Unraveling the Impact of Six Pentacyclic Triterpenes Regulating Metabolic Pathways on Lung Carcinoma Cells
Abstract
:1. Introduction
2. Results
2.1. Cytotoxicity and Therapeutic Index (TI)
2.2. Cell Cycle Arrest, DNA Damage, and Ribonucleotide Reductase (RR) Expression
2.3. Apoptosis: Externalization of PS and Caspase 3 Activity
2.4. Total ROS and Mitochondrial ROS Production and Autophagy
2.5. MAPK/PI3K Protein Expression and PDL1 and STAT3 Gene Expression
2.6. Theoretical Predictions of Molecular Targets
2.7. Results Summary
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Cell Culture Conditions
4.3. Cell Viability
4.4. Apoptosis Externalization of Phospatidylserine (PS) Annexin V Assay
4.5. Caspase 3 Activity Assay
4.6. Flow Cytometry Analysis
4.6.1. Cell Cycle Arrest
4.6.2. DNA Damage Induction
4.6.3. Mitochondrial Oxidative Stress
4.6.4. Autophagy Activation
4.6.5. MAPK/PI3K Expression
4.7. Total Oxidative Stress
4.8. RNA Extraction and Real-Time (RT) Quantitative PCR
4.9. Theoretical Target Predictive Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Baxevanos, P.; Mountzios, G. Novel chemotherapy regimens for advanced lung cancer: Have we reached a plateau? J. Transl. Med. 2018, 6, 139. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, R.; Mathai, M.L.; Zulli, A. Cisplatin for cancer therapy and overcoming chemoresistance. Heliyon 2022, 8, e10608. [Google Scholar] [CrossRef] [PubMed]
- Lung Cancer Research Foundation. October 2023. Available online: https://www.lungcancerresearchfoundation.org/research/why-research/treatment-advances/ (accessed on 4 April 2024).
- Dong, L.; He, J.; Luo, L.; Wang, K. Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals. Pharmaceuticals 2023, 16, 92. [Google Scholar] [CrossRef]
- Yan, X.-J.; Gong, L.-H.; Zheng, F.-Y.; Cheng, K.-J.; Chen, Z.-S.; Shi, Z. Triterpenoids as reversal agents for anticancer drug resistance treatment. Drug Discov. Today 2014, 19, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Fazio, G.C.; Matsuda, S.P.T. On the origins of triterpenoid skeletal diversity. Phytochemistry 2004, 65, 261–291. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Kinghorn, A.D. Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity. Planta Med. 2019, 85, 802–814. [Google Scholar] [CrossRef]
- Vo, N.N.Q.; Nomura, Y.; Muranaka, T.; Fukushima, E.O. Structure-activity relationships of pentacyclic triterpenoids as inhibitors of cyclooxygenase and lipoxygenase enzymes. J. Nat. Prod. 2019, 82, 3311–3320. [Google Scholar] [CrossRef]
- Delgado, Y.; Torres, A.; Milian, M. Data on cytotoxic pattern of cholesterol analogs for lung adenocarcinoma cells. Data Brief. 2019, 25, 104179. [Google Scholar] [CrossRef]
- Rufino-Palomares, E.E.; Pérez-Jiménez, A.; García-Salguero, L.; Mokhtari, K.; Reyes-Zurita, F.J.; Peragón-Sánchez, J.; Lupiáñez, J.A. Nutraceutical role of polyphenols and triterpenes present in the extracts of fruits and leaves of Olea europaea as antioxidants, anti-infectives and anti-cancer agents on healthy growth. Molecules 2022, 27, 2341. [Google Scholar] [CrossRef]
- Ding, S.M.; Lu, A.L.; Zhang, W.; Zhou, L.; Xie, H.Y.; Zheng, S.S.; Li, Q.Y. The role of cancer-associated fibroblast MRC-5 in pancreatic cancer. J. Cancer 2018, 9, 614–628. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Xu, B.; Wang, X.; Zheng, B.; Du, J.; Liu, S. The analysis of the anti-tumor mechanism of ursolic acid using connectively map approach in breast cancer cells line MCF-7. Cancer Manag. Res. 2020, 12, 3469–3476. [Google Scholar] [CrossRef] [PubMed]
- Wróblewska-Łuczka, P.; Cabaj, J.; Bąk, W.; Bargieł, J.; Grabarska, A.; Góralczyk, A.; Łuszczki, J.J. Additive interactions between betulinic acid and two taxanes in in vitro tests against four human malignant melanoma cell lines. Int. J. Mol. Sci. 2022, 23, 9641. [Google Scholar] [CrossRef] [PubMed]
- Pantia, S.; Kangsamaksin, T.; Janvilisri, T.; Komyod, W. Asiatic acid inhibits nasopharyngeal carcinoma cell viability and migration via suppressing STAT3 and Claudin-1. Pharmaceuticals 2023, 16, 902. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Li, X.; Yu, S.; Liang, L. Inhibition of cancer cell growth by oleanolic acid in multidrug resistant liver carcinoma is mediated via suppression of cancer cell migration and invasion, mitochondrial apoptosis, G2/M cell cycle arrest and deactivation of JNK/p38 signalling pathway. J. BUON 2019, 24, 1964–1969. [Google Scholar] [PubMed]
- Król, S.K.; Kiełbus, M.; Rivero-Müller, A.; Stepulak, A. Comprehensive review on betulin as a potent anticancer agent. Biomed. Res. Int. 2015, 2015, 584189. [Google Scholar] [CrossRef] [PubMed]
- Pitchai, D.; Roy, A.; Ignatius, C. In vitro evaluation of anti-cancer potentials of lupeol isolated from Elephantopus scaber L. on MCF-7 cell line. J. Adv. Pharm. Technol. Res. 2014, 5, 179–184. [Google Scholar] [CrossRef]
- Ford, J.M.; Kastan, M.B. 11—DNA Damage Response Pathways and Cancer. In Abeloff’s Clinical Oncology, 5th ed.; Niederhuber, J.E., Armitage, J.O., Doroshow, J.H., Kastan, M.B., Tepper, J.E., Eds.; Churchill Livingstone: Philadelphia, PA, USA, 2014; pp. 142–153.e143. [Google Scholar]
- Zhan, X.K.; Li, J.L.; Zhang, S.; Xing, P.Y.; Xia, M.F. Betulinic acid exerts potent antitumor effects on paclitaxel-resistant human lung carcinoma cells (H460) via G2/M phase cell cycle arrest and induction of mitochondrial apoptosis. Oncol. Lett. 2018, 16, 3628–3634. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Hu, Y.; Yang, Y.; Wang, L.; Yang, X.; Wang, B.; Huang, M. Betulinic acid induces ROS-dependent apoptosis and S-phase arrest by inhibiting the NF-kappaB pathway in human multiple myeloma. Oxid. Med. Cell Longev. 2019, 2019, 5083158. [Google Scholar] [CrossRef]
- Weng, H.; Tan, Z.J.; Hu, Y.P.; Shu, Y.J.; Bao, R.F.; Jiang, L.; Wu, X.S.; Li, M.L.; Ding, Q.; Wang, X.A.; et al. Ursolic acid induces cell cycle arrest and apoptosis of gallbladder carcinoma cells. Cancer Cell Int. 2014, 14, 96. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, X.; Li, H.; Zhuang, J.; Feng, F.; Liu, L.; Liu, C.; Sun, C. Identifying the effect of ursolic acid against triple-negative breast cancer: Coupling network pharmacology with experiments verification. Front. Pharmacol. 2021, 12, 685773. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Ryu, H.G.; Lee, J.; Shin, J.; Harikishore, A.; Jung, H.Y.; Kim, Y.S.; Lyu, H.N.; Oh, E.; Baek, N.I.; et al. Ursolic acid exerts anti-cancer activity by suppressing vaccinia-related kinase 1-mediated damage repair in lung cancer cells. Sci. Rep. 2015, 5, 14570. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Jeong, J.W.; Han, M.H.; Lee, H.; Kim, G.Y.; Jin, S.; Park, J.H.; Kwon, H.J.; Kim, B.W.; Choi, Y.H. The anti-cancer effect of betulinic acid in u937 human leukemia cells is mediated through ROS-dependent cell cycle arrest and apoptosis. Anim. Cells Syst. 2021, 25, 119–127. [Google Scholar] [CrossRef]
- Goswami, P.; Paul, S.; Banerjee, R.; Kundu, R.; Mukherjee, A. Betulinic acid induces DNA damage and apoptosis in SiHa cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2018, 828, 1–9. [Google Scholar] [CrossRef]
- Huff, S.E.; Winter, J.M.; Dealwis, C.G. Inhibitors of the cancer target ribonucleotide reductase, past and present. Biomolecules 2022, 12, 815. [Google Scholar] [CrossRef]
- Youns, M.; Askoura, M.; Abbas, H.A.; Attia, G.H.; Khayyat, A.N.; Goda, R.M.; Almalki, A.J.; Khafagy, E.S.; Hegazy, W.A.H. Celastrol modulates multiple signaling pathways to inhibit proliferation of pancreatic cancer via DDIT3 and ATF3 up-regulation and RRM2 and MCM4 downregulation. OncoTargets Ther. 2021, 14, 3849–3860. [Google Scholar] [CrossRef]
- Wang, C.; Youle, R.J. The role of mitochondria in apoptosis. Annu. Rev. Genet. 2009, 43, 95–118. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, K. A mini review on molecules inducing caspase-independent cell death: A new route to cancer therapy. Molecules 2022, 27, 6401. [Google Scholar] [CrossRef]
- Ling, T.; Boyd, L.; Rivas, F. Triterpenoids as reactive oxygen species modulators of cell fate. Chem. Res. Toxicol. 2022, 35, 569–584. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Interactions between reactive oxygen species and autophagy: Special issue: Death mechanisms in cellular homeostasis. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 119041. [Google Scholar] [CrossRef]
- Wang, Q.; Zou, M.H. Measurement of reactive oxygen species (ROS) and mitochondrial ROS in AMPK knockout mice blood Vessels. Methods Mol. Biol. 2018, 1732, 507–517. [Google Scholar] [CrossRef]
- Napolitano, G.; Fasciolo, G.; Venditti, P. Mitochondrial management of reactive oxygen species. Antioxidants 2021, 10, 1824. [Google Scholar] [CrossRef]
- Yun, C.W.; Lee, S.H. The roles of autophagy in cancer. Int. J. Mol. Sci. 2018, 19, 3466. [Google Scholar] [CrossRef]
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020, 52, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yu, X.; Xu, L.; Li, Y.; Zeng, C. Current insight into the regulation of PD-L1 in cancer. Exp. Hematol. Oncol. 2022, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Kutkowska, J.; Strzadala, L.; Rapak, A. Sorafenib in combination with betulinic acid synergistically induces cell cycle arrest and inhibits clonogenic activity in pancreatic ductal adenocarcinoma cells. Int. J. Mol. Sci. 2018, 19, 3234. [Google Scholar] [CrossRef]
- Pandey, M.K.; Sung, B.; Aggarwal, B.B. Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells. Int. J. Cancer 2010, 127, 282–292. [Google Scholar] [CrossRef]
- Kang, D.Y.; Sp, N.; Lee, J.M.; Jang, K.J. Antitumor effects of ursolic acid through mediating the inhibition of STAT3/PD-L1 signaling in non-small cell lung cancer cells. Biomedicines 2021, 9, 297. [Google Scholar] [CrossRef] [PubMed]
- Myung, Y.; de Sá, A.G.C.; Ascher, D.B. Deep-PK: Deep learning for small molecule pharmacokinetic and toxicity prediction. Nucleic Acids Res. 2024, gkae254. [Google Scholar] [CrossRef]
- Azambuja, J.H.; Ludwig, N.; Braganhol, E.; Whiteside, T.L. Inhibition of the adenosinergic pathway in cancer rejuvenates innate and adaptive immunity. Int. J. Mol. Sci. 2019, 20, 5698. [Google Scholar] [CrossRef]
- O’Neill, T.J.; Tofaute, M.J.; Krappmann, D. Function and targeting of MALT1 paracaspase in cancer. Cancer Treatment Rev. 2023, 117, 102568. [Google Scholar] [CrossRef] [PubMed]
- McDonald, P.C.; Chafe, S.C.; Supuran, C.T.; Dedhar, S. Cancer therapeutic targeting of hypoxia induced carbonic anhydrase IX: From bench to bedside. Cancers 2022, 14, 3297. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Zhang, J.; Xu, C.; Gao, M.; Li, N.; Geng, Q. The critical role of γ-secretase and its inhibitors in cancer and cancer therapeutics. Int. J. Biol. Sci. 2023, 19, 5089–5103. [Google Scholar] [CrossRef] [PubMed]
- Welsh, S.J.; Corrie, P.G. Management of BRAF and MEK inhibitor toxicities in patients with metastatic melanoma. Ther. Adv. Med. Oncol. 2015, 7, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Liu, J.; Sun, Z.; Silverstein, R.; Zou, M.; Finkel, T.; Bugge, T.H.; Leppla, S.H.; Liu, S. A potent tumor-selective ERK pathway inactivator with high therapeutic index. PNAS Nexus 2022, 1, 104. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.S.; Kurzrock, R.; Supko, J.G.; He, X.; Naing, A.; Wheler, J.; Lawrence, D.; Eder, J.P.; Meyer, C.J.; Ferguson, D.A.; et al. A phase I first-in-human trial of bardoxolone methyl in patients with advanced solid tumors and lymphomas. Clin. Cancer Res. 2012, 18, 3396–3406. [Google Scholar] [CrossRef]
- Clinical Trials Study Records. 16 September 2021. Available online: https://clinicaltrials.gov/study/NCT04403568?term=NCT04403568&rank=1 (accessed on 29 April 2024).
- Torres-Martinez, Z.; Pérez, D.; Torres, G.; Estrada, S.; Correa, C.; Mederos, N.; Velazquez, K.; Castillo, B.; Griebenow, K.; Delgado, Y. A synergistic pH-responsive serum albumin-based drug delivery system loaded with doxorubicin and pentacyclic triterpene betulinic acid for potential treatment of NSCLC. BioTech 2023, 12, 13. [Google Scholar] [CrossRef]
Triterpene | A549 IC50 (µM) | MRC5 IC50 (µM) | TI # |
---|---|---|---|
AsA | 59 ± 6 * | 38 ± 2 | 0.64 |
OleA | 43 ± 5 * | 86 ± 2 | 2.00 |
UrA | 23 ± 1 * | 13 ± 1 | 0.57 |
BeA | 15 ± 0.7 * | 19 ± 0.4 | 1.27 |
Lupe | 80 ± 6 * | 101 ± 8 | 1.26 |
Betu | 22 ± 1 | 16 ± 0.5 | 0.73 |
BeA Target ID: CHEMBL269277 | Confidence 70, 80, 90% | Activity Threshold | OleA Target ID: CHEMBL168 | Confidence 70, 80, 90% | Activity Threshold |
Interleukin-2 | active | 6 | Interleukin-2 | active | 6 |
TNF-alpha | active | 6 | TNF-alpha | active | 6 |
Dihydrofolate reductase | active | 6 | Dihydrofolate reductase | active | 6 |
Adenosine deaminase | active | 6 | WD repeat-containing protein 5 | active | 6 |
WD repeat-containing protein 5 | active | 6 | |||
LSD1/CoREST complex | active | 6 | |||
Lupe Target ID: CHEMBL289191 | Confidence 70, 80, 90% | Activity Threshold | UrA Target ID: CHEMBL169 | Confidence 70, 80, 90% | Activity Threshold |
Interleukin-2 | active | 6 | Interleukin-2 | active | 6 |
Dihydrofolate reductase | active | 6 | TNF-alpha | active | 6 |
Adenosine deaminase | active | 6 | Dihydrofolate reductase | active | 6 |
WD repeat-containing protein 5 | active | 6 | WD repeat-containing protein 5 | active | 6 |
LSD1/CoREST complex | active | 6 | |||
Carbonic anhydrase IX | active | 6 | |||
Betu Target ID: CHEMBL23236 | Confidence 70, 80, 90% | Activity Threshold | AsA Target ID: CHEMBL404313 | Confidence 70, 80, 90% | Activity Threshold |
Interleukin-2 | active | 6 | Interleukin-2 | active | 6 |
Dihydrofolate reductase | active | 6 | TNF-alpha | active | 6 |
Adenosine deaminase | active | 6 | LSD1/CoREST complex | active | 6 |
WD repeat-containing protein 5 | active | 6 | Mucosa-associated lymphoid tissue lymphoma translocation protein 1 | active | 6 |
LSD1/CoREST complex | active | 6 | Gamma-secretase | active | 5 |
Mechanism | UrA | AsA | OleA | Lupe | BeA | Betu | Highest | Lowest |
---|---|---|---|---|---|---|---|---|
Cytotoxicity | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | BeA | Lupe |
TI > 1 | - | - | ✔ | ✔ | ✔ | - | OleA | UrA |
Early apoptosis | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | UrA | Lupe |
Caspase 3 activation | ✔ | ✔ | ✔ | - | ✔ | ✔ | UrA | Lupe |
Cell cycle arrest | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | Betu | UrA |
DNA damage | ✔ | ✔ | - | - | - | - | UrA | OleA |
RRM1 downregulation | ✔ | ✔ | - | ✔ | ✔ | ✔ | BeA | OleA |
Total ROS production | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | BeA | UrA |
mROS production | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | BeA | Betu |
Autophagy inhibition | - | - | ✔ | ✔ | ✔ | - | Lupe | Betu |
MAPK/PI3K inhibition | - | - | - | - | - | ✔ | Betu | UrA |
PDL1 downregulation | ✔ | ✔ | ✔ | ✔ | ✔ | - | BeA | Betu |
STAT3 downregulation | ✔ | ✔ | - | ✔ | ✔ | ✔ | BeA | OleA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Sanchez, A.; Torres, G.; Estrada, S.; Perez, D.; Garcia, C.; Milian, M.; Velazquez, E.; Molina, V.; Delgado, Y. Unraveling the Impact of Six Pentacyclic Triterpenes Regulating Metabolic Pathways on Lung Carcinoma Cells. Pharmaceuticals 2024, 17, 694. https://doi.org/10.3390/ph17060694
Torres-Sanchez A, Torres G, Estrada S, Perez D, Garcia C, Milian M, Velazquez E, Molina V, Delgado Y. Unraveling the Impact of Six Pentacyclic Triterpenes Regulating Metabolic Pathways on Lung Carcinoma Cells. Pharmaceuticals. 2024; 17(6):694. https://doi.org/10.3390/ph17060694
Chicago/Turabian StyleTorres-Sanchez, Anamaris, Grace Torres, Sthephanie Estrada, Daraishka Perez, Carlos Garcia, Melissa Milian, Eddian Velazquez, Valerie Molina, and Yamixa Delgado. 2024. "Unraveling the Impact of Six Pentacyclic Triterpenes Regulating Metabolic Pathways on Lung Carcinoma Cells" Pharmaceuticals 17, no. 6: 694. https://doi.org/10.3390/ph17060694
APA StyleTorres-Sanchez, A., Torres, G., Estrada, S., Perez, D., Garcia, C., Milian, M., Velazquez, E., Molina, V., & Delgado, Y. (2024). Unraveling the Impact of Six Pentacyclic Triterpenes Regulating Metabolic Pathways on Lung Carcinoma Cells. Pharmaceuticals, 17(6), 694. https://doi.org/10.3390/ph17060694