Uncovering Knowledge Gaps in the Safety Profile of Antiangiogenic Drugs in Cancer Patients: Insights from Spontaneous Reporting Systems Studies
Abstract
:1. Introduction
2. Results
2.1. Study Characteristics
2.2. Cardiovascular Adverse Events in SRS Studies
2.3. Cardiovascular Adverse Events in Summary of Product Characteristics
2.4. Other Adverse Events Reported in SRS Studies
3. Discussion
4. Methodology
4.1. Literature Search and Eligibility Criteria
4.2. Eligibility Criteria
4.3. Study Selection
4.4. Data Extraction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.; Adjei, A.A. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist 2015, 20, 660–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Chen, T.; Zhang, X.; Ma, X.; Shi, H. Small molecule inhibitors targeting the cancers. Medcomm 2022, 3, e181. [Google Scholar] [CrossRef] [PubMed]
- Filippelli, A.; Ciccone, V.; Donnini, S.; Ziche, M.; Morbidelli, L. Molecular Mechanisms of Resistance to Anti-Angiogenic Drugs. Crit. Rev. Oncog. 2021, 26, 39–66. [Google Scholar] [CrossRef]
- Berger, M.F.; Mardis, E.R. The emerging clinical relevance of genomics in cancer medicine. Nat. Rev. Clin. Oncol. 2018, 15, 353–365. [Google Scholar] [CrossRef]
- Donnini, S.; Filippelli, A.; Ciccone, V.; Spini, A.; Ristori, E.; Ziche, M.; Morbidelli, L. Antiangiogenic drugs: Chemosensitizers for combination cancer therapy. In Antiangiogenic Drugs as Chemosensitizers in Cancer Therapy; Morbidelli, L., Ed.; Cancer Sensitizing Agents for Chemotherapy; Academic Press: New York, NY, USA, 2022; Volume 18, Chapter 2; pp. 29–66. [Google Scholar]
- Spini, A.; Ciccone, V.; Rosellini, P.; Ziche, M.; Lucenteforte, E.; Salvo, F.; Donnini, S. Safety of Anti-Angiogenic Drugs in Pediatric Patients with Solid Tumors: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 5315. [Google Scholar] [CrossRef] [PubMed]
- Ciccone, V.; Terzuoli, E.; Ristori, E.; Filippelli, A.; Ziche, M.; Morbidelli, L.; Donnini, S. ALDH1A1 overexpression in melanoma cells promotes tumor angiogenesis by activating the IL-8/Notch signaling cascade. Int. J. Mol. Med. 2022, 50, 99. [Google Scholar] [CrossRef]
- Kumar, S.; Mokhtari, R.B.; Sheikh, R.; Wu, B.; Zhang, L.; Xu, P.; Man, S.; Oliveira, I.D.; Yeger, H.; Kerbel, R.S.; et al. Metronomic oral topotecan with pazopanib is an active antiangiogenic regimen in mouse models of aggressive pediatric solid tumor. Clin. Cancer Res. 2011, 17, 5656–5667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Guo, Y.; Huang, W.; Hong, X.; Quan, Y.; Lin, L.; Zhou, J.; Liang, L.; Zhang, Y.; Zhou, J.; et al. Regorafenib Combined with PD-1 Blockade Immunotherapy versus Regorafenib as Second-Line Treatment for Advanced Hepatocellular Carcinoma: A Multicenter Retrospective Study. J. Hepatocell. Carcinoma 2022, 9, 157–170. [Google Scholar] [CrossRef]
- Martin-Broto, J.; Hindi, N.; Grignani, G.; Martinez-Trufero, J.; Redondo, A.; Valverde, C.; Stacchiotti, S.; Lopez-Pousa, A.; D’Ambrosio, L.; Gutierrez, A.; et al. Nivolumab and sunitinib combination in advanced soft tissue sarcomas: A multicenter, single-arm, phase Ib/II trial. J. Immunother. Cancer 2020, 8, e001561. [Google Scholar] [CrossRef]
- Kasliwal, R. Spontaneous Reporting in Pharmacovigilance: Strengths, Weaknesses and Recent Methods of Analysis. Available online: https://www.jcpcarchives.org/full/spontaneous-reporting-in-pharmacovigilance--strengths-49.php (accessed on 12 May 2023).
- Gadgeel, S.M. Safety profile and tolerability of antiangiogenic agents in non–small-cell lung cancer. Clin. Lung Cancer 2012, 13, 96–106. [Google Scholar] [CrossRef]
- Procaccio, L.; Damuzzo, V.; Di Sarra, F.; Russi, A.; Todino, F.; Dadduzio, V.; Bergamo, F.; Prete, A.A.; Lonardi, S.; Prenen, H.; et al. Safety and Tolerability of Anti-Angiogenic Protein Kinase Inhibitors and Vascular-Disrupting Agents in Cancer: Focus on Gastrointestinal Malignancies. Drug Saf. 2019, 42, 159–179. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Tian, T.; Pacheco, J.M.; Tachihara, M.; Hu, P.; Zhang, J. Immune-related adverse event profile of combination treatment of PD-(L)1 checkpoint inhibitors and bevacizumab in non-small cell lung cancer patients: Data from the FDA adverse event reporting system. Transl. Lung Cancer Res. 2021, 10, 2614–2624. [Google Scholar] [CrossRef]
- Cheng, C.; Nguyen, M.N.; Nayernama, A.; Jones, S.C.; Brave, M.; Agrawal, S.; Amiri-Kordestani, L.; Woronow, D. Arterial aneurysm and dissection with systemic vascular endothelial growth factor inhibitors: A review of cases reported to the FDA Adverse Event Reporting System and published in the literature. Vasc. Med. 2021, 26, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Cirmi, S.; El Abd, A.; Letinier, L.; Navarra, M.; Salvo, F. Cardiovascular Toxicity of Tyrosine Kinase Inhibitors Used in Chronic Myeloid Leukemia: An Analysis of the FDA Adverse Event Reporting System Database (FAERS). Cancers 2020, 12, 826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldman, A.; Bomze, D.; Dankner, R.; Fourey, D.; Boursi, B.; Arad, M.; Maor, E. Cardiovascular Toxicities of Antiangiogenic Tyrosine Kinase Inhibitors: A Retrospective, Pharmacovigilance Study. Target. Oncol. 2021, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Liu, Z.; Song, H. Thyroid dysfunction related to vascular endothelial growth factor receptor tyrosine kinase inhibitors: A real-world study based on FAERS. J. Clin. Pharm. Ther. 2021, 46, 1418–1425. [Google Scholar] [CrossRef]
- Makunts, T.; Saunders, I.M.; Cohen, I.V.; Li, M.; Moumedjian, T.; Issa, M.A.; Burkhart, K.; Lee, P.; Patel, S.P.; Abagyan, R. Myocarditis occurrence with cancer immunotherapy across indications in clinical trial and post-marketing data. Sci. Rep. 2021, 11, 17324. [Google Scholar] [CrossRef]
- Wang, S.; Chen, M.; Zhang, X.; Zhang, L.; Jia, M.; Shen, Z.; Wang, J.; Zhao, B.; Gong, Y.; Gong, J. Aneurysm and Artery Dissection Following the Use of Vascular Endothelial Growth Factor Inhibitor: A Real-World Analysis Using a Spontaneous Reporting System. J. Am. Heart Assoc. 2021, 10, e020844. [Google Scholar] [CrossRef]
- Wichelmann, T.A.; Abdulmujeeb, S.; Ehrenpreis, E.D. Bevacizumab and gastrointestinal perforations: A review from the FDA Adverse Event Reporting System (FAERS) database. Aliment. Pharmacol. Ther. 2021, 54, 1290–1297. [Google Scholar] [CrossRef]
- Wittayanukorn, S.; Qian, J.; Johnson, B.S.; Hansen, R.A. Cardiotoxicity in targeted therapy for breast cancer: A study of the FDA adverse event reporting system (FAERS). J. Oncol. Pharm. Pract. 2017, 23, 93–102. [Google Scholar] [CrossRef]
- Yagi, K.; Mitstui, M.; Zamami, Y.; Niimura, T.; Izawa-Ishizawa, Y.; Goda, M.; Chuma, M.; Fukunaga, K.; Shibata, T.; Ishida, S.; et al. Investigation of drugs affecting hypertension in bevacizumab-treated patients and examination of the impact on the therapeutic effect. Cancer Med. 2020, 10, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.Z.; Hansen, F.B.; Mills, R.W.; Lundby, A. Oncotherapeutic Protein Kinase Inhibitors Associated with Pro-Arrhythmic Liability. JACC CardioOncol. 2021, 3, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hamadeh, I.S.; Song, S.; Katz, J.; Moreb, J.S.; Langaee, T.Y.; Lesko, L.J.; Gong, Y. Osteonecrosis of the Jaw in the United States Food and Drug Administration’s Adverse Event Reporting System (FAERS). J. Bone Miner. Res. 2016, 31, 336–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patras de Campaigno, E.; Bondon-Guitton, E.; Laurent, G.; Montastruc, F.; Montastruc, J.-L.; Lapeyre-Mestre, M.; Despas, F. Identification of cellular targets involved in cardiac failure caused by PKI in oncology: An approach combining pharmacovigilance and pharmacodynamics. Br. J. Clin. Pharmacol. 2017, 83, 1544–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyon, J.; Gouverneur, A.; Maumus-Robert, S.; Bérard, X.; Pariente, A.; Bikfalvi, A.; Noize, P. Association Between Antiangiogenic Drugs Used for Cancer Treatment and Artery Dissections or Aneurysms. JAMA Oncol. 2021, 7, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Gouverneur, A.; Claraz, P.; Rousset, M.; Arnaud, M.; Fourrier-Réglat, A.; Pariente, A.; Aparicio, T.; Miremont-Salamé, G.; Noize, P. Comparative Safety of Targeted Therapies for Metastatic Colorectal Cancer between Elderly and Younger Patients: A Study Using the International Pharmacovigilance Database. Target. Oncol. 2017, 12, 805–814. [Google Scholar] [CrossRef]
- Minnema, L.A.; Giezen, T.J.; Souverein, P.C.; Egberts, T.C.G.; Leufkens, H.G.M.; Gardarsdottir, H. Exploring the Association between Monoclonal Antibodies and Depression and Suicidal Ideation and Behavior: A VigiBase Study. Drug Saf. 2019, 42, 887–895. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Yang, J.; Jia, B.; Yan, J. Glycaemic adverse drug reactions from anti-neoplastics used in treating pancreatic cancer. Niger. J. Clin. Pract. 2017, 20, 1422–1427. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, B.; Zhou, H.; Jia, B.; Chen, L. Blood glucose related adverse drug reaction of antitumor monoclonal antibodies: A retrospective analysis using Vigibase. Braz. J. Pharm. Sci. 2022, 58, 8893. [Google Scholar] [CrossRef]
- Clapes, V.; Rousseau, V.; Despas, F.; Montastruc, J.-L.; Olivier, P. Adverse Drug Reactions Involving Protein Kinase Inhibitors: A French Pharmacovigilance Database Study Comparing Safety in Younger and Older Patients (≥75 years) with Cancer. Pharm. Med. 2018, 33, 21–27. [Google Scholar] [CrossRef]
- Egron, A.; Olivier-Abbal, P.; Gouraud, A.; Babai, S.; Combret, S.; Montastruc, J.-L.; Bondon-Guitton, E. Preventable and potentially preventable serious adverse reactions induced by oral protein kinase inhibitors through a database of adverse drug reaction reports. Target. Oncol. 2014, 10, 229–234. [Google Scholar] [CrossRef]
- Taugourdeau-Raymond, S.; Centers, T.F.N.O.T.P.; Rouby, F.; Default, A.; Jean-Pastor, M.-J. Bevacizumab-induced serious side-effects: A review of the French pharmacovigilance database. Eur. J. Clin. Pharmacol. 2012, 68, 1103–1107. [Google Scholar] [CrossRef]
- Toriumi, S.; Kobayashi, A.; Uesawa, Y. Comprehensive Study of the Risk Factors for Medication-Related Osteonecrosis of the Jaw Based on the Japanese Adverse Drug Event Report Database. Pharmaceuticals 2020, 13, 467. [Google Scholar] [CrossRef]
- Yoshida, Y.; Sasaoka, S.; Tanaka, M.; Matsumoto, K.; Inoue, M.; Satake, R.; Shimada, K.; Mukai, R.; Suzuki, T.; Iwata, M.; et al. Analysis of drug-induced hand–foot syndrome using a spontaneous reporting system database. Ther. Adv. Drug Saf. 2022, 13, 20420986221101964. [Google Scholar] [CrossRef]
- Cutroneo, P.M.; Giardina, C.; Ientile, V.; Potenza, S.; Sottosanti, L.; Ferrajolo, C.; Trombetta, C.J.; Trifirò, G. Overview of the Safety of Anti-VEGF Drugs: Analysis of the Italian Spontaneous Reporting System. Drug Saf. 2017, 40, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ema.europa.eu/en/documents/product-information/votrient-epar-product-information_en.pdf (accessed on 12 May 2023).
- Available online: https://www.ema.europa.eu/en/documents/product-information/inlyta-epar-product-information_en.pdf (accessed on 12 May 2023).
- Available online: https://www.ema.europa.eu/en/documents/product-information/kisplyx-epar-product-information_en.pdf (accessed on 12 May 2023).
- Available online: https://www.ema.europa.eu/en/documents/product-information/iclusig-epar-product-information_en.pdf (accessed on 12 May 2023).
- Available online: https://www.ema.europa.eu/en/documents/product-information/nexavar-epar-product-information_en.pdf (accessed on 12 May 2023).
- Available online: https://www.ema.europa.eu/en/documents/product-information/avastin-epar-product-information_en.pdf (accessed on 12 May 2023).
- Available online: https://www.ema.europa.eu/en/documents/product-information/sutent-epar-product-information_en.pdf (accessed on 12 May 2023).
- Available online: https://www.ema.europa.eu/en/documents/product-information/caprelsa-epar-product-information_en.pdf (accessed on 12 May 2023).
- Available online: https://www.ema.europa.eu/en/documents/product-information/zaltrap-epar-product-information_en.pdf (accessed on 12 May 2023).
- Available online: https://www.ema.europa.eu/en/documents/product-information/cometriq-epar-product-information_en.pdf (accessed on 12 May 2023).
- Available online: https://www.ema.europa.eu/en/documents/product-information/ofev-epar-product-information_en.pdf (accessed on 12 May 2023).
- Available online: https://www.ema.europa.eu/en/documents/product-information/stivarga-epar-product-information_en.pdf (accessed on 12 May 2023).
- Available online: https://www.ema.europa.eu/en/documents/product-information/cyramza-epar-product-information_en.pdf (accessed on 12 May 2023).
- Herk-Sukel MPP van Lemmens, V.E.P.P.; Poll-Franse LV van de Herings, R.M.C.; Coebergh, J.W.W. Record linkage for pharmacoepidemiological studies in cancer patients. Pharm. Drug Saf. 2012, 21, 94–103. [Google Scholar] [CrossRef]
- Yakerson, A. Women in clinical trials: A review of policy development and health equity in the Canadian context. Int. J. Equity Health 2019, 18, 56. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, K.; Coe, K.; Bailar, J.C.; Swanson, G.M. Inclusion of minorities and women in cancer clinical trials, a decade later: Have we improved? Cancer 2013, 119, 2956–2963. [Google Scholar] [CrossRef] [PubMed]
- Spini, A.; Gini, R.; Rosellini, P.; Singier, A.; Bellan, C.; Pascucci, A.; Leoncini, L.; Mathieu, C.; Martellucci, I.; Furiesi, F.; et al. First-Line Pharmacotherapies and Survival among Patients Diagnosed with Non-Resectable NSCLC: A Real-Life Setting Study with Gender Prospective. Cancers 2021, 13, 6129. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, M.A.; Sorbara, E.E.; Cicala, G.; Santoro, V.; Cutroneo, P.M.; Franchina, T.; Santarpia, M.; Silvestris, N.; Spina, E. Safety profile of tyrosine kinase inhibitors used in non-small-cell lung cancer: An analysis from the Italian pharmacovigilance database. Front. Oncol. 2022, 12, 1005626. [Google Scholar] [CrossRef] [PubMed]
- Gotink, K.J.; Verheul, H.M.W. Anti-angiogenic tyrosine kinase inhibitors: What is their mechanism of action? Angiogenesis 2010, 13, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takada, M.; Yasui, T.; Oka, T.; Shioyama, W.; Kuroda, T.; Nakai, Y.; Nishimura, K.; Mukai, M.; Fujita, M. Aortic Dissection and Cardiac Dysfunction Emerged Coincidentally During the Long-Term Treatment with Angiogenesis Inhibitors for Metastatic Renal Cell Carcinoma. Int. Heart J. 2018, 59, 1174–1179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spini, A.; Giometto, S.; Donnini, S.; Posarelli, M.; Dotta, F.; Ziche, M.; Tosi, G.M.; Girardi, A.; Lucenteforte, E.; Gini, R.; et al. Risk of Intraocular Pressure Increase with Intravitreal Injections of Vascular Endothelial Growth Factor Inhibitors: A Cohort Study. Am. J. Ophthalmol. 2023, 248, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.D.; Lortz, S.; Flückiger, B.; Luginbuehl, V. Pharmacokinetics of systemic, regional and topical drugs for therapy of intraocular inflammation. Ophthalmologe 2014, 111, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Fogli, S.; Del Re, M.; Rofi, E.; Posarelli, C.; Figus, M.; Danesi, R. Clinical pharmacology of intravitreal anti-VEGF drugs. Eye 2018, 32, 1010–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, H.A.; Wood, J.M.; McSheehy, P.M.; Allegrini, P.R.; Boulay, A.; Brueggen, J.; Littlewood-Evans, A.; Maira, S.-M.; Martiny-Baron, G.; Schnell, C.R.; et al. mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin. Cancer Res. 2009, 15, 1612–1622. [Google Scholar] [CrossRef] [Green Version]
- Giudice, I.L.; Mocciaro, E.; Giardina, C.; Barbieri, M.A.; Cicala, G.; Gioffrè-Florio, M.; Carpinteri, G.; Di Grande, A.; Spina, E.; Arcoraci, V.; et al. Characterization and preventability of adverse drug events as cause of emergency department visits: A prospective 1-year observational study. BMC Pharmacol. Toxicol. 2019, 20, 21. [Google Scholar] [CrossRef] [Green Version]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
Pharmaceutical Class | Drug | Category | Target |
---|---|---|---|
Biological | Aflibercept | Soluble recombinant fusion protein | VEGF A-D, PlGF |
Biological | Bevacizumab | Humanized monoclonal antibody | VEGF-A |
Biological | Ramucirumab | Humanized monoclonal antibody | VEGFR-2 |
Small molecule | Axitinib | PKIs | VEGFR-1/2/3 |
Small molecule | Cabozantinib | PKIs | VEGFR-2, c-Met, ROS1, TYRO3, MER, Ret, Kit, TRKB, Flt-3, AXL, Tie-2 |
Small molecule | Lenvatinib | PKIs | VEGFR-1/2/3, FGFRs, PDGFR-α, c-Kit, RET |
Small molecule | Nintedanib | PKIs | VEGFR-1/2/3, FGFR-1/2, PDGFR-α/β |
Small molecule | Pazopanib | PKIs | VEGFR-1/2/3, PDGFR-α/β, c-Kit |
Small molecule | Ponatinib | PKIs | VEGFR, SRC, ABL, FGFR, PDGFR |
Small molecule | Regorafenib | PKIs | VEGFR-1/2/3, FGFR-1/2, PDGFR-α, Tie-2, RAF-1, BRAF, BRAFV600E, c-Kit receptor |
Small molecule | Sorafenib | PKIs | VEGFR-1/2/3, PDGFR-β, Raf serine/threonine kinases, c-Kit receptor |
Small molecule | Sunitinib | PKIs | VEGFR-1/2/3, PDGFR-α, c-Kit receptor, RET, FLT3, CSF-1R |
Small molecule | Vandetanib | PKIs | VEGFR-2, EGFR, RET |
Reference | SRSs Type | Total Number of Anti-VEGF Record | Study Period | Systemic Antiangiogenic Drugs Studied | Adverse Events | Disease | Type of Analysis | Comparison Groups | Outcome |
---|---|---|---|---|---|---|---|---|---|
Bai et al., 2021 [14] | FAERS | 409 | 2013–2019 |
| No restriction | Nonsmall cell lung cancer | Logistic regression | PD-(L)1 monotherapy vs. PD-(L)1 + bevacizumab | Odds ratio |
Cheng et al., 2021 [15] | FAERS | 240 | ns |
| Arterial aneurysm/dissection | Cancer | Descriptive | - | - |
Cirmi et al., 2020 [16] | FAERS | 3101 | April 2008–December 2008 |
| Cardiovascular toxicities | Cancer | Disproportionality analysis | TKIs vs. other anticancer drugs | Reporting odds ratio |
Clapes et al., 2018 [32] | French pharmacovigilance database (regional) | 49 | 2003–2015 |
| No restriction | Cancer | Descriptive | - | - |
Cutroneo et al., 2017 [37] | Italian spontaneous reporting system | 2173 | 2005–2016 |
| No restriction | Cancer and retinal diseases | Disproportionality analysis | Anti-VEGF vs. Other suspected drugs | Proportional reporting ratio |
De Campaigno et al., 2017 [26] | VigiBase | 45,832 | 2001–2015 |
| Cardiac failure | Cancer | Disproportionality analysis | Protein kinase inhibitor vs. Other protein kinase inhibitors | Reporting odds ratio |
Egron et al., 2014 [33] | French pharmacovigilance database | 271 | 2008–2009 |
| No restriction | Cancer | Preventability | - | French ADR preventability scale score |
Goldman et al., 2021 [17] | FAERS | 51,836 | 2014–2019 |
| Cardiovascular toxicities | Cancer and other | Disproportionality analysis | Anti-VEGF TKIs vs. other drugs in the full database | Reporting odds ratio and Information component |
Gouverneur et al., 2017 [28] | VigiBase | 13,920 | Until December 2016 |
| No restriction | Metastatic colorectal cancer | Disproportionality analysis | Target therapy vs. all other anticancer drugs | Proportional reporting ratio |
Guyon et al., 2021 [27] | VigiBase | 494 | 2005–2019 |
| Arterial aneurysm/dissection | Cancer | Disproportionality analysis | Antiangiogenic drugs vs. other anticancer drugs | Proportional reporting ratio and information component |
Liao et al., 2021 [18] | FAERS | 1567 | 2004–2020 |
| Thyroid dysfunction | ns | Disproportionality analysis | VEGFR-TKIs vs. all other drugs | Reporting odds ratio, Proportional reporting ratio, information component and empirical Bayesian geometric mean |
Makunts et al., 2021 [19] | FAERS | 20,062 (ICI) |
| Myocarditis | Cancer | Disproportionality analysis | ICI axitinib or ICI alone or ICI combinations vs. chemotherapy | Reporting odds ratio | |
Minnema et al., 2019 [29] | VigiBase | 9455 (depression), 1770 (suicidal ideation and behavior) | Until December 2017 |
| Depression and suicidal ideation and behavior | Cancer and other | Disproportionality analysis | mABs vs. bevacizumab | Reporting odds ratio |
Taugourdeau-Raymond et al., 2012 [34] | French pharmacovigilance database | 455 | 2005–2010 |
| No restriction | Cancer | Descriptive | - | - |
Toriumi et al., 2020 [35] | JADER | 4597 | 2004–2019 |
| Osteonecrosis of the jaw | ns | Disproportionality analysis and logistic regression | Suspected drugs vs. all other drugs | Reporting odds ratio and odds ratio |
Wang et al., 2021 [20] | FAERS | 634 | 2004–2020 |
| Arterial aneurysm/dissection | Cancer | Disproportionality analysis | Suspected drugs vs. all other drugs | Reporting odds ratio |
Wichelmann et al., 2021 [21] | FAERS | 2874 | 2004–2021 |
| Gastrointestinal perforation | Cancer | Descriptive | - | |
Wittayanukorn et al., 2017 [22] | FAERS | 167 | 2004–2012 |
| Cardiotoxicity | Breast cancer | Disproportionality analysis | Target therapy vs. all other drugs | Reporting odds ratio |
Yagi et al., 2021 [23] | FAERS | 1520 | 2010–2015 |
| Hypertension | ns | Disproportionality analysis | Bevacizumab vs. other than bevacizumab | Reporting odds ratio |
Yang et al., 2017 [30] | VigiBase | ns | Until December 2016 |
| Glycaemic Adverse Drug Reactions | Pancreatic Cancer | Descriptive | - | |
Yang et al., 2022 [31] | VigiBase | ns | Until 2019 |
| Blood glucose related adverse drug reaction | Cancer | Descriptive | - | |
Ye et al., 2021 [24] | FAERS | 23,067 | 2014–2019 |
| cardiac arrhythmia | Cancer | Disproportionality analysis and logistical regression | Protein kinase inhibitors vs. non-Protein kinase inhibitors | Reporting odds ratio and odds ratio |
Yoshida et al., 2022 [36] | JADER | 665 | 2004–2020 |
| hand–foot syndrome | Cancer | Disproportionality analysis | Suspected drugs vs. all other drugs | Reporting odds ratio |
Zhang et al., 2016 [25] | FAERS | 1230 | 2010–2014 |
| Osteonecrosis of the jaw | Cancer or osteoporosis | Disproportionality analysis | Suspected drugs vs. all other drugs | Reporting odds ratio |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciccone, V.; Ziche, M.; Spini, A.; Donnini, S. Uncovering Knowledge Gaps in the Safety Profile of Antiangiogenic Drugs in Cancer Patients: Insights from Spontaneous Reporting Systems Studies. Pharmaceuticals 2023, 16, 867. https://doi.org/10.3390/ph16060867
Ciccone V, Ziche M, Spini A, Donnini S. Uncovering Knowledge Gaps in the Safety Profile of Antiangiogenic Drugs in Cancer Patients: Insights from Spontaneous Reporting Systems Studies. Pharmaceuticals. 2023; 16(6):867. https://doi.org/10.3390/ph16060867
Chicago/Turabian StyleCiccone, Valerio, Marina Ziche, Andrea Spini, and Sandra Donnini. 2023. "Uncovering Knowledge Gaps in the Safety Profile of Antiangiogenic Drugs in Cancer Patients: Insights from Spontaneous Reporting Systems Studies" Pharmaceuticals 16, no. 6: 867. https://doi.org/10.3390/ph16060867
APA StyleCiccone, V., Ziche, M., Spini, A., & Donnini, S. (2023). Uncovering Knowledge Gaps in the Safety Profile of Antiangiogenic Drugs in Cancer Patients: Insights from Spontaneous Reporting Systems Studies. Pharmaceuticals, 16(6), 867. https://doi.org/10.3390/ph16060867