showed for the fruit at LC50 51.6, 52.2, 118.3 and 157.1 mg/l while Seed at LC50 66.9, 73.7, 123.8, 154.9 mg/l after 24 h | [229] | |
F, L (shoots), R | methanol, aqueous | antimicrobial | bacteria (E. coli, S. aureus, S. typhi, P. aeruginosa, K. pneumonia, Enterococcus faecalis, Shigella flexnari,and B. cereus) | in vitro | 1–20 mg/mL | fruit showed more activity than shoot and root | [42] | |
L, S, R, F | aqueous | antimicrobial | bacteria (S. typhi, E. coli, S. aureus, K. pneumonia) | in vitro | agar well diffusion | 500 mg/mL | susceptible against gram Ve(-) bacteria were S. typhi leaf (2.5 cm), stem (2 cm), root (1.5 cm), fruit (1.4 cm), and E. coli leaf (2.2 cm), stem (3.3 cm), root (1.2 cm), fruit (1.6 cm) and inhibited the growth of Gram(+) bacteria S. aureus stem (2.6 cm), K. pneumonia leaf (1 cm), stem (1 cm), root (1 cm), fruit (1.6 cm) | [230] |
L, St, F, R | acetone, methanol | antioxidant | in vitro | FRAP | methanol extract of root (2153.3 mmol Fe(II)/mg extract) showed significantly (p < 0.05) higher ferric-reducing effect | [146] | ||
in vitro | DPPH | methanol extract of stem and root showed higher levels of free radical scavenging activity (IC50, 119.9 and 124.7 µg/mL | ||||||
in vitro | ABTS | acetone extract of root observed the highest activity (20,195.9 µmol/g) | ||||||
L, St, R, F, Wp | ethanol, aqueous | immunomodulatory | albino rats | in vivo | delayed type hypersensitivity reaction, carbon clearance test and CCl4 induced oxidative stress model | 200 mg/kg/day | significantly increased hypersensitivity, decreased carbon clearance and reduced oxidative stress, and exhibited maximum degree of immunomodulatory effect | [152] |
St, L, F | petroleum ether, alcohol, and acetone | antimicrobial | bacteria (E. coli, K. pneumoniae, S. typhi and B. cereus) | in vitro | agar well diffusion method | 250 mg (in 5 mL dimethyl formamide) | showed high sensitivity to K. pneumoniae and S. typhi, moderate sensitivity to E. coli and less sensitivity and resistance to Bacillus cereus | [231] |
L, St, F, Fl | ethanol | antihemolytic | spectrophotometer method/human erythrocytes | in vitro | erythrocytes suspension | 125, 250, 500, and 1000 μg/mL | hemolytic activity significantly increased in a dose-dependent manner | [232] |
L, St, R | aqueous | antioxidant | in vitro | DPPH free radical scavenging | 100, 200, 300, 400 and 500 μg | The highest percentage of antioxidants was shown at 500 μg con. 46.80 ± 0.58, 48.21 ± 0.82, and 44.30 ± 0.67 for leaf, stem and root | [233] | |
aqueous, ethanol, methanol, petroleum ether | antimicrobial | bacteria (E. coli, B. subtilis, S. aureus, K. pneumoniae) | in vitro | agar well diffusion | aqueous leaf extract showed highest zone of inhibition against B. subtilis (29.62 mm); ethanolic leaf and stem extract showed min. inhibitory concentration (MIC) values of 15.0 μg/mL against B. subtilis and S. aureus | |||
L, F, Stb, R | petroleum ether, chloroform, acetone, ethanol and methanol | antioxidant | in vitro | DPPH assay | 1, 2, and 5 mg/mL | methanolic stembark extract showed the highest antioxidant activity with the value of 0.323102 followed by 0.34188 (leaf, ethanol), 0.416667 (root chloroform), and 0.459242 (fruit ethanol) | [151] | |
petroleum ether, chloroform, acetone, ethanol and methanol | antimicrobial | bacteria (S. aureus, E. coli, K. pneumonia, P. aeruginosa, P. vulgaris) fungi (A. flavus, F. solani, R. stolnifer), yeast (S. cerevisiae, C. albicans) | in vitro | disc diffusion | 10 mg/mL | methanol root extract showed maximum antimicrobial activity against P. aeruginosa and P. vulgaris (17.67 ± 0.33 mm) while fruit extract (methanol) against P. aeruginosa (14.67 ± 0.33 mm), leaf extract (ethanol) against P. vulgaris (14 ± 0.58 mm) and stem bark (methanol) extract against P. vulgaris (14.67 ± 0.33 mm) were estimated |
Compound | Assay | Activity | Model/Cell Line | Result | Ref. |
---|---|---|---|---|---|
3-(4-hydroxy)-N-[2-(3-methoxyphenyl-4- hydroxyphenyl)-2- hydroxy] | in vitro/LPS-induced NO production assay | anti-inflammatory | RAW 264.7 cells | IC50 value of 12.23 ± 1.20 µM | [109] |
p-hydroxy-phenylacetonitrile-O-(6′-O-acetyl)-β-D-glucopyranoside | IC50 value of 24.76 ± 1.97 µM | ||||
caffeic acid | in vivo | neuroprotective | rat | significant activity through modulation of oxidative stress and neurochemical aspects | [112] |
tribulusamide A | in vitro/MTT assay | hepatoprotective | D-gain/TNF-α-induced mouse hepatocytes | cytoprotective (97.2 ± 14.5% to 106.4 ± 10.1%) at low concentrations (10–20 µm) but cytotoxic at high concentration (50–200 µm) on D-gain/TNF-α-induced mouse hepatocytes | [106] |
(7R,8S)-threo-glehlinoside C | in vitro/LPS-induced NO production assay | anti-inflammatory | RAW 264.7 cells | IC50 > 50 µM | [109] |
2Z-(7S,8R)-aegineoside | IC50 12.33 ± 1.21 µM | ||||
(7R,8R)-3,5-dimethoxy-8′-carboxy-7′-en-3′,8-epoxy-7,4′-oxy-neolignan-4,9-diol | IC50 value of 19.69 ± 1.91, µM | ||||
solamargine | in vitro/MTT assay | anti-tumoral | A549, hepg2 | IC50 values of 15.7 ± 0.6 and 23.2 ± 0.8 µM | [105] |
in vitro/Sulforhodamine B cytotoxicity | anti-tumoral | human colon carcinoma cell line (HCT116) | strongly cytotoxic, but no induction of ccCK18 at cytotoxic doses > 10 mM | [134] | |
in vitro/MTT assay | anti-tumoral | NIH-3T3 fibroblast cancer cells | showed strong cytotoxicity against 3T3 cell line with IC50 value of 7.55 ± 1.5 | [163] | |
solasonine | in vivo/electrolyte flame photometry | antiurolithiatic | Albino rats | showed significant antiurolithiatic activity, with urine concentration ratio of 1.6 | [213] |
in vitro/sulforhodamine B cytotoxicity | anti-tumoral | human colon carcinoma cell line (HCT116) | strongly cytotoxic, but no induction of ccCK18 at cytotoxic doses > 10 mM | [134] | |
diosgenin | in vitro/sulforhodamine B cytotoxicity | anti-tumoral | human colon carcinoma cell line (HCT116) | weakly cytotoxic (70–80% cell viability at 50 mM), and induced ccCK18 to 2-fold background levels | [134] |
solasodine | |||||
in vivo/electrolyte flame photometry | antiurolithiatic | Albino rats | showed significant antiurolithiatic activity, with urine concentration ratio of 1.5 | [213] | |
dioscine | in vitro/MTT assay | anti-tumoral | NIH-3T3 fibroblast cancer cells | showed strong cytotoxicity against 3T3 cell line with IC50 value of 3.3 ± 1.9 μg/mL | [163] |
khasianine | in vitro/MTT assay | anti-tumoral | A549, MGC-803, hepg2 | IC50 values of 26.7 ± 1.5, 35.4 ± 0.7, and 45.3 ± 2.1 µM | [105] |
(22R, 25R)-16β-H-22α-N-spirosol-3β-ol-5-ene 3-O-α-L-rhamnopyran-osyl- (1 → 2)-[a-L-rhamnopyranosyl-(1 → 4)]-β-D-glucopyranoside | in vitro | anti-tumoral | A549, MGC-803, hepg2 | IC50 values of 20.3 ± 1.1, 45.6 ± 1.5, and 26.1 ± 0.6 µM | [105] |
(22R, 23R, 25S)-3β, 6α, 23-trihydroxy-5α-spirostane 6-O-β-D-xylopyranosyl-(1 → 3)-O-β-D-quinovopyranoside | A549, hepg2 | IC50 values of 62.5 ± 1.6 and 88.8 ± 1.2 µM | |||
(22R, 23S, 25R)-3β, 6α, 23-trihydroxy-5α-spirostane 6-O-β-Dxylopyranosyl-(1 → 3)-O-β-D-quinovopyrano-side | A549 | IC50 value of 71.2 ± 2.0 µM | |||
(22R, 23S, 25S)-3β, 6α, 23-trihydroxy-5α-spirostane 6-O-β-D-xylopyranosyl-(1 → 3)-O-β-D-quinovopyranoside | Mgc-803 | IC50 value of 63.2 ± 0.8 µM | |||
solasaponin A | in vitro | anti-tumoral | A-549, hepg2 | IC50 values of 8.51 ± 0.92 and 28.01 ± 2.72 | [134] |
solasaponin B | IC50 values of 10.52 ± 1.78 and 10.52 ± 1.48 | ||||
solasaponin C | IC50 values of 14.29 ± 3.21 and 16.38 ± 1.01 | ||||
solasaponin D | in vitro | anti-tumoral | A-549, hepg2 | IC50 values of 9.44 ± 1.23 and 10.48 ± 1.23 | |
solasaponin E | IC50 values of 11.22 ± 1.21 and 4.82 ± 0.41 | ||||
solasaponin F | IC50 values of 12.35 ± 1.03 and >50 | ||||
solasaponin G | IC50 values of 37.82 ± 2.81 and 27.95 ± 3.02 | ||||
solasaponin H | IC50 values of 12.41 ± 2.66 and 22.03 ± 1.98 | ||||
xanthosaponin A | in vitro | anti-tumoral | MGC803, LN229, and SMMC7721 | IC50 values of 40.24 ± 4.22, 69.43 ± 5.54, and 10.01 ± 1.12 µM | [137] |
xanthosaponin B | IC50 values of 21.47 ± 3.02, 1186.25 ± 107.68, and 32.12 ± 3.14 µM | ||||
carpesterol | in vitro | anti-diabetic | rat | potentially inhibited α-glucosidase activity with IC50 value of 42.26 ± 0.11 μM | [104] |
oleanolic acid | in vivo | neuroprotective activity | rat | significant activity through modulation of oxidative stress and neurochemical aspects | [112] |
cholesaponin A | in vitro/CCK-8 assay | anti-tumoral | A-549, hepg2, SMMC-7721, MGC-803, LN-229 | IC50 (µM) values of 11.98 ± 2.02, 25.17 ± 3.24, 5.21 ± 0.47, 39.80 ± 3.77, and 8.83 ± 0.76 | [135] |
cholesaponin B | IC50 (µM) values of 6.33 ± 1.12, 4.50 ± 0.58, 5.71 ± 0.59, 2.81 ± 0.37, and 2.60 ± 0.36 | ||||
cholesaponin C | IC50 (µM) >100, 48.03 ± 3.37, >100, 36.82 ± 3.76, and 22.11 ± 2.53 | ||||
cholesaponin D | IC50 (µM) 7.41 ± 2.17, 18.23 ± 1.17, 4.67 ± 0.39, 24.75 ± 3.11, and 14.83 ± 1.65, respectively | ||||
cholesaponin E | in vitro/CCK-8 assay | anti-tumoral | A-549, hepg2, SMMC-7721, MGC-803, LN-229 | IC50 (µM) 10.09 ± 1.56, 28.23 ± 2.60, 12.52 ± 1.33, 13.49 ± 1.45, and 11.84 ± 0.98 | [135] |
cholesaponin F | IC50 (µM) 16.39 ± 2.82, 26.03 ± 2.93, 8.59 ± 0.90, 8.95 ± 0.97, and 6.16 ± 0.67 | ||||
(22S)-25[(ß-D-glucopyranosyl) oxy]-22-hydroxycholest-5-en-3ß-yl O-α-L rhamnopyrano-syl-(1 → 2)-O-[α-L-rhamnopyranosyl-(1 → 4)]-ß-D-glucopyran-oside | IC50 (µM) values of 56.03 ± 5.36, 27.23 ± 2.94, 3.22 ± 0.45, 21.76 ± 3.04, and 19.27 ± 2.14 | ||||
anguivioside XV | IC50 (µM) values of 12.64 ± 2.99, 25.36 ± 2.49, 4.59 ± 0.39, 13.58 ± 0.22, 7.89 ± 0.86 | ||||
gynuramide I | in vitro/LPS-induced NO production assay | anti-inflammatory | RAW 264.7 cells | inhibiting Nitric oxide production with IC50 value of 15.13 ± 1.36 µM | [142] |
gynuramide II | inhibiting Nitric oxide production with IC50 value of 12.11 ± 1.20 µM | ||||
gynuramide III | inhibiting Nitric oxide production with IC50 value of 15.61 ± 1.44 µM | ||||
gynuramide IV | inhibiting Nitric oxide production with IC50 value of 14.17 ± 1.51 µM | ||||
6″-O-acetyl soya-cerebroside I | inhibiting nitric oxide production with IC50 value of 41.99 ± 3.99 µM | ||||
soya-cerebroside I | inhibiting Nitric oxide production with IC50 value of 43.86 ± 4.03 µM | ||||
soya-cerebroside II | inhibiting Nitric oxide production with IC50 value of 48.66 ± 4.25 µM | ||||
2S,3S,4R,8E-2-(2′R-2′-hydroxyhexacosanosylamino)-octadecene-1,3,4-triol | inhibiting nitric oxide production with IC50 value of 17.36 ± 1.83 µM | ||||
methyl 9S,10S,11R-trihydroxy-12Z,15Z-octadecadienoate | inhibiting nitric oxide production with IC50 value of 44.17 ± 4.21 µM | ||||
9S,10S,11R-trihydroxy-12Z,15Z-octadecadienoic acid | inhibiting nitric oxide production with IC50 value of 15.58 ± 1.58 µM | ||||
methyl 9S,10S,11R-trihydroxy-12Z-octadecenoate | inhibiting nitric oxide production with IC50 value of 29.21 ± 2.91 µM | ||||
9S,10S,11R-trihydroxy-12(Z)-octadecenoic acid | inhibiting nitric oxide production with IC50 value of 17.21 ± 0.89 µM | ||||
methyl 9S,12S,13S-trihydroxyoctadeca-10E,15Z-dienoate | inhibiting Nitric oxide production with IC50 value of 42.72 ± 4.31 µM | ||||
9S,12S,13S-trihydroxy-10E-octadecenoate | inhibiting Nitric oxide production with IC50 value of 27.56 ± 2.62 µM | ||||
2′S-20-hydroxyl arachidic acid glycerol ester | inhibiting Nitric oxide production less with IC50 > 50 µM | ||||
2′S-20-O-caffeoyl-20-hydroxyarachidic acid glycerol ester | inhibiting Nitric oxide production with IC50 value of 20.01 ± 1.99 µM | ||||
2′S-22-O-caffeoyl-22-hydroxy-docosanoic acid glycerol ester | inhibiting Nitric oxide production with IC50 value of 15.31 ± 1.52 µM | ||||
2′S-22-O-p-hydroxy-phenylpropionyloxy-22-hydroxy-docosanoic acid glycerol ester | inhibiting Nitric oxide production with IC50 value of 13.03 ± 1.32 µM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, K.; Sabiha, S.; Islam, N.; Pinto, J.F.; Silva, O. Ethnomedicinal Usage, Phytochemistry and Pharmacological Potential of Solanum surattense Burm. f. Pharmaceuticals 2024, 17, 948. https://doi.org/10.3390/ph17070948
Hasan K, Sabiha S, Islam N, Pinto JF, Silva O. Ethnomedicinal Usage, Phytochemistry and Pharmacological Potential of Solanum surattense Burm. f. Pharmaceuticals. 2024; 17(7):948. https://doi.org/10.3390/ph17070948
Chicago/Turabian StyleHasan, Kamrul, Shabnam Sabiha, Nurul Islam, João F. Pinto, and Olga Silva. 2024. "Ethnomedicinal Usage, Phytochemistry and Pharmacological Potential of Solanum surattense Burm. f." Pharmaceuticals 17, no. 7: 948. https://doi.org/10.3390/ph17070948
APA StyleHasan, K., Sabiha, S., Islam, N., Pinto, J. F., & Silva, O. (2024). Ethnomedicinal Usage, Phytochemistry and Pharmacological Potential of Solanum surattense Burm. f. Pharmaceuticals, 17(7), 948. https://doi.org/10.3390/ph17070948