Renal Replacement Therapy as a New Indicator of Voriconazole Clearance in a Population Pharmacokinetic Analysis of Critically Ill Patients
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. Pharmacokinetic Model Building and Model Evaluation
2.3. Simulations and the PTA
3. Discussion
3.1. PK Parameters of This Model
3.2. CRRT Affects Voriconazole CL
3.3. Voriconazole CL Increases When the CLCR Increases
3.4. Voriconazole CL Increases When the Platelet Count Increases
3.5. Voriconazole CL Increases When qCRP Decreases
3.6. Voriconazole CL Increases When PT Decrease
3.7. No Effect of ECMO on Voriconazole CL Was Observed
3.8. Limitations
4. Materials and Methods
4.1. Study Design and Ethics
4.2. Drug Regimens and Clinical Data
4.3. Drug Assay
4.4. Model Selection
4.4.1. Structural Model
4.4.2. Statistical Model
4.4.3. Covariate Model
4.5. Model Validation
4.6. Monte Carlo Simulations
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, L.B.; Kauffman, C.A. Voriconazole: A new triazole antifungal agent. Clin. Infect. Dis. 2003, 36, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Patterson, T.F.; Thompson, G.R., 3rd; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed]
- Hope, W.W.; Billaud, E.M.; Lestner, J.; Denning, D.W. Therapeutic drug monitoring for triazoles. Curr. Opin. Infect. Dis. 2008, 21, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, B.; Obeng, A.O.; Barbarino, J.; Penzak, S.R.; Henning, S.A.; Scott, S.A.; Agundez, J.; Wingard, J.R.; McLeod, H.L.; Klein, T.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP2C19 and Voriconazole Therapy. Clin. Pharmacol. Ther. 2017, 102, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Ashbee, H.R.; Barnes, R.A.; Johnson, E.M.; Richardson, M.D.; Gorton, R.; Hope, W.W. Therapeutic drug monitoring (TDM) of antifungal agents: Guidelines from the British Society for Medical Mycology. J. Antimicrob. Chemother. 2014, 69, 1162–1176. [Google Scholar] [CrossRef] [PubMed]
- Hahn, J.; Choi, J.H.; Chang, M.J. Pharmacokinetic changes of antibiotic, antiviral, antituberculosis and antifungal agents during extracorporeal membrane oxygenation in critically ill adult patients. J. Clin. Pharm. Ther. 2017, 42, 661–671. [Google Scholar] [CrossRef]
- Heffernan, A.J.; Mohd Sazlly Lim, S.; Lipman, J.; Roberts, J.A. A personalised approach to antibiotic pharmacokinetics and pharmacodynamics in critically ill patients. Anaesth. Crit. Care Pain. Med. 2021, 40, 100970. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Abdul-Aziz, M.H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [CrossRef]
- Buck, M.L. Pharmacokinetic changes during extracorporeal membrane oxygenation: Implications for drug therapy of neonates. Clin. Pharmacokinet. 2003, 42, 403–417. [Google Scholar] [CrossRef]
- Chen, W.; Xie, H.; Liang, F.; Meng, D.; Rui, J.; Yin, X.; Zhang, T.; Xiao, X.; Cai, S.; Liu, X.; et al. Population Pharmacokinetics in China: The Dynamics of Intravenous Voriconazole in Critically Ill Patients with Pulmonary Disease. Biol. Pharm. Bull. 2015, 38, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Myrianthefs, P.; Markantonis, S.L.; Evaggelopoulou, P.; Despotelis, S.; Evodia, E.; Panidis, D.; Baltopoulos, G. Monitoring plasma voriconazole levels following intravenous administration in critically ill patients: An observational study. Int. J. Antimicrob. Agents 2010, 35, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.B.; Lui, K.Y.; Guo, P.H.; Liu, X.M.; Liang, T.; Hu, X.G.; Tong, L.; Wu, J.J.; Xia, Y.Z.; Chen, P.; et al. Population pharmacokinetic model-guided optimization of intravenous voriconazole dosing regimens in critically ill patients with liver dysfunction. Pharmacotherapy 2022, 42, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Cies, J.J.; Moore, W.S., 2nd; Giliam, N.; Low, T.; Marino, D.; Deacon, J.; Enache, A.; Chopra, A. Oxygenator impact on voriconazole in extracorporeal membrane oxygenation circuits. Perfusion 2020, 35, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.M.; Halwick, D.R.; Dodson, B.L.; Thompson, J.E.; Arnold, J.H. Potential drug sequestration during extracorporeal membrane oxygenation: Results from an ex vivo experiment. Intensive Care Med. 2007, 33, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Raffaeli, G.; Cavallaro, G.; Allegaert, K.; Koch, B.C.P.; Mosca, F.; Tibboel, D.; Wildschut, E.D. Sequestration of Voriconazole and Vancomycin Into Contemporary Extracorporeal Membrane Oxygenation Circuits: An in vitro Study. Front. Pediatr. 2020, 8, 468. [Google Scholar] [CrossRef] [PubMed]
- Lyster, H.; Pitt, T.; Maunz, O.; Diamond, S.; Roberts, J.A.; Brown, D.; Mills, J.; Armstrong-James, D.; Gerovasili, V.; Carby, M.; et al. Variable Sequestration of Antifungals in an Extracorporeal Membrane Oxygenation Circuit. ASAIO J. 2023, 69, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, H.; Zhang, Q.; Ou, Q.; Zhou, H.; Sha, T.; Zeng, Z.; Wu, J.; Lu, J.; Chen, Z. Effects of ex vivo Extracorporeal Membrane Oxygenation Circuits on Sequestration of Antimicrobial Agents. Front. Med. 2021, 8, 748769. [Google Scholar] [CrossRef]
- Peterson, E.L.; Chittick, P.J.; Richardson, C.L. Decreasing voriconazole requirement in a patient after extracorporeal membrane oxygenation discontinuation: A case report. Transpl. Infect. Dis. 2021, 23, e13545. [Google Scholar] [CrossRef]
- Mathieu, A.; Thiboutot, Z.; Ferreira, V.; Benoit, P.; Grandjean Lapierre, S.; Po, H.E.; Halwagi, A. Voriconazole Sequestration During Extracorporeal Membrane Oxygenation for Invasive Lung Aspergillosis: A Case Report. ASAIO J. 2022, 68, e56–e58. [Google Scholar] [CrossRef]
- Spriet, I.; Annaert, P.; Meersseman, P.; Hermans, G.; Meersseman, W.; Verbesselt, R.; Willems, L. Pharmacokinetics of caspofungin and voriconazole in critically ill patients during extracorporeal membrane oxygenation. J. Antimicrob. Chemother. 2009, 63, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, S.; Papy, E.; Da Silva, D.; Nataf, P.; Massias, L.; Wolff, M.; Bouadma, L. Potential voriconazole and caspofungin sequestration during extracorporeal membrane oxygenation. Intensive Care Med. 2009, 35, 183–184. [Google Scholar] [CrossRef] [PubMed]
- Bruggemann, R.J.; Antonius, T.; Heijst, A.; Hoogerbrugge, P.M.; Burger, D.M.; Warris, A. Therapeutic drug monitoring of voriconazole in a child with invasive aspergillosis requiring extracorporeal membrane oxygenation. Ther. Drug Monit. 2008, 30, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.; Feih, J.; Juul, J. Fluctuating Voriconazole Concentrations during Extracorporeal Membrane Oxygenation. J. Pharm. Pract. 2023, 36, 998–1001. [Google Scholar] [CrossRef]
- Lin, X.B.; Hu, X.G.; Xia, Y.Z.; Liu, X.M.; Liang, T.; Chen, X.; Cai, C.J. Voriconazole pharmacokinetics in a critically ill patient during extracorporeal membrane oxygenation. J. Chemother. 2022, 34, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Yu, X.; Chen, W.; Li, M.; Gu, S.; Huang, L.; Zhan, Q.; Wang, C. Impact of extracorporeal membrane oxygenation on voriconazole plasma concentrations: A retrospective study. Front. Pharmacol. 2022, 13, 972585. [Google Scholar] [CrossRef] [PubMed]
- Van Daele, R.; Bekkers, B.; Lindfors, M.; Broman, L.M.; Schauwvlieghe, A.; Rijnders, B.; Hunfeld, N.G.M.; Juffermans, N.P.; Taccone, F.S.; Coimbra Sousa, C.A.; et al. A Large Retrospective Assessment of Voriconazole Exposure in Patients Treated with Extracorporeal Membrane Oxygenation. Microorganisms 2021, 9, 1543. [Google Scholar] [CrossRef] [PubMed]
- Abel, S.; Allan, R.; Gandelman, K.; Tomaszewski, K.; Webb, D.J.; Wood, N.D. Pharmacokinetics, safety and tolerance of voriconazole in renally impaired subjects: Two prospective, multicentre, open-label, parallel-group volunteer studies. Clin. Drug Investig. 2008, 28, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.B.; Li, Z.W.; Yan, M.; Zhang, B.K.; Liang, W.; Wang, F.; Xu, P.; Xiang, D.X.; Xie, X.B.; Yu, S.J.; et al. Population pharmacokinetics of voriconazole and CYP2C19 polymorphisms for optimizing dosing regimens in renal transplant recipients. Br. J. Clin. Pharmacol. 2018, 84, 1587–1597. [Google Scholar] [CrossRef]
- Kim, S.H.; Kwon, J.C.; Park, C.; Han, S.; Yim, D.S.; Choi, J.K.; Cho, S.Y.; Lee, H.J.; Park, S.H.; Choi, S.M.; et al. Therapeutic drug monitoring and safety of intravenous voriconazole formulated with sulfobutylether beta-cyclodextrin in haematological patients with renal impairment. Mycoses 2016, 59, 644–651. [Google Scholar] [CrossRef]
- Huang, H.G.; Wang, H.L.; Lin, Y.K.; Yi, Y.D.; Liu, M.; Dong, J.L.; Liu, J.M.; Chen, F.; Deng, T.Y.; Hu, S. Factors Influencing and Adverse Reactions of Voriconazole Clearance in Patients with Hematological Diseases. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2023, 31, 562–567. [Google Scholar] [PubMed]
- Fuhrmann, V.; Schenk, P.; Jaeger, W.; Miksits, M.; Kneidinger, N.; Warszawska, J.; Holzinger, U.; Kitzberger, R.; Thalhammer, F. Pharmacokinetics of voriconazole during continuous venovenous haemodiafiltration. J. Antimicrob. Chemother. 2007, 60, 1085–1090. [Google Scholar] [CrossRef]
- Radej, J.; Krouzecky, A.; Stehlik, P.; Sykora, R.; Chvojka, J.; Karvunidis, T.; Novak, I.; Matejovic, M. Pharmacokinetic evaluation of voriconazole treatment in critically ill patients undergoing continuous venovenous hemofiltration. Ther. Drug Monit. 2011, 33, 393–397. [Google Scholar] [CrossRef]
- Quintard, H.; Papy, E.; Massias, L.; Lasocki, S.; Arnaud, P.; Desmonts, J.M.; Montravers, P. The pharmacokinetic profile of voriconazole during continuous high-volume venovenous hemofiltration in a critically ill patient. Ther. Drug Monit. 2008, 30, 117–119. [Google Scholar] [CrossRef]
- Grensemann, J.; Pfaffendorf, C.; Wicha, S.G.; Konig, C.; Roedl, K.; Jarczak, D.; Iwersen-Bergmann, S.; Manthey, C.; Kluge, S.; Fuhrmann, V. Voriconazole Pharmacokinetics Are Not Altered in Critically Ill Patients with Acute-on-Chronic Liver Failure and Continuous Renal Replacement Therapy: An Observational Study. Microorganisms 2021, 9, 2087. [Google Scholar] [CrossRef]
- Kiang, T.K.; Sherwin, C.M.; Spigarelli, M.G.; Ensom, M.H. Fundamentals of Population Pharmacokinetic Modelling: Modelling and Software. Clin. Pharmacokinet. 2012, 51, 515–525. [Google Scholar] [CrossRef]
- Heng, S.C.; Snell, G.I.; Levvey, B.; Keating, D.; Westall, G.P.; Williams, T.J.; Whitford, H.; Nation, R.L.; Slavin, M.A.; Morrissey, O.; et al. Relationship between trough plasma and epithelial lining fluid concentrations of voriconazole in lung transplant recipients. Antimicrob. Agents Chemother. 2013, 57, 4581–4583. [Google Scholar] [CrossRef] [PubMed]
- Capitano, B.; Potoski, B.A.; Husain, S.; Zhang, S.; Paterson, D.L.; Studer, S.M.; McCurry, K.R.; Venkataramanan, R. Intrapulmonary penetration of voriconazole in patients receiving an oral prophylactic regimen. Antimicrob. Agents Chemother. 2006, 50, 1878–1880. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Gordon, M.; Villarreal, E.; Peruccioni, M.; Marques, M.R.; Poveda-Andres, J.L.; Castellanos-Ortega, A.; Ramirez, P. Impact of voriconazole plasma concentrations on treatment response in critically ill patients. J. Clin. Pharm. Ther. 2019, 44, 572–578. [Google Scholar] [CrossRef]
- Han, K.; Capitano, B.; Bies, R.; Potoski, B.A.; Husain, S.; Gilbert, S.; Paterson, D.L.; McCurry, K.; Venkataramanan, R. Bioavailability and population pharmacokinetics of voriconazole in lung transplant recipients. Antimicrob. Agents Chemother. 2010, 54, 4424–4431. [Google Scholar] [CrossRef]
- Robatel, C.; Rusca, M.; Padoin, C.; Marchetti, O.; Liaudet, L.; Buclin, T. Disposition of voriconazole during continuous veno-venous haemodiafiltration (CVVHDF) in a single patient. J. Antimicrob. Chemother. 2004, 54, 269–270. [Google Scholar] [CrossRef]
- Schetz, M.; Ferdinande, P.; Van den Berghe, G.; Verwaest, C.; Lauwers, P. Pharmacokinetics of continuous renal replacement therapy. Intensive Care Med. 1995, 21, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; McClave, S.A.; Martindale, R.G.; Miller, K.R.; Hurt, R.T. Hypoalbuminemia and Clinical Outcomes: What is the Mechanism behind the Relationship? Am. Surg. 2017, 83, 1220–1227. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, H.; Xiao, C.; Hou, J.; Zhang, B.; Li, J.; Zhang, M.; Jiang, Y.; Sandaradura, I.; Ding, X.; et al. Enhancing voriconazole therapy in liver dysfunction: Exploring administration schemes and predictive factors for trough concentration and efficacy. Front. Pharmacol. 2023, 14, 1323755. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Liang, Z.; Liu, F.; Lin, L.; Zhang, J.; Xie, L.; Yu, M.; Sun, F. Factors influencing plasma concentration of voriconazole and voriconazole- N-oxide in younger adult and elderly patients. Front. Pharmacol. 2023, 14, 1126580. [Google Scholar] [CrossRef]
- Tang, D.; Song, B.L.; Yan, M.; Zou, J.J.; Zhang, M.; Zhou, H.Y.; Wang, F.; Xiao, Y.W.; Xu, P.; Zhang, B.K.; et al. Identifying factors affecting the pharmacokinetics of voriconazole in patients with liver dysfunction: A population pharmacokinetic approach. Basic. Clin. Pharmacol. Toxicol. 2019, 125, 34–43. [Google Scholar] [CrossRef]
- Tang, D.; Yan, M.; Song, B.L.; Zhao, Y.C.; Xiao, Y.W.; Wang, F.; Liang, W.; Zhang, B.K.; Chen, X.J.; Zou, J.J.; et al. Population pharmacokinetics, safety and dosing optimization of voriconazole in patients with liver dysfunction: A prospective observational study. Br. J. Clin. Pharmacol. 2021, 87, 1890–1902. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.C.; Lin, X.B.; Zhang, B.K.; Xiao, Y.W.; Xu, P.; Wang, F.; Xiang, D.X.; Xie, X.B.; Peng, F.H.; Yan, M. Predictors of Adverse Events and Determinants of the Voriconazole Trough Concentration in Kidney Transplantation Recipients. Clin. Transl. Sci. 2021, 14, 702–711. [Google Scholar] [CrossRef]
- Marongiu, F.; Mamusa, A.M.; Mameli, G.; Mulas, G.; Cambuli, A.B.; Piga, M.; Tronci, M.B.; Balestrieri, A. Thrombocytopenia and liver cirrhosis evidence for relationship between platelet count, spleen size and hepatic synthetic activity. Thromb. Res. 1987, 45, 275–278. [Google Scholar] [CrossRef]
- Pradella, P.; Bonetto, S.; Turchetto, S.; Uxa, L.; Comar, C.; Zorat, F.; De Angelis, V.; Pozzato, G. Platelet production and destruction in liver cirrhosis. J. Hepatol. 2011, 54, 894–900. [Google Scholar] [CrossRef]
- Veringa, A.; Ter Avest, M.; Span, L.F.; van den Heuvel, E.R.; Touw, D.J.; Zijlstra, J.G.; Kosterink, J.G.; van der Werf, T.S.; Alffenaar, J.C. Voriconazole metabolism is influenced by severe inflammation: A prospective study. J. Antimicrob. Chemother. 2017, 72, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Encalada Ventura, M.A.; Span, L.F.; van den Heuvel, E.R.; Groothuis, G.M.; Alffenaar, J.W. Influence of inflammation on voriconazole metabolism. Antimicrob. Agents Chemother. 2015, 59, 2942–2943. [Google Scholar] [CrossRef] [PubMed]
- Vreugdenhil, B.; van der Velden, W.; Feuth, T.; Kox, M.; Pickkers, P.; van de Veerdonk, F.L.; Blijlevens, N.M.A.; Bruggemann, R.J.M. Moderate correlation between systemic IL-6 responses and CRP with trough concentrations of voriconazole. Br. J. Clin. Pharmacol. 2018, 84, 1980–1988. [Google Scholar] [CrossRef] [PubMed]
- Aiuchi, N.; Nakagawa, J.; Sakuraba, H.; Takahata, T.; Kamata, K.; Saito, N.; Ueno, K.; Ishiyama, M.; Yamagata, K.; Kayaba, H.; et al. Impact of polymorphisms of pharmacokinetics-related genes and the inflammatory response on the metabolism of voriconazole. Pharmacol. Res. Perspect. 2022, 10, e00935. [Google Scholar] [CrossRef]
- Dote, S.; Sawai, M.; Nozaki, A.; Naruhashi, K.; Kobayashi, Y.; Nakanishi, H. A retrospective analysis of patient-specific factors on voriconazole clearance. J. Pharm. Health Care Sci. 2016, 2, 10. [Google Scholar] [CrossRef]
- Jiang, Z.; Wei, Y.; Huang, W.; Li, B.; Zhou, S.; Liao, L.; Li, T.; Liang, T.; Yu, X.; Li, X.; et al. Population pharmacokinetics of voriconazole and initial dosage optimization in patients with talaromycosis. Front. Pharmacol. 2022, 13, 982981. [Google Scholar] [CrossRef]
- Wu, K.C.; Lin, C.J. The regulation of drug-metabolizing enzymes and membrane transporters by inflammation: Evidences in inflammatory diseases and age-related disorders. J. Food Drug Anal. 2019, 27, 48–59. [Google Scholar] [CrossRef]
- Stanke-Labesque, F.; Gautier-Veyret, E.; Chhun, S.; Guilhaumou, R.; French Society of Pharmacology and Therapeutics. Inflammation is a major regulator of drug metabolizing enzymes and transporters: Consequences for the personalization of drug treatment. Pharmacol. Ther. 2020, 215, 107627. [Google Scholar] [CrossRef]
- Roffey, S.J.; Cole, S.; Comby, P.; Gibson, D.; Jezequel, S.G.; Nedderman, A.N.; Smith, D.A.; Walker, D.K.; Wood, N. The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human. Drug Metab. Dispos. 2003, 31, 731–741. [Google Scholar] [CrossRef]
- Takikawa, Y.; Harada, M.; Wang, T.; Suzuki, K. Usefulness and accuracy of the international normalized ratio and activity percent of prothrombin time in patients with liver disease. Hepatol. Res. 2014, 44, 92–101. [Google Scholar] [CrossRef]
- Wei, X.; Zhao, M.; Fu, P.; Xiao, X. Risk factors associated with insufficient and potentially toxic voriconazole plasma concentrations: An observational study. J. Chemother. 2019, 31, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yan, M.; Tang, D.; Xue, L.; Zhang, T.; Dong, Y.; Zhu, L.; Wang, X.; Dong, Y. Therapeutic drug monitoring and safety of voriconazole therapy in patients with Child-Pugh class B and C cirrhosis: A multicenter study. Int. J. Infect. Dis. 2018, 72, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Hashemizadeh, Z.; Badiee, P.; Malekhoseini, S.A.; Raeisi Shahraki, H.; Geramizadeh, B.; Montaseri, H. Observational Study of Associations between Voriconazole Therapeutic Drug Monitoring, Toxicity, and Outcome in Liver Transplant Patients. Antimicrob. Agents Chemother. 2017, 61, e01211-17. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Mould, D.R. Population pharmacokinetic analysis of voriconazole and anidulafungin in adult patients with invasive aspergillosis. Antimicrob. Agents Chemother. 2014, 58, 4718–4726. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Rhee, S.J.; Park, W.B.; Yu, K.S.; Jang, I.J.; Lee, S. A Personalized CYP2C19 Phenotype-Guided Dosing Regimen of Voriconazole Using a Population Pharmacokinetic Analysis. J. Clin. Med. 2019, 8, 227. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Zhou, C.; Zhang, Y.; Pan, J.; Pan, B.; Wang, B.; Hu, B.; Guo, W. Epidemiology of Clinically Significant Aspergillus Species from a Large Tertiary Hospital in Shanghai, China, for the Period of Two Years. Infect. Drug Resist. 2023, 16, 4645–4657. [Google Scholar] [CrossRef]
Characteristic | Value a |
---|---|
Age (years) | 66 (57, 73) |
Sex (male/female) | 287/121 |
Weight (kg) | 65 (55, 75) |
Height (cm) | 169 (162, 173) |
Body mass index (kg/m2) | 23.2 (20.3, 25.7) |
APACHE II score on the day of blood collection | 19.0 (14.0, 25.0) |
SOFA score on the day of blood collection | 7.0 (4.0, 10.0) |
White blood cell count, 109/L, median (IQR) | 9.9 (6.7, 14.2) |
Neutrophilic granulocyte count, 109/L | 8.4(5.4, 12.4) |
Lymphocyte count, 109/L | 0.8 (0.5, 1.2) |
Hemoglobin, 1012/L | 85.0 (75.0, 100.8) |
Platelet, 109/L | 150.5 (88.0, 223.8) |
ALT (U/L) | 27.0 (16.0, 51.0) |
AST (U/L) | 36.0 (23.0, 61.0) |
Total bilirubin (µmol/L) | 12.9 (8.1, 24.2) |
Direct bilirubin (µmol/L) | 5.7 (2.9, 11.9) |
Albumin (mg/dL) | 34.0 (30.3, 38.0) |
Blood urea (mmol/L) | 78.5 (54.4, 126.0) |
SCR (μmol/L) | 78.5 (54.4, 126.0) |
CLCR (mL/min) | 68.5 (45.5, 102.5) |
qCRP (mg/L) | 73.6 (30.0, 160.0) |
Procalcitonin (ug/L) | 0.4 (0.2, 1.5) |
Use of proton pump inhibitors (%) | 353 (70.5) |
Use of glucocorticoid (%) | 197 (39.3) |
ECMO (yes/no) | 108/393 |
CRRT (yes/no) | 122/379 |
Administration on day of PK sampling | |
Intravenous infusion (%) | 278 (68.1) |
Oral (%) | 45 (11.0) |
Nasogastric (%) | 85 (20.8) |
No. (%) receiving voriconazole | |
200 mg q12h | 342 (83.8) |
150 mg q12h | 16 (3.9) |
100 mg q12h | 9 (2.2) |
200 mg qm, 100 mg qn b | 7 (1.7) |
Others | 34 (8.3) |
2-Compartment Model | Bootstrap (n = 1000) | |||
---|---|---|---|---|
Parameter | Estimate | RSE (%) | Median | 95% CI |
Fixed effects | ||||
CL (L/h) | 3.55 | 3.5 | 3.55 | 3.33–3.77 |
Vc (L) | 33.50 | 19.1 | 33.11 | 22.70–43.38 |
Vp (L) | 138.00 | 18.6 | 142.45 | 107.88–183.39 |
Q (L/h) | 52.80 | 15.9 | 53.05 | 41.34–70.24 |
Ka (/h) | 1.20 (fixed) | - | 1.20 (fixed) | - |
F | 0.835 | 5.8 | 0.83 | 0.75–0.93 |
θqCRP_CL | 0.142 | 14.6 | 0.14 | 0.10–0.19 |
θCRRT_CL | 1.46 | 5.9 | 1.46 | 1.29–1.65 |
θPLT_CL | 0.166 | 25.2 | 0.16 | 0.10–0.24 |
θPT_CL | 0.875 | 23.2 | 0.87 | 0.48–1.44 |
θCLCR_CL | 0.218 | 15.6 | 0.22 | 0.14–0.30 |
Random effects | ||||
Inter-individual variability (% CV) | ||||
CL (L/h) | 49.80 | 4.4 | 49.29 | 45.05–53.31 |
Vc (L) | 66.70 | 26.6 | 66.65 | 47.20–90.25 |
Vp (L) | 81.70 | 21.8 | 78.39 | 46.57–115.06 |
Q (L/h) | 0 (fixed) | - | 0 (fixed) | - |
Residual error (%CV if proportional, SD if additive) | ||||
Additive (mg/L) | 0.192 | 28.1 | 0.20 | 0.04–0.33 |
Proportional | 8.9 | 9.5 | 8.8 | 3.78–12.19 |
All (n = 501) | CRRT (n = 122) | Non-CRRT (n = 379) | p | |
---|---|---|---|---|
CL (L/h) | 3.78 (4.31–4.78) | 3.99 (2.99–6.35) | 3.73 (2.64–5.49) | 0.027 |
Vc (L) | 33.50 (32.84–33.85) | 33.38 (32.52–34.06) | 33.50 (32.62–34.00) | 0.821 |
Vp (L) | 138.34 (130.66–136.18) | 137.15 (127.18–145.88) | 138.38 (125.23–144.53) | 0.655 |
AUC24 (mg·h/L) | 90.20 (57.30–128.00) | 87.90 (52.50–119.00) | 91.50 (60.70–131.00) | 0.114 |
Cmin (mg/L) | 3.62 (1.92–5.33) | 3.19 (1.73–5.03) | 3.70 (2.03–5.45) | 0.110 |
T1/2β (h) | 6.21 (3.91–8.82) | 5.87 (3.70–8.43) | 6.34 (4.05–9.01) | 0.068 |
All (n = 501) | ECMO (n = 122) | Non-ECMO (n = 379) | p | |
---|---|---|---|---|
CL (L/h) | 3.78 (4.31–4.78) | 3.60 (2.75–5.46) | 3.79 (2.66–5.86) | 0.929 |
Vc (L) | 33.50 (32.84–33.85) | 33.48 (32.11–33.95) | 33.50 (32.67–34.01) | 0.637 |
Vp (L) | 138.34 (130.66–136.18) | 138.11 (119.84–144.86) | 138.38 (126.65–144.97) | 0.789 |
AUC24 (mg·h/L) | 90.20 (57.30–128.00) | 93.90 (60.40–123.00) | 89.70 (57.20–130.00) | 0.943 |
Cmin (mg/L) | 3.62 (1.92–5.33) | 3.62 (2.06–5.29) | 3.62 (1.90–5.36) | 0.935 |
T1/2β (h) | 6.21 (3.91–8.82) | 6.51 (4.11–8.59) | 6.15 (3.88–9.02) | 0.898 |
Dose | qCRP (mg/L) | CRRT | MIC (mg/L) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0.016 | 0.032 | 0.25 | 0.5 | 1 | 2 | 8 | 16 | |||
200 mg q12h | 40 | Yes | 100 | 100 | 97.1 | 81 | 47.1 | 9 | 0 | 0 |
No | 100 | 100 | 99.5 | 93.6 | 74.3 | 35.3 | 0 | 0 | ||
80 | Yes | 100 | 100 | 99.5 | 94.3 | 55.2 | 11 | 0 | 0 | |
No | 100 | 100 | 99.5 | 99.1 | 83.6 | 35.5 | 0 | 0 | ||
160 | Yes | 100 | 100 | 100 | 96.2 | 64.3 | 15.8 | 0 | 0 | |
No | 100 | 100 | 100 | 99.6 | 87.5 | 44.6 | 0 | 0 | ||
250 mg q12h | 40 | Yes | 100 | 100 | 100 | 96.5 | 65.8 | 17 | 0 | 0 |
No | 100 | 100 | 100 | 99.7 | 88.7 | 45.9 | 0 | 0 | ||
80 | Yes | 100 | 100 | 100 | 97.6 | 71.5 | 21.8 | 0 | 0 | |
No | 100 | 100 | 100 | 100 | 91.7 | 54.3 | 0 | 0 | ||
160 | Yes | 100 | 100 | 100 | 98.4 | 77.4 | 28.4 | 0 | 0 | |
No | 100 | 100 | 100 | 100 | 94.5 | 60.1 | 0 | 0 | ||
300 mg q12h | 40 | Yes | 100 | 100 | 100 | 98 | 76.1 | 27.4 | 0 | 0 |
No | 100 | 100 | 100 | 100 | 94 | 59.3 | 0 | 0 | ||
80 | Yes | 100 | 100 | 100 | 98.8 | 83.7 | 34.7 | 0 | 0 | |
No | 100 | 100 | 100 | 100 | 96.4 | 67.7 | 0 | 0 | ||
160 | Yes | 100 | 100 | 100 | 99.3 | 88.2 | 41.5 | 0 | 0 | |
No | 100 | 100 | 100 | 100 | 97.8 | 75.1 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ye, Q.; Li, P.; Huang, L.; Qi, Z.; Chen, W.; Zhan, Q.; Wang, C. Renal Replacement Therapy as a New Indicator of Voriconazole Clearance in a Population Pharmacokinetic Analysis of Critically Ill Patients. Pharmaceuticals 2024, 17, 665. https://doi.org/10.3390/ph17060665
Wang Y, Ye Q, Li P, Huang L, Qi Z, Chen W, Zhan Q, Wang C. Renal Replacement Therapy as a New Indicator of Voriconazole Clearance in a Population Pharmacokinetic Analysis of Critically Ill Patients. Pharmaceuticals. 2024; 17(6):665. https://doi.org/10.3390/ph17060665
Chicago/Turabian StyleWang, Yuqiong, Qinghua Ye, Pengmei Li, Linna Huang, Zhijiang Qi, Wenqian Chen, Qingyuan Zhan, and Chen Wang. 2024. "Renal Replacement Therapy as a New Indicator of Voriconazole Clearance in a Population Pharmacokinetic Analysis of Critically Ill Patients" Pharmaceuticals 17, no. 6: 665. https://doi.org/10.3390/ph17060665
APA StyleWang, Y., Ye, Q., Li, P., Huang, L., Qi, Z., Chen, W., Zhan, Q., & Wang, C. (2024). Renal Replacement Therapy as a New Indicator of Voriconazole Clearance in a Population Pharmacokinetic Analysis of Critically Ill Patients. Pharmaceuticals, 17(6), 665. https://doi.org/10.3390/ph17060665