Anti-Coccal Activity and Composition of the Essential Oils and Methanolic Extracts Obtained from Brewing Quality Humulus lupulus L. Hop Pellets
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Evaluation of Hop Cultivars
2.2. Anti-Coccal Activity of Hop Essential Oils and Extracts
2.2.1. Essential Oils
2.2.2. Methanol Extracts and the α-Acid-Enriched Fraction (α-AEF)
3. Discussion
4. Materials and Methods
4.1. Hop Samples
4.2. Essential Oil Hydro-Distillation
4.3. Hop Extract Preparation
4.4. Acquisition of α-Acid-Enriched Fraction (α-AEF)
4.5. GC/MS Analysis of Volatile Compounds
4.6. LC/MS Analysis of Methanolic Extracts
4.7. Quantitative Analysis of Xanthohumol by HPLC
4.8. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration Determination
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Humulus lupulus L. WFO. Available online: http://www.worldfloraonline.org/taxon/wfo-0000725866 (accessed on 21 June 2023).
- Leen, C.; Verhagen, L.C. Beer flavour. In Comprehensive Natural Products II, 1st ed.; Mander, L., Liu, H.-W., Eds.; Elsevier: Oxford, UK, 2010; Volume 3, pp. 967–997. [Google Scholar]
- Franco, L.; Sánchez, C.; Bravo, R.; Rodriguez, A.; Barriga, C.; Cubero, J.C. The sedative effects of hops (Humulus lupulus), a component of beer, on the activity/rest rhythm. Acta Physiol. Hung. 2012, 99, 133–139. [Google Scholar] [CrossRef]
- Karabín, M.; Hudcová, T.; Jelínek, L.; Dostálek, P. Biologically Active Compounds from Hops and Prospects for Their Use. Compr. Rev. Food Sci. Food Saf. 2016, 15, 542–567. [Google Scholar] [CrossRef]
- Namvar Aghdash, S.; Nasirifard, S. Assessment of aqueous extract of Humulus lupulus effects on seizure induced by intraperitoneal injection of pentylenetetrazole in mice. Neurosci. J. Shefaye Khatam 2015, 3, 49–54. [Google Scholar] [CrossRef]
- Shishehgar, R.; Rezaie, A.; Nazeri, M. Study of sedation, pre-anesthetic and anti-anxiety effects of hop (Humulus lupulus L.) extract compared with diazepam in rats. J. Anim. Vet. Adv. 2012, 11, 2570–2575. [Google Scholar] [CrossRef] [Green Version]
- Langezaal, C.R.; Chandra, A.; Scheffer, J.J.C. Antimicrobial screening of essential oils and extracts of some Humulus lupulus L. cultivars. Pharm. Weekbl. Sci. Ed. 1992, 14, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ding, Z.H.; Liu, J.K.; Zheng, Y.T. Xanthohumol, a novel anti-HIV-1 agent purified from hops Humulus lupulus. Antivir. Res. 2004, 64, 189–194. [Google Scholar] [CrossRef]
- Bogdanova, K.; Röderova, M.; Kolar, M.; Langova, K.; Dusek, M.; Jost, P.; Kubelkova, K.; Bostik, P.; Olsovska, J. Antibiofilm activity of bioactive hop compounds humulone, lupulone and xanthohumol toward susceptible and resistant staphylococci. Res. Microbiol. 2018, 169, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Bouback, T.A.; Aljohani, A.M.; Albeshri, A.; Al-Talhi, H.; Moatasim, Y.; GabAllah, M.; Badierah, R.; Albiheyri, R.; Al-Sarraj, F.; Ali, M.A. Antiviral activity of Humulus lupulus (hop) aqueous extract against MERS-CoV and SARS-CoV-2: In-vitro and in-silico study. Biotechnol. Biotechnol. Equip. 2023, 37, 167–179. [Google Scholar] [CrossRef]
- Eyres, G.; Dufour, J.P. Hop essential oil: Analysis, chemical composition and odor characteristics. In Beer in Health and Disease Prevention, 1st ed.; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2008; Volume 1, pp. 241–254. [Google Scholar]
- Sleha, R.; Radochova, V.; Malis, J.; Mikyska, A.; Houska, M.; Krofta, K.; Bogdanova, K.; Janovska, S.; Pejchal, J.; Kolar, M.; et al. Strong antimicrobial and healing effects of beta-acids from hops in methicillin-resistant Staphylococcus aureus-infected external wounds in vivo. Antibiotics 2021, 10, 392. [Google Scholar] [CrossRef]
- Aichinger, G.; Beisl, J.; Marko, D. The hop polyphenols xanthohumol and 8-prenyl-naringenin antagonize the estrogenic effects of Fusarium mycotoxins in human endometrial cancer cells. Front. Nutr. 2018, 5, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischetti, V.A.; Novick, R.P.; Ferretti, J.J.; Portnoy, D.A.; Braunstein, M.; Rood, J.I. Gram-Positive Pathogens, 3rd ed.; ASM Press: Washington, DC, USA, 2019; pp. 381–401. [Google Scholar]
- Jubeh, B.; Breijyeh, Z.; Karaman, R. Resistance of Gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules 2020, 25, 2888. [Google Scholar] [CrossRef] [PubMed]
- Alsheikh, H.M.A.; Sultan, I.; Kumar, V.; Rather, I.A.; Al-sheikh, H.; Jan, A.T.; Haq, Q.M.R. Plant-based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics 2020, 9, 480. [Google Scholar] [CrossRef]
- Moir, M. Hops—A millennium review. J. Am. Soc. Brew. Chem. 2000, 58, 131–146. [Google Scholar] [CrossRef]
- Fahle, A.; Bereswill, S.; Heimesaat, M.M. Antibacterial effects of biologically active ingredients in hop provide promising options to fight infections by pathogens including multi-drug resistant bacteria. Eur. J. Microbiol. Immunol. 2022, 12, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Jirovetz, L.; Bail, S.; Buchbauer, G.; Denkova, Z.; Slavchev, A.; Stoyanova, A.; Schmidt, E.; Geissler, M. Antimicrobial testings, gas chromatographic analysis and olfactory evaluation of an essential oil of hop cones (Humulus lupulus L.) from Bavaria and some of its main compounds. Sci. Pharm. 2006, 74, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Schmalreck, A.F.; Teuber, M.; Reininger, W.; Hartl, A. Structural features determining the antibiotic potencies of natural and synthetic hop bitter resins, their precursors and derivatives. Can. J. Microbiol. 1975, 21, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Sawicka, B.; Śpiewak, M.; Kiełtyka-Dadasiewicz, A.; Skiba, D.; Bienia, B.; Krochmal-Marczak, B.; Pszczółkowski, P. Assessment of the suitability of aromatic and high-bitter hop varieties (Humulus lupulus L.) for beer production in the conditions of the Małopolska Vistula Gorge region. Fermentation 2021, 7, 104. [Google Scholar] [CrossRef]
- Rozalski, M.; Micota, B.; Sadowska, B.; Stochmal, A.; Jedrejek, D.; Wieckowska-Szakiel, M.; Rozalska, B. Anti-adherent and antibiofilm activity of Humulus lupulus L. derived products: New pharmacological properties. Biomed Res. Int. 2013, 2013, 101089. [Google Scholar] [CrossRef] [Green Version]
- Bartmanska, A.; Walecka-Zacharska, E.; Tronina, T.; Poplonski, J.; Sordon, S.; Brzezowska, E.; Bania, J.; Huszcza, E. Antimicrobial properties of spent hops extracts, flavonoids isolated therefrom, and their derivatives. Molecules 2018, 23, 2059. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Xu, T.; Cui, L.; Xue, Z.; Liu, J.; Yang, R.; Qin, S.; Guo, Y. Discovery of amphiphilic xanthohumol derivatives as membrane-targeting antimicrobials against methicillin-resistant Staphylococcus aureus. J. Med. Chem. 2023, 66, 962–975. [Google Scholar] [CrossRef]
- Cermak, P.; Olsovska, J.; Mikyska, A.; Dusek, M.; Kadleckova, Z.; Vanicek, J.; Otakar, N.Y.C.; Sigler, K.; Bostikova, V.; Bostik, P. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) in gut anaerobic bacteria. APMIS 2017, 125, 1033–1038. [Google Scholar] [CrossRef]
- Alonso-Español, A.; Bravo, E.; Ribeiro-Vidal, H.; Virto, L.; Herrera, D.; Alonso, B.; Sanz, M. The antimicrobial activity of curcumin and xanthohumol on bacterial biofilms developed over dental implant surfaces. Int. J. Mol. Sci. 2023, 24, 2335. [Google Scholar] [CrossRef] [PubMed]
- Weber, N.; Biehler, K.; Schwabe, K.; Haarhaus, B.; Quirin, K.W.; Frank, U.; Schempp, C.M.; Wölfle, U. Hop extract as an antioxidant with antimicrobial effects against Propionibacterium acnes and Staphylococcus aureus. Molecules 2019, 24, 223. [Google Scholar] [CrossRef] [Green Version]
- Kramer, B.; Thielmann, J.; Hickisch, A.; Wunderlich, J.; Hauser, C. Antimicrobial activity of hop extracts against foodborne pathogens for meat applications. J. Appl. Microbiol. 2014, 118, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Kolenc, Z.; Langerholc, T.; Hostnik, G.; Ocvirk, M.; Štumpf, S.; Pintarič, M.; Košir, I.J.; Čerenak, A.; Garmut, A.; Bren, U. Antimicrobial properties of different hop (Humulus lupulus) genotypes. Plants 2023, 12, 120. [Google Scholar] [CrossRef]
- Klimek, K.; Tyskiewicz, K.; Miazga-Karska, M.; Debczak, A.; Roj, E.; Ginalska, G. Bioactive compounds obtained from Polish “Marynka” hop variety using efficient two-step supercritical fluid extraction and comparison of their antibacterial, cytotoxic, and anti-proliferative activities in vitro. Molecules 2021, 26, 2366. [Google Scholar] [CrossRef] [PubMed]
- Briggs, D.E.; Boulton, C.A.; Brookes, P.A.; Stevens, R. (Eds.) The chemistry of hop constituents. In Brewing: Science and Practice, 1st ed.; Woodhead Publishing: Sawston, Cambridge, UK, 2004; Volume 1, pp. 255–305. [Google Scholar]
- Morgan, K.; Rees, T.C. Determination of hop alpha-acids by semiautomatic conductometric titration. J. Inst. Brew. 1968, 74, 383–386. [Google Scholar] [CrossRef]
- Walker, T.K.; Saleh, M.S.E.; Creedy, A.E. Purification of humulone and a separation of other components of the α-soft resin of hops. J. Inst. Brew. 1952, 58, 443–448. [Google Scholar] [CrossRef]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory con-centrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003, 9, ix–xv. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Haturvedi, V.; Espinel-Ingroff, A.; Ghannoum, M.A.; Gosey, L.L.; Odds, F.C.; Rex, J.H.; Rinaldi, M.G.; Sheehan, D.J.; Walsh, T.J.; et al. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 2nd ed.; Approved Standard; NCCLS Document M27-A2; NCCLS: Wayne, PA, USA, 2002; Volume 22, pp. 1–30. [Google Scholar]
- Popiołek, Ł.; Biernasiuk, A.; Malm, A. Synthesis and antimicrobial activity of new 1,3-thiazolidin-4-one derivatives obtained from carboxylic acid hydrazides. Phosphorus. Sulfur. Silicon Relat. Elem. 2015, 190, 251–260. [Google Scholar] [CrossRef]
- O’Donnell, F.; Smyth, T.J.P.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected synthetic and naturally occurring quinolines. Int. J. Antimicrob. Agents 2010, 35, 30–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiegand, I.; Hilpert, K.; Hancock, R. Agar and broth dilution methods to determine the Minimal Inhibitory Concentration (MIC) of antimicrobial substance. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
Hop Cultivar | Code | EO Content [%] | Extraction Efficiency [%] | Xanthohumol Concentration [%] |
---|---|---|---|---|
Iunga | In1 | 0.84 | 6.98 | 2.71 |
Marynka | Mr2 | 1.30 | 5.68 | 1.58 |
Sybilla | Sb3 | 1.08 | 5.32 | 1.80 |
Magnum | Mg4 | 1.50 | 6.92 | 0.39 |
Tradition | Tr5 | 0.60 | 6.28 | 1.07 |
Chinook | Ch6 | 0.68 | 5.50 | 1.20 |
Compound Name | RIexp | RIlit | EO from Hop Samples—Relative Percentages | |||||
---|---|---|---|---|---|---|---|---|
In1 * | Mr2 | Sb3 | Mg4 | Tr5 | Ch6 | |||
2-Methylpropyl 2-methylpropanoic acid ester | 914 | 913 | 0.7 | 0.4 | 0.4 | 0.2 | 0.2 | 0.5 |
β-Pinene | 980 | 978 | 0.6 | 0.6 | 0.6 | 0.6 | 0.4 | 0.6 |
Myrcene | 990 | 987 | 27.6 | 28.7 | 36.1 | 37.0 | 23.8 | 24.1 |
Isobutyl isopentanoate | 1002 | 1005 | - | - | - | - | 0.1 | - |
3-Methylbutyl isobutyrate | 1012 | 1013 | 0.2 | 0.4 | 0.2 | 0.3 | 0.3 | 0.5 |
2-Methylbutyl isobutyrate | 1015 | 1016 | 2.7 | 2.4 | 1.7 | 1.8 | 1.0 | 2.8 |
Methyl heptanoate | 1023 | 1021 | - | - | - | 0.1 | 0.2 | - |
Limonene | 1032 | 1025 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 |
β-Phellandrene | 1034 | 1025 | - | 0.1 | 0.2 | - | - | - |
(E)-β-Ocimene | 1048 | 1041 | 0.4 | 0.3 | 0.6 | 0.3 | - | 0.1 |
Methyl octanoate | 1086 | 1061 | 0.2 | 0.1 | 0.1 | 0.4 | 0.2 | 0.7 |
2-Nonanone | 1092 | 1090 | 0.1 | 0.2 | - | - | 0.1 | - |
Perillene | 1100 | 1090 | 0.1 | 0.3 | 0.1 | - | 0.1 | 0.3 |
Linalool | 1103 | 1101 | 0.4 | 0.7 | 0.4 | 0.5 | 1.0 | 0.7 |
Nonanal | 1106 | 1102 | 0.1 | - | - | - | 0.2 | 0.3 |
Methyl nonanoate | 1223 | 1227 | - | - | - | - | 0.3 | - |
Geraniol | 1254 | 1235 | 0.6 | 0.1 | - | - | 0.4 | - |
Undecanone | 1257 | 1273 | 0.2 | - | - | 0.2 | 0.1 | 0.2 |
2-Undecanone | 1293 | 1291 | 0.8 | 0.7 | 0.4 | 0.6 | 1.2 | 0.5 |
Methyl 4-decenoate | 1307 | 1303 | 1.3 | 1.2 | 1.1 | 1.7 | 1.5 | 2.3 |
Methylgeranate | 1322 | 1326 | 0.5 | 2.3 | 1.0 | 0.4 | 0.3 | 1.0 |
α-Ylangene | 1378 | 1376 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.6 |
α-Copaene | 1384 | 1379 | 0.5 | 0.3 | 0.3 | 0.5 | 0.4 | 0.5 |
2-Dodecanone | 1395 | 1381 | - | - | 0.2 | 0.2 | 0.2 | - |
(E)-β-Caryophyllene | 1432 | 1421 | 10.2 | 7.3 | 9.8 | 8.2 | 10.2 | 6.1 |
(E)-α-Bergamotene | 1441 | 1434 | 0.4 | 1.3 | 0.7 | 0.4 | 0.5 | 1.0 |
(E)-β-Farnesene | 1454 | 1446 | 0.9 | 18.8 | 8.1 | 1.1 | 1.5 | 3.4 |
α-Humulene | 1469 | 1455 | 30.4 | 14.1 | 23.9 | 27.2 | 33.1 | 15.7 |
Germacrene D | 1484 | 1479 | 1.3 | 1.0 | 1.1 | 0.8 | 1.3 | 2.0 |
Sesquiterpene, m ** = 204, bp = 105 | 1488 | - | - | - | - | 1.2 | - | |
Muurola-4,9-diene | 1489 | 1490 | 0.1 | - | - | 0.1 | 0.1 | - |
2-Tridecanone | 1496 | 1494 | 0.5 | 0.3 | 0.3 | 0.5 | 1.1 | 0.6 |
Zingiberene | 1499 | 1496 | - | - | - | - | - | 3.5 |
β-Selinene | 1502 | 1497 | 0.7 | 0.7 | 0.6 | 0.4 | 0.6 | 1.9 |
(E,E)-β-Farnesene | 1506 | 1498 | 1.8 | 1.8 | 1.6 | 3.6 | 0.8 | 1.8 |
α-Selinene | 1509 | 1507 | - | - | - | - | 0.9 | 2.8 |
γ-Cadinene | 1513 | 1520 | 0.2 | 0.3 | 0.2 | - | 0.2 | 0.6 |
Sesquiterpene, m = 204, bp = 161 | 1524 | 1.0 | 0.6 | 0.8 | 0.8 | 1.1 | 1.4 | |
β-Cadinene | 1527 | 1526 | 1.5 | 0.9 | 1.2 | 1.2 | 1.6 | 1.9 |
Sesquiterpene, m = 204, bp = 159 | 1533 | 0.4 | 0.3 | 0.3 | 0.2 | 0.4 | 0.7 | |
Sesquiterpene, m = 204, bp = 105 | 1548 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | |
Sesquiterpene, m = 204, bp = 161 | 1551 | - | - | - | - | - | 0.6 | |
Selina-3,7(11)-diene | 1554 | 1542 | 0.1 | - | - | - | 0.1 | 0.7 |
Caryophyllene oxide | 1598 | 1578 | 0.6 | 0.9 | 0.4 | 0.2 | 0.9 | 0.8 |
α-Humulene epoxide I | 1615 | 1593 | 0.2 | 0.2 | - | - | 0.4 | 0.3 |
α-Humulene epoxide II | 1628 | 1602 | 1.5 | 1.4 | 0.6 | 0.5 | 2.3 | 1.8 |
α-Humulene epoxide III | 1651 | 1626 | 0.4 | 0.4 | 0.2 | 0.2 | 0.6 | 0.6 |
Sesquiterpene, m = 204, bp = 161 | 1657 | 0.3 | 0.3 | 0.2 | 0.2 | 0.4 | 0.5 | |
Sesquiterpene, m = 204, bp = 43 | 1673 | 0.4 | 0.3 | 0.2 | 0.3 | 0.6 | 0.8 | |
Sesquiterpene, m = 204, bp = 43 | 1677 | - | - | - | - | 0.3 | - | |
Longifolene aldehyde | 1688 | 1668 | 0.1 | - | - | 0.1 | 0.2 | - |
TOTAL | 90.6 | 90.3 | 93.9 | 91.4 | 92.9 | 85.3 | ||
(E)-β-Caryophyllene + α-Humulene | 40.6 | 21.4 | 33.7 | 35.4 | 43.3 | 21.8 |
Compound Name | RIexp | RIlit | Fragmentation Ions | In1 # | Mr2 | Sb3 | Mg4 | Tr5 | Ch6 |
---|---|---|---|---|---|---|---|---|---|
(E)-β-Caryophyllene | 1423 | 1421 | 204 *-189-161-147-133-93 **-69-41 | 1.2 | 1.4 | 1.3 | 1.4 | - | - |
(E)-β-Farnesene | 1452 | 1446 | 204-161-133-93-69-41 | - | 5.0 | 1.4 | - | - | - |
α-Humulene | 1460 | 1455 | 204-147-121-93-80-41 | 4.0 | 2.9 | 3.5 | 5.0 | 3.3 | 1.8 |
Colupulone | 2387 | - | 400-331-289-275-233-221-205-177-109-69-41 | 17.4 | 22.3 | 22.0 | 12.0 | 14.7 | 17.7 |
Adlupulone | 2455 | - | 414-345-289-277-233-221-205-177-135-109-69-41 | 4.1 | 3.3 | 4.3 | 2.1 | 3.1 | 3.4 |
Lupulone | 2463 | 2482 | 414-345-289-277-235-205-177-109-69-41 | 10.1 | 13.1 | 18.5 | 7.9 | 12.5 | 14.3 |
RT | Compound | Molecular Ion [M-H]- | Fragmentation Ions | In1 * | Mr2 | Sb3 | Mg4 | Tr5 | Ch6 |
---|---|---|---|---|---|---|---|---|---|
34.23 | 8-Prenylnaringenin | 339.1310 | 219.0701; 119.0518 | 3.8 | 1.6 | 13.1 | 3.2 | 5.8 | 3.8 |
36.65 | Naringenin glucuronide | 447.2199 | 383.2218; 271.0976 | 41.6 | 10.3 | 33.5 | 40.4 | 12.1 | 6.7 |
37.79 | Xanthohumol | 353.1350 | 233.0791; 119.0483 | 37.5 | 22.3 | 33.6 | 13.3 | 6.7 | 2.8 |
43.68 | Cohumulone | 347.1968 | 278.1251; 235.0701; 207.0733 | 34.5 | tr | 36.4 | 24.0 | 30.0 | 23.2 |
45.75 | Humulone | 361.2131 | 292.1428; 249.0877; 221.0904 | 50.8 | tr | 2.4 | 37.1 | 37.1 | 35.2 |
46.56 | Adhumulone | 361.2158 | 292.1432; 249.0882; 221.0907 | 24.4 | tr | 18.5 | 8.6 | 7.2 | 3.0 |
47.33 | Unidentified flavonoid | 443.2972 | 259.1088 | 31.2 | tr | 42.3 | 15.5 | 20.3 | 7.9 |
Essential Oils | The Reference Strains of Bacteria | |||||||
---|---|---|---|---|---|---|---|---|
Staphylococcus aureus ATCC 43300 (MRSA) | Staphylococcus aureus ATCC BAA-1707 (MRSA) | Staphylococcus aureus ATCC 29213 (MSSA) | Staphylococcus epidermidis ATCC 12228 | Micrococcus luteus ATCC 10240 | Enterococcus faecalis ATCC 51299 (VRE) | Enterococcus faecalis ATCC 29212 | Enterococcus faecium ATCC 19434 | |
Minimum Inhibitory Concentration [mg/mL] | ||||||||
In1 | 4 | 8 | 8 | 4 | 1 | 4 | 8 | 8 |
Mr2 | 8 | 16 | 8 | 4 | 4 | 8 | 16 | 16 |
Sb3 | 8 | 16 | 16 | 4 | 8 | 8 | 16 | 16 |
Mg4 | 8 | 16 | 16 | 8 | 8 | 8 | 16 | 16 |
Tr5 | 4 | 8 | 4 | 2 | 2 | 4 | 16 | 16 |
Ch6 | 4 | 8 | 4 | 4 | 1 | 8 | 16 | 16 |
Minimum Bactericidal Concentration [mg/mL] | ||||||||
In1 | 4 | 8 | 8 | 16 | 4 | 32 | 32 | >32 |
Mr2 | 8 | 16 | 16 | 8 | 8 | 32 | 32 | 32 |
Sb3 | 16 | 16 | 16 | 16 | 16 | 32 | 32 | 32 |
Mg4 | 16 | 16 | 16 | 32 | 8 | >32 | >32 | >32 |
Tr5 | 16 | 8 | 8 | 8 | 4 | 16 | 32 | 32 |
Ch6 | 8 | 8 | 8 | 8 | 2 | 16 | 32 | 32 |
MBC/MIC | ||||||||
In1 | 1 | 1 | 1 | 4 | 4 | 8 | 4 | >4 |
Mr2 | 1 | 1 | 2 | 2 | 2 | 4 | 2 | 2 |
Sb3 | 2 | 1 | 1 | 4 | 2 | 4 | 2 | 2 |
Mg4 | 2 | 1 | 1 | 4 | 1 | >4 | >2 | >2 |
Tr5 | 4 | 1 | 2 | 4 | 2 | 4 | 2 | 2 |
Ch6 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
Extracts | The Reference Strains of Bacteria | |||||||
---|---|---|---|---|---|---|---|---|
Staphylococcus aureus ATCC 43300 (MRSA) | Staphylococcus aureus ATCC BAA-1707 (MRSA) | Staphylococcus aureus ATCC 29213 (MSSA) | Staphylococcus epidermidis ATCC 12228 | Micrococcus luteus ATCC 10240 | Enterococcus faecalis ATCC 51299 (VRE) | Enterococcus faecalis ATCC 29212 | Enterococcus faecium ATCC 19434 | |
Minimum Inhibitory Concentration [µg/mL] | ||||||||
In1 | 7.8 | 7.8 | 7.8 | 15.6 | 7.8 | 31.3 | 7.8 | 7.8 |
Mr2 | 15.6 | 15.6 | 31.3 | 31.3 | 15.6 | 31.3 | 15.6 | 31.3 |
Sb3 | 7.8 | 7.8 | 15.6 | 31.3 | 7.8 | 15.6 | 15.6 | 31.3 |
Mg4 | 31.3 | 31.3 | 31.3 | 31.3 | 31.3 | 31.3 | 31.3 | 62.5 |
Tr5 | 7.8 | 15.6 | 15.6 | 31.3 | 7.8 | 31.3 | 15.6 | 31.3 |
Ch6 | 15.6 | 15.6 | 15.6 | 62.5 | 15.6 | 31.3 | 31.3 | 62.5 |
α-AEF * | 62.5 | 31.3 | 15.6 | 31.3 | 15.6 | 31.3 | 62.5 | 31.3 |
Xanthohumol | 3.9 | nd ** | nd | nd | nd | nd | nd | nd |
Minimum Bactericidal Concentration [µg/mL] | ||||||||
In1 | 7.8 | 62.5 | 15.6 | 15.6 | 15.6 | 250 | 125 | 2000 |
Mr2 | 15.6 | 125 | 31.3 | 62.5 | 31.3 | 1000 | 1000 | 2000 |
Sb3 | 7.8 | 62.5 | 31.3 | 31.3 | 31.3 | 1000 | 500 | 2000 |
Mg4 | 62.5 | 125 | 500 | 125 | 31.3 | >2000 | 1000 | >2000 |
Tr5 | 15.6 | 62.5 | 31.3 | 31.3 | 62.5 | 1000 | 1000 | 2000 |
Ch6 | 15.6 | 125 | 500 | 62.5 | 15.6 | 2000 | 1000 | 2000 |
α-AEF | 62.5 | 500 | 250 | 125 | 15.6 | 2000 | 1000 | 2000 |
Xanthohumol | 250 | nd | nd | nd | nd | nd | nd | nd |
MBC/MIC | ||||||||
In1 | 1 | 8 | 2 | 1 | 2 | 8 | 16 | 256 |
Mr2 | 1 | 8 | 1 | 2 | 2 | 32 | 64 | 64 |
Sb3 | 1 | 8 | 2 | 1 | 4 | 64 | 32 | 64 |
Mg4 | 2 | 4 | 16 | 4 | 1 | >64 | 32 | >64 |
Tr5 | 2 | 4 | 2 | 1 | 8 | 32 | 64 | 64 |
Ch6 | 1 | 8 | 32 | 1 | 1 | 64 | 32 | 32 |
α-AEF | 1 | 16 | 16 | 4 | 1 | 64 | 16 | 64 |
Xanthohumol | 64 | nd | nd | nd | nd | nd | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piasecki, B.; Biernasiuk, A.; Ludwiczuk, A. Anti-Coccal Activity and Composition of the Essential Oils and Methanolic Extracts Obtained from Brewing Quality Humulus lupulus L. Hop Pellets. Pharmaceuticals 2023, 16, 1098. https://doi.org/10.3390/ph16081098
Piasecki B, Biernasiuk A, Ludwiczuk A. Anti-Coccal Activity and Composition of the Essential Oils and Methanolic Extracts Obtained from Brewing Quality Humulus lupulus L. Hop Pellets. Pharmaceuticals. 2023; 16(8):1098. https://doi.org/10.3390/ph16081098
Chicago/Turabian StylePiasecki, Bartłomiej, Anna Biernasiuk, and Agnieszka Ludwiczuk. 2023. "Anti-Coccal Activity and Composition of the Essential Oils and Methanolic Extracts Obtained from Brewing Quality Humulus lupulus L. Hop Pellets" Pharmaceuticals 16, no. 8: 1098. https://doi.org/10.3390/ph16081098
APA StylePiasecki, B., Biernasiuk, A., & Ludwiczuk, A. (2023). Anti-Coccal Activity and Composition of the Essential Oils and Methanolic Extracts Obtained from Brewing Quality Humulus lupulus L. Hop Pellets. Pharmaceuticals, 16(8), 1098. https://doi.org/10.3390/ph16081098