Enhancing Therapeutic Efficacy of Donepezil, an Alzheimer’s Disease Drug, by Diplazium esculentum (Retz.) Sw. and Its Phytochemicals
Abstract
:1. Introduction
2. Results
2.1. Phenolic Profiles of Diplazium esculentum (DE) Ethanolic Extract Using Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry
2.2. Inhibitory Activities of the Key Enzymes Relevant to Alzheimer’s Disease
2.3. Synergistic Effects between Diplazium esculentum (DE) Ethanolic Extract and Donepezil
2.4. Effects of Diplazium esculentum (DE) Ethanolic Extract and Donepezil on Drosophila Eye Morphology
2.5. Genotoxicity Analysis of Diplazium esculentum (DE) Extract Using the Ames Test
3. Discussion
4. Materials and Methods
4.1. Sample Preparation and Extraction
4.2. Phytochemical Analysis Utilizing Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry (LC–ESI–MS/MS)
4.3. Determination of Enzyme Inhibitory Activities
4.4. Determination Synergistic Effect between Donepezil and DE Extract
4.5. Fly Strains, Culture, and Treatment
4.6. Analysis of Drosophila Eyes Using Scanning Electron Microscopy (SEM)
4.7. Bacterial Reverse Mutation Test (Ames Test)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bird, T.D. Alzheimer Disease Overview. In GeneReviews®; University of Washington: Seattle, WA, USA, 2018. [Google Scholar]
- Reitz, C.; Pericak-Vance, M.A.; Foroud, T.; Mayeux, R. A global view of the genetic basis of Alzheimer disease. Nat. Rev. Neurol. 2023, 19, 261–277. [Google Scholar] [CrossRef]
- Robinson, D.M.; Keating, G.M. Memantine: A review of its use in Alzheimer’s disease. Drugs 2006, 66, 1515–1534. [Google Scholar] [CrossRef]
- Anand, P.; Singh, B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. Res. 2013, 36, 375–399. [Google Scholar] [CrossRef]
- Paroni, G.; Bisceglia, P.; Seripa, D. Understanding the Amyloid Hypothesis in Alzheimer’s Disease. J. Alzheimers Dis. 2019, 68, 493–510. [Google Scholar] [CrossRef]
- How Is Alzheimer’s Disease Treated? Available online: https://www.nia.nih.gov/health/how-alzheimers-disease-treated (accessed on 27 October 2023).
- Vyas, S.; Kothari, S.L.; Kachhwaha, S. Nootropic medicinal plants: Therapeutic alternatives for Alzheimer’s disease. J. Herb. Med. 2019, 17–18, 100291. [Google Scholar] [CrossRef]
- Malík, M.; Tlustoš, P. Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs. Nutrients 2022, 14, 3367. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.M.; Ke, Y. Huperzine A: Is it an Effective Disease-Modifying Drug for Alzheimer’s Disease? Front. Aging Neurosci. 2014, 6, 216. [Google Scholar] [CrossRef]
- Amadoro, G.; Latina, V.; Balzamino, B.O.; Squitti, R.; Varano, M.; Calissano, P.; Micera, A. Nerve Growth Factor-Based Therapy in Alzheimer’s Disease and Age-Related Macular Degeneration. Front. Neurosci. 2021, 15, 735928. [Google Scholar] [CrossRef]
- Landreth, G.; Jiang, Q.; Mandrekar, S.; Heneka, M. PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics 2008, 5, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Briggs, R.; Kennelly, S.P.; O’Neill, D. Drug treatments in Alzheimer’s disease. Clin. Med. 2016, 16, 247–253. [Google Scholar] [CrossRef] [PubMed]
- John, O.O.; Amarachi, I.S.; Chinazom, A.P.; Adaeze, E.; Kale, M.B.; Umare, M.D.; Upaganlawar, A.B. Phytotherapy: A promising approach for the treatment of Alzheimer’s disease. Pharmacol. Res. Mod. Chin. Med. 2022, 2, 100030. [Google Scholar] [CrossRef]
- Pradeep, S.; Jain, A.S.; Dharmashekara, C.; Prasad, S.K.; Kollur, S.P.; Syed, A.; Shivamallu, C. Alzheimer’s Disease and Herbal Combination Therapy: A Comprehensive Review. J. Alzheimers Dis. Rep. 2020, 4, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Semwal, P.; Painuli, S.; Painuli, K.M.; Antika, G.; Tumer, T.B.; Thapliyal, A.; Setzer, W.N.; Martorell, M.; Alshehri, M.M.; Taheri, Y.; et al. Diplazium esculentum (Retz.) Sw.: Ethnomedicinal, Phytochemical, and Pharmacological Overview of the Himalayan Ferns. Oxidative Med. Cell Longev. 2021, 2021, 1917890. [Google Scholar] [CrossRef] [PubMed]
- Diplazium esculentum (Retz.) Sw. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:17086810-1#distributions (accessed on 30 January 2024).
- Kunkeaw, T.; Suttisansanee, U.; Trachootham, D.; Karinchai, J.; Chantong, B.; Potikanond, S.; Inthachat, W.; Pitchakarn, P.; Temviriyanukul, P. Diplazium esculentum (Retz.) Sw. reduces BACE-1 activities and amyloid peptides accumulation in Drosophila models of Alzheimer’s disease. Sci. Rep. 2021, 11, 23796. [Google Scholar] [CrossRef] [PubMed]
- Zihad, S.; Gupt, Y.; Uddin, S.J.; Islam, M.T.; Alam, M.R.; Aziz, S.; Hossain, M.; Shilpi, J.A.; Nahar, L.; Sarker, S.D. Nutritional value, micronutrient and antioxidant capacity of some green leafy vegetables commonly used by southern coastal people of Bangladesh. Heliyon 2019, 5, e02768. [Google Scholar] [CrossRef]
- Junejo, J.A.; Ghoshal, A.; Mondal, P.; Nainwal, L.; Zaman, K.; Singh, K.D.; Chakraborty, T. In-vivo Toxicity Evaluation and Phytochemical, Physicochemical Analysis of Diplazium esculentum (Retz.) Sw. leaves a Traditionally used North-Eastern Indian Vegetable. Adv. Biores. 2015, 6, 175–181. [Google Scholar]
- Green, K.D.; Fosso, M.Y.; Garneau-Tsodikova, S. Multifunctional Donepezil Analogues as Cholinesterase and BACE1 Inhibitors. Molecules 2018, 23, 3252. [Google Scholar] [CrossRef]
- Wang, X.; Kim, J.R.; Lee, S.B.; Kim, Y.J.; Jung, M.Y.; Kwon, H.W.; Ahn, Y.J. Effects of curcuminoids identified in rhizomes of Curcuma longa on BACE-1 inhibitory and behavioral activity and lifespan of Alzheimer’s disease Drosophila models. BMC Complement. Altern. Med. 2014, 14, 88. [Google Scholar] [CrossRef]
- Cutler, T.; Sarkar, A.; Moran, M.; Steffensmeier, A.; Puli, O.R.; Mancini, G.; Tare, M.; Gogia, N.; Singh, A. Drosophila Eye Model to Study Neuroprotective Role of CREB Binding Protein (CBP) in Alzheimer’s Disease. PLoS ONE 2015, 10, e0137691. [Google Scholar] [CrossRef]
- OECD. Test No. 471: Bacterial Reverse Mutation Test; OECD: Paris, French, 2020. [Google Scholar]
- Asher, S.; Priefer, R. Alzheimer’s disease failed clinical trials. Life Sci. 2022, 306, 120861. [Google Scholar] [CrossRef] [PubMed]
- Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Martínez, M.; Ascacio-Valdés, J.A.; Flores-Gallegos, A.C.; González-Domínguez, J.; Gómez-Martínez, S.; Aguilar, C.N.; Morlett-Chávez, J.A.; Rodríguez-Herrera, R. Location and tissue effects on phytochemical composition and in vitro antioxidant activity of Moringa oleifera. Ind. Crops Prod. 2020, 151, 112439. [Google Scholar] [CrossRef]
- Kumar, S.; Yadav, A.; Yadav, M.; Yadav, J.P. Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm.f. BMC Res. Notes 2017, 10, 60. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Chai, T.-T.; Wang, X.; Morais-Braga, M.F.B.; Yang, J.-H.; Wong, F.-C.; Wang, R.; Yao, H.; Cao, J.; Cornara, L.; et al. Phytochemicals from fern species: Potential for medicine applications. Phytochem. Rev. 2017, 16, 379–440. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Martínez, J.D.; Valdés, A.; Gallego, R.; Suárez-Montenegro, Z.J.; Alarcón, M.; Ibañez, E.; Alvarez-Rivera, G.; Cifuentes, A. Blood-Brain Barrier Permeability Study of Potential Neuroprotective Compounds Recovered from Plants and Agri-Food by-Products. Front. Nutr. 2022, 9, 924596. [Google Scholar] [CrossRef]
- Chaudhuri, T.K.; Roy, S. A comprehensive review on the pharmacological properties of Diplazium esculentum, an edible fern. Pharm. Pharmacol. Res. 2020, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Dutta, S.; Chaudhuri, T.K. In vitro assessment of anticholinesterase and NADH oxidase inhibitory activities of an edible fern, Diplazium esculentum. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Jijta, C.; Kaushik, J.V.; Zeray, R.; Ghebremedhin, A.; Beyene, L. FRAP (Ferric reducing ability of plasma) assay and effect of Diplazium esculentum (Retz) Sw. (a green vegetable of North India) on central nervous system. Indian J. Nat. Prod. Resour. 2012, 3, 228–231. [Google Scholar]
- Shi, W.; Zhang, G.; Liao, Y.; Fei, X.; Gong, D.; Hu, X. Anti-acetylcholinesterase mechanism of kaempferol and its synergistic effect with galanthamine hydrobromide. Food Biosci. 2023, 56, 103174. [Google Scholar] [CrossRef]
- Demmak, R.G.; Bordage, S.; Bensegueni, A.; Boutaghane, N.; Hennebelle, T.; Mokrani, E.H.; Sahpaz, S. Chemical Constituents from Solenostemma argel and their Cholinesterase Inhibitory Activity. Nat. Prod. Sci. 2019, 25, 115. [Google Scholar] [CrossRef]
- Beg, T.; Jyoti, S.; Naz, F.; Rahul; Ali, F.; Ali, S.K.; Reyad, A.M.; Siddique, Y.H. Protective Effect of Kaempferol on the Transgenic Drosophila Model of Alzheimer’s Disease. CNS Neurol. Disord. Drug Targets 2018, 17, 421–429. [Google Scholar] [CrossRef]
- Liao, Y.; Mai, X.; Wu, X.; Hu, X.; Luo, X.; Zhang, G. Exploring the Inhibition of Quercetin on Acetylcholinesterase by Multispectroscopic and In Silico Approaches and Evaluation of Its Neuroprotective Effects on PC12 Cells. Molecules 2022, 27, 7971. [Google Scholar] [CrossRef]
- Omar, S.H.; Scott, C.J.; Hamlin, A.S.; Obied, H.K. Biophenols: Enzymes (β-secretase, Cholinesterases, histone deacetylase and tyrosinase) inhibitors from olive (Olea europaea L.). Fitoterapia 2018, 128, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Ozarowski, M.; Mikolajczak, P.L.; Piasecka, A.; Kachlicki, P.; Kujawski, R.; Bogacz, A.; Bartkowiak-Wieczorek, J.; Szulc, M.; Kaminska, E.; Kujawska, M.; et al. Influence of the Melissa officinalis Leaf Extract on Long-Term Memory in Scopolamine Animal Model with Assessment of Mechanism of Action. Evid. Based Complement. Altern. Med. 2016, 2016, 9729818. [Google Scholar] [CrossRef] [PubMed]
- García-Alberca, J.M.; Gris, E.; Mendoza, S. Combined treatment with Ginkgo biloba extract EGb 761 plus acetylcholinesterase inhibitors improved cognitive function and neuropsychiatric symptoms in patients with mild cognitive impairment. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2022, 8, e12338. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.; Rockwood, K.; Martin, E.; Darvesh, S. Synergistic inhibition of butyrylcholinesterase by galantamine and citalopram. Biochim. Biophys. Acta (BBA) Gen. Subj. 2011, 1810, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Zhou, S.; Zhan, C.G. Discovery of potent and selective butyrylcholinesterase inhibitors through the use of pharmacophore-based screening. Bioorg. Med. Chem. Lett. 2019, 29, 126754. [Google Scholar] [CrossRef]
- Greig, N.H.; Utsuki, T.; Ingram, D.K.; Wang, Y.; Pepeu, G.; Scali, C.; Yu, Q.S.; Mamczarz, J.; Holloway, H.W.; Giordano, T.; et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA 2005, 102, 17213–17218. [Google Scholar] [CrossRef]
- Giacobini, E. Cholinergic function and Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2003, 18, S1–S5. [Google Scholar] [CrossRef]
- Cheong, S.L.; Tiew, J.K.; Fong, Y.H.; Leong, H.W.; Chan, Y.M.; Chan, Z.L.; Kong, E.W. Current Pharmacotherapy and Multi-Target Approaches for Alzheimer’s Disease. Pharmaceuticals 2022, 15, 1560. [Google Scholar] [CrossRef]
- Macgregor, J.T.; Jurd, L. Mutagenicity of plant flavonoids: Structural requirements for mutagenic activity in Salmonella typhimurium. Mutat. Res. Environ. Mutagen. Relat. Subj. 1978, 54, 297–309. [Google Scholar] [CrossRef]
- Sahu, S.C.; Gray, G.C. Kaempferol-induced nuclear DNA damage and lipid peroxidation. Cancer Lett. 1994, 85, 159–164. [Google Scholar] [CrossRef]
- Caria, H.; Chaveca, T.; Laires, A.; Rueff, J. Genotoxicity of quercetin in the micronucleus assay in mouse bone marrow erythrocytes, human lymphocytes, V79 cell line and identification of kinetochore-containing (CREST staining) micronuclei in human lymphocytes. Mutat. Res. Genet. Toxicol. 1995, 343, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.D.; Rodrigues, A.S.; Gaspar, J.; Maia, R.; Laires, A.; Rueff, J. Involvement of rat cytochrome 1A1 in the biotransformation of kaempferol to quercetin: Relevance to the genotoxicity of kaempferol. Mutagenesis 1997, 12, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Lee, S.; Ryu, H.Y.; Shim, S.M. Safety evaluation of kaempferol glycosides-rich standardized roasted goji berry leaf extract. Regul. Toxicol. Pharmacol. 2023, 140, 105382. [Google Scholar] [CrossRef]
- Schauss, A.G.; Tselyico, S.S.; Kuznetsova, V.A.; Yegorova, I. Toxicological and Genotoxicity Assessment of a Dihydroquercetin-Rich Dahurian Larch Tree (Larix gmelinii Rupr) Extract (Lavitol). Int. J. Toxicol. 2015, 34, 162–181. [Google Scholar] [CrossRef] [PubMed]
- Kimoto, H.; Fujiwara, S.; Koyama, N.; Uesugi, T. Genotoxicity and subchronic toxicity of a kaempferol aglycone-rich product produced from horseradish leaves. Fundam. Toxicol. Sci. 2022, 9, 71–83. [Google Scholar] [CrossRef]
- Takanashi, H.; Aiso, S.; Hirono, I.; Matsushima, T.; Sugimura, T. Carcinogenicity test of quercetin and kaempferol in rats by oral administration. J. Food Saf. 1983, 5, 55–60. [Google Scholar] [CrossRef]
- Sirichai, P.; Kittibunchakul, S.; Thangsiri, S.; On-Nom, N.; Chupeerach, C.; Temviriyanukul, P.; Inthachat, W.; Nuchuchua, O.; Aursalung, A.; Sahasakul, Y. Impact of drying processes on phenolics and in vitro health-related activities of indigenous plants in Thailand. Plants 2022, 11, 294. [Google Scholar] [CrossRef]
- Chupeerach, C.; Temviriyanukul, P.; Thangsiri, S.; Inthachat, W.; Sahasakul, Y.; Aursalung, A.; Wongchang, P.; Sangkasa-Ad, P.; Wongpia, A.; Polpanit, A. Phenolic Profiles and Bioactivities of Ten Original Lineage Beans in Thailand. Foods 2022, 11, 3905. [Google Scholar] [CrossRef]
- Luu, L.K.; Thangsiri, S.; Sahasakul, Y.; Aursalung, A.; Inthachat, W.; Temviriyanukul, P.; On-Nom, N.; Chupeerach, C.; Suttisansanee, U. Nutrients, Phytochemicals and In Vitro Disease Prevention of Nephelium hypoleucum Kurz Fruit. Nutrients 2023, 15, 950. [Google Scholar] [CrossRef] [PubMed]
- Mapoung, S.; Pitchakarn, P.; Yodkeeree, S.; Ovatlarnporn, C.; Sakorn, N.; Limtrakul, P. Chemosensitizing effects of synthetic curcumin analogs on human multi-drug resistance leukemic cells. Chem. Biol. Interact. 2016, 244, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, J.L.; Padilla, L.; Dakhel, S.; Coll, T.; Hervas, R.; Adan, J.; Masa, M.; Mitjans, F.; Martinez, J.M.; Coma, S.; et al. Therapeutic targeting of tumor growth and angiogenesis with a novel anti-S100A4 monoclonal antibody. PLoS ONE 2013, 8, e72480. [Google Scholar] [CrossRef] [PubMed]
- Dukaew, N.; Chairatvit, K.; Pitchakarn, P.; Imsumran, A.; Karinchai, J.; Tuntiwechapikul, W.; Wongnoppavich, A. Inactivation of AKT/NF-κB signaling by eurycomalactone decreases human NSCLC cell viability and improves the chemosensitivity to cisplatin. Oncol. Rep. 2020, 44, 1441–1454. [Google Scholar] [CrossRef]
- Inthachat, W.; Temviriyanukul, P.; On-Nom, N.; Kanoongon, P.; Thangsiri, S.; Chupeerach, C.; Suttisansanee, U. Optimization of Phytochemical-Rich Citrus maxima Albedo Extract Using Response Surface Methodology. Molecules 2023, 28, 4121. [Google Scholar] [CrossRef]
- On-Nom, N.; Promdang, P.; Inthachat, W.; Kanoongon, P.; Sahasakul, Y.; Chupeerach, C.; Suttisansanee, U.; Temviriyanukul, P. Wolffia globosa-Based Nutritious Snack Formulation with High Protein and Dietary Fiber Contents. Foods 2023, 12, 2647. [Google Scholar] [CrossRef]
Sample | Phenolic Profiles (mg/100 g Dry Weight (DW)) | |
---|---|---|
DE extract | Rutin | 6.76 ± 0.25 A |
Galangin | 19.20 ± 0.03 B | |
Rosmarinic acid | 53.88 ± 0.50 C | |
Quercetin | 87.96 ± 0.09 D | |
Kaempferol | 167.67 ± 4.77 E |
Sample | Half-Maximal Inhibitory Concentration (IC50) (µg/mL) | ||
---|---|---|---|
AChE | BChE | BACE-1 | |
DE extract | 3026.00 ± 70.22 D | 3064.21 ± 83.12 D | 384.11 ± 33.12 D |
Kaempferol | 92.16 ± 2.44 B | 52.99 ± 4.84 B | 85.70 ± 3.67 B |
Quercetin | 224.30 ± 49.18 C | 165.50 ± 35.57 C | 133.43 ± 25.98 C |
Donepezil | 1.30 ± 0.13 A | 1.05 ± 0.14 A | 0.55 ± 0.02 A |
Sample Combination | Combination Index (CI) | Description | |||
---|---|---|---|---|---|
Donepezil (µg/mL) | DE Extract (µg/mL) | Kaempferol (µg/mL) | Quercetin (µg/mL) | ||
Acetylcholinesterase inhibition | |||||
IC30 (0.66) | IC30 (2350.00) | 1.28 | Slight antagonism | ||
IC40 (0.75) | IC20 (1800.00) | 1.17 | Slight antagonism | ||
IC40 (0.75) | IC30 (2350.00) | 1.35 | Slight antagonism | ||
IC50 (1.30) | IC20 (1800.00) | 1.59 | Antagonism | ||
IC40 (0.75) | IC20 (40.50) | 1.01 | Additive | ||
IC40 (0.75) | IC30 (57.50) | 1.20 | Slight antagonism | ||
IC50 (1.30) | IC20 (100.00) | 1.45 | Slight antagonism | ||
IC50 (1.30) | IC30 (200.40) | 1.89 | Antagonism | ||
Butyrylcholinesterase inhibition | |||||
IC20 (0.25) | IC20 (1600.00) | 0.76 | Moderate synergism | ||
IC30 (0.42) | IC20 (24.70) | 0.87 | Slight synergism | ||
IC30 (0.42) | IC30 (25.50) | 0.88 | Slight synergism | ||
IC20 (0.25) | IC20 (47.20) | 0.52 | Synergism | ||
BACE-1 inhibition | |||||
IC40 (0.40) | IC20 (70.00) | 0.91 | Additive | ||
IC40 (0.40) | IC30 (100.00) | 0.99 | Additive | ||
IC40 (0.40) | IC20 (50.00) | 1.31 | Slight antagonism | ||
IC40 (0.40) | IC20 (25.00) | 0.91 | Additive | ||
IC40 (0.40) | IC30 (35.00) | 0.99 | Additive |
Doses (µg/plate) | TA98 | TA100 | TA102 | TA1535 | TA1537 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Revertant Colonies | MR | Revertant Colonies | MR | Revertant Colonies | MR | Revertant Colonies | MR | Revertant Colonies | MR | |
Neg | 81.83 ± 2.73 | 1.00 (−) | 66.83 ± 5.01 | 1.00 (−) | 369.17 ± 9.79 | 1.00 (−) | 11.33 ± 1.89 | 1.00 (−) | 9.00 ± 1.91 | 1.00 (−) |
10 | 85.50 ± 2.43 | 1.04 (−) | 68.83 ± 4.63 | 1.03 (−) | 371.67 ± 9.52 | 1.01 (−) | 10.83 ± 2.61 | 0.96 (−) | 10.50 ± 2.14 | 1.17 (−) |
100 | 83.00 ± 3.42 | 1.01 (−) | 66.50 ± 6.24 | 1.00 (−) | 374.33 ± 9.57 | 1.01 (−) | 10.50 ± 1.71 | 0.93 (−) | 8.83 ± 1.46 | 0.98 (−) |
500 | 83.67 ± 3.90 | 1.02 (−) | 67.83 ± 5.84 | 1.01 (−) | 368.17 ± 7.60 | 1.00 (−) | 9.00 ± 1.53 | 0.79 (−) | 10.83 ± 1.57 | 1.20 (−) |
1000 | 83.33 ± 4.57 | 1.02 (−) | 69.33 ± 4.82 | 1.04 (−) | 354.50 ± 9.25 | 0.96 (−) | 10.33 ± 0.94 | 0.91 (−) | 8.67 ± 1.25 | 0.96 (−) |
2000 | 83.83 ± 2.91 | 1.02 (−) | 67.17 ± 5.96 | 1.00 (−) | 369.00 ± 8.29 | 1.00 (−) | 11.00 ± 1.63 | 0.97 (−) | 9.17 ± 1.77 | 1.02 (−) |
4-NQO | 878.67 ± 35.25 | 10.74 (+) | ||||||||
NaN3 | 1145.33 ± 52.03 | 17.14 (+) | 214.17 ± 9.51 | 18.90 (+) | ||||||
MMC | 955.33 ± 27.85 | 2.59 (+) | ||||||||
9-AA | 780.00 ± 24.11 | 86.67 (+) |
Doses (µg/plate) | TA98 | TA100 | TA102 | TA1535 | TA1537 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Revertant Colonies | MR | Revertant Colonies | MR | Revertant Colonies | MR | Revertant Colonies | MR | Revertant Colonies | MR | |
Neg | 98.67 ± 5.96 | 1.00 (−) | 87.33 ± 4.38 | 1.00 (−) | 334.00 ± 10.98 | 1.00 (−) | 10.50 ± 1.26 | 1.00 (−) | 9.83 ± 1.57 | 1.00 (−) |
10 | 99.67 ± 4.68 | 1.01 (−) | 85.33 ± 5.56 | 0.98 (−) | 340.00 ± 12.19 | 1.02 (−) | 11.50 ± 1.86 | 1.10 (−) | 9.00 ± 0.58 | 0.92 (−) |
100 | 96.67 ± 3.54 | 0.98 (−) | 84.50 ± 4.07 | 0.97 (−) | 346.50 ± 10.89 | 1.04 (−) | 11.17 ± 1.07 | 1.06 (−) | 9.00 ± 1.29 | 0.92 (−) |
500 | 96.33 ± 4.38 | 0.98 (−) | 83.83 ± 2.67 | 0.96 (−) | 344.83 ± 10.32 | 1.03 (−) | 11.50 ± 1.26 | 1.10 (−) | 9.83 ± 0.90 | 1.00 (−) |
1000 | 94.33 ± 4.68 | 0.96 (−) | 81.83 ± 3.67 | 0.94 (−) | 345.00 ± 7.37 | 1.03 (−) | 11.33 ± 1.25 | 1.08 (−) | 11.17 ± 1.34 | 1.14 (−) |
2000 | 96.83 ± 5.43 | 0.98 (−) | 83.83 ± 2.61 | 0.96 (−) | 345.17 ± 8.29 | 2.88 (−) | 10.00 ± 1.83 | 0.95 (−) | 9.83 ± 1.95 | 1.00 (−) |
2-AA | 1396.00 ± 48.94 | 14.15 (+) | 876.67 ± 34.21 | 10.04 (+) | 960.67 ± 29.07 | 3.03 (+) | 349.83 ± 18.89 | 33.32 (+) | 203.67 ± 5.56 | 20.71 (+) |
CI Values | Description | CI Values | Description |
---|---|---|---|
<0.1 | Very strong synergism | 0.9–1.10 | Additive |
0.1–0.3 | Strong synergism | 1.20–1.45 | Slight antagonism |
0.3–0.7 | Synergism | 1.45–3.33 | Antagonism |
0.7–0.85 | Moderate synergism | 3.3–10 | Strong antagonism |
0.85–0.9 | Slight synergism | >10 | Very strong antagonism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inthachat, W.; Chantong, B.; Pitchakarn, P.; Takoon, C.; Karinchai, J.; Suttisansanee, U.; Temviriyanukul, P. Enhancing Therapeutic Efficacy of Donepezil, an Alzheimer’s Disease Drug, by Diplazium esculentum (Retz.) Sw. and Its Phytochemicals. Pharmaceuticals 2024, 17, 341. https://doi.org/10.3390/ph17030341
Inthachat W, Chantong B, Pitchakarn P, Takoon C, Karinchai J, Suttisansanee U, Temviriyanukul P. Enhancing Therapeutic Efficacy of Donepezil, an Alzheimer’s Disease Drug, by Diplazium esculentum (Retz.) Sw. and Its Phytochemicals. Pharmaceuticals. 2024; 17(3):341. https://doi.org/10.3390/ph17030341
Chicago/Turabian StyleInthachat, Woorawee, Boonrat Chantong, Pornsiri Pitchakarn, Chawalit Takoon, Jirarat Karinchai, Uthaiwan Suttisansanee, and Piya Temviriyanukul. 2024. "Enhancing Therapeutic Efficacy of Donepezil, an Alzheimer’s Disease Drug, by Diplazium esculentum (Retz.) Sw. and Its Phytochemicals" Pharmaceuticals 17, no. 3: 341. https://doi.org/10.3390/ph17030341
APA StyleInthachat, W., Chantong, B., Pitchakarn, P., Takoon, C., Karinchai, J., Suttisansanee, U., & Temviriyanukul, P. (2024). Enhancing Therapeutic Efficacy of Donepezil, an Alzheimer’s Disease Drug, by Diplazium esculentum (Retz.) Sw. and Its Phytochemicals. Pharmaceuticals, 17(3), 341. https://doi.org/10.3390/ph17030341