The Outcomes and Adverse Drug Patterns of Immunomodulators and Thrombopoietin Receptor Agonists in Primary Immune Thrombocytopenia Egyptian Patients with Hemorrhage Comorbidity
Abstract
:1. Introduction
2. Results
2.1. Demographic Data
2.2. Effect of Immunomodulators and Thrombopoietin Receptor Agonists Therapy on Platelets Count
2.3. Response Results
2.4. Safety Assessment
2.4.1. Incidence and Outcome of Adverse Events during Thrombopoietin Receptor Agonists (ELTRO and ROMP) Therapy
2.4.2. Incidence and Outcome of Adverse Events during Immunomodulators (PSL+AZA, HD-DXM, and RTX)
2.5. Study limitations
3. Discussion
4. Material and Methods
4.1. Patients Selection
4.1.1. Inclusion Criteria
4.1.2. Exclusion Criteria
4.2. Study Design
4.3. Primary Outcome Measures
4.4. Secondary Outcome Measures
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez-Porras, J.R.; Bastida, J.M. Eltrombopag in immune thrombocytopenia: Efficacy review and update on drug safety. Ther. Adv. Drug Saf. 2018, 9, 263–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visweshwar, N.; Ayala, I.; Jaglal, M.; Killeen, R.; Sokol, L.; Laber, D.A.; Manoharan, A. Primary immune thrombocytopenia: A ‘diagnosis of exclusion’? Blood Coagul. Fibrinolysis 2022, 33, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Moulis, G.; Comont, T.; Adoue, D. New insights into the epidemiology of immune thrombocytopenia in adult patients: Impact for clinical practice. La Rev. De Médecine Interne 2021, 42, 11–15. [Google Scholar] [CrossRef]
- Moulis, G.; Palmaro, A.; Montastruc, J.-L.; Godeau, B.; Lapeyre-Mestre, M.; Sailler, L. Epidemiology of incident immune thrombocytopenia: A nationwide population-based study in France. Blood J. Am. Soc. Hematol. 2014, 124, 3308–3315. [Google Scholar] [CrossRef] [Green Version]
- Audia, S.; Bonnotte, B. Emerging therapies in immune thrombocytopenia. J. Clin. Med. 2021, 10, 1004. [Google Scholar] [CrossRef] [PubMed]
- Neunert, C.; Terrell, D.R.; Arnold, D.M.; Buchanan, G.; Cines, D.B.; Cooper, N.; Cuker, A.; Despotovic, J.M.; George, J.N.; Grace, R.F.; et al. American Society of Hematology 2019 guidelines for immune thrombocytopenia. Blood Adv. 2019, 3, 3829–3866. [Google Scholar] [CrossRef] [Green Version]
- Provan, D.; Arnold, D.M.; Bussel, J.B.; Chong, B.H.; Cooper, N.; Gernsheimer, T.; Ghanima, W.; Godeau, B.; González-López, T.J.; Grainger, J.; et al. Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood Adv. 2019, 3, 3780–3817. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.O.; Despotovic, J.; Lambert, M.P. Eltrombopag for use in children with immune thrombocytopenia. Blood Adv. 2018, 2, 454–461. [Google Scholar] [CrossRef] [Green Version]
- Janssens, A.; Rodeghiero, F.; Anderson, D.; Chong, B.H.; Boda, Z.; Pabinger, I.; Červinek, L.; Terrell, D.R.; Wang, X.; Franklin, J. Changes in bone marrow morphology in adults receiving romiplostim for the treatment of thrombocytopenia associated with primary immune thrombocytopenia. Ann. Hematol. 2016, 95, 1077–1087. [Google Scholar] [CrossRef] [Green Version]
- Tjepkema, M.; Amini, S.; Schipperus, M. Risk of thrombosis with thrombopoietin receptor agonists for ITP patients: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2022, 171, 103581. [Google Scholar] [CrossRef]
- Yasser, A.; Khasahba, E.O.; Shokeir, M.A.E.R.; El Mabood, S.A. Treatment lines of childhood chronic ITP: A retrospective single-center analysis. Vopr. Gematol. i Immunopatol. v Pediatr. 2020, 19, 26–30. [Google Scholar] [CrossRef]
- Chang, H.; Tang, T.-C.; Hung, Y.-S.; Li, P.-L.; Kuo, M.-C.; Wu, J.-H.; Wang, P.-N. Immune thrombocytopenia: Effectiveness of frontline steroids and comparison of azathioprine, splenectomy, and rituximab as second-line treatment. Eur. J. Haematol. 2018, 101, 549–555. [Google Scholar] [CrossRef]
- Hamed, E.M.; Meabed, M.H.; Hussein, R.R.; Aly, U.F. Recent insight on improving the iron chelation efficacy of deferasirox by adjuvant therapy in transfusion dependent beta thalassemia children with sluggish response. Expert Opin. Drug Metab. Toxicol. 2020, 16, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sheng, L.; Han, F.; Guo, Q.; Zhang, Z.; Hou, Y.; Feng, Q.; Zhou, H.; Ji, X.; Peng, J.; et al. Efficacy and safety of treatments in newly diagnosed adult primary immune thrombocytopenia: A systematic review and network meta-analysis. Eclinicalmedicine 2023, 56, 101777. [Google Scholar] [CrossRef] [PubMed]
- Mishra, K.; Pramanik, S.; Jandial, A.; Sahu, K.K.; Sandal, R.; Ahuja, A.; Yanamandra, U.; Kumar, R.; Kapoor, R.; Verma, T.; et al. Real-world experience of eltrombopag in immune thrombocytopenia. Am. J. Blood Res. 2020, 10, 240. [Google Scholar] [PubMed]
- Rodeghiero, F.; Michel, M.; Gernsheimer, T.; Ruggeri, M.; Blanchette, V.; Bussel, J.B.; Cines, D.B.; Cooper, N.; Godeau, B.; Greinacher, A.; et al. Standardization of bleeding assessment in immune thrombocytopenia: Report from the International Working Group. Blood J. Am. Soc. Hematol. 2013, 121, 2596–2606. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Gao, Z.; Chen, X.-P.; Zhang, H.-Y.; Yang, N.; Wang, F.-Y.; Guan, L.-X.; Gu, Z.-Y.; Zhao, S.-S.; Luo, L.; et al. Efficacy and safety of thrombopoietin receptor agonists in patients with primary immune thrombocytopenia: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 39003. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Shen, Y.; Li, Y.; Hu, H.; Liu, W.; Zhao, Y.; Dong, H.; Shen, Y.; Zhou, Y.; Ye, B.; et al. Efficiency and safety of eltrombopag for multi-line failed Chinese patients with immune thrombocytopenia: Cases with decreased megakaryocyte response well from single-center experience. Immunol. Res. 2022, 70, 67–74. [Google Scholar] [CrossRef]
- Mazza, P.; Minoia, C.; Melpignano, A.; Polimeno, G.; Cascavilla, N.; Di Renzo, N.; Specchia, G. The use of thrombopoietin-receptor agonists (TPO-RAs) in immune thrombocytopenia (ITP): A “real life” retrospective multicenter experience of the Rete Ematologica Pugliese (REP). Ann. Hematol. 2016, 95, 239–244. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, Y.; Ai, Y.; Li, X.; Xie, J.; Li, Y.; Zheng, W.; He, R. Eltrombopag versus romiplostim in treatment of children with persistent or chronic immune thrombocytopenia: A systematic review incorporating an indirect-comparison meta-analysis. Sci. Rep. 2018, 8, 576. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Dai, M.; Fu, Q.; Chen, S. Eltrombopag for the treatment of refractory thrombocytopenia associated with connective tissue disease. Sci. Rep. 2021, 11, 5459. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, M.; Hou, Y.U.; Qin, P.; Zeng, Q.; Yu, W.; Guo, X.; Wang, J.; Wang, X.; Liu, G.; et al. High-dose dexamethasone plus recombinant human thrombopoietin vs high-dose dexamethasone alone as frontline treatment for newly diagnosed adult primary immune thrombocytopenia: A prospective, multicenter, randomized trial. Am. J. Hematol. 2020, 95, 1542–1552. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Lin, B.; Wang, H.; Zhan, W.; Chen, P. The Efficacy of High-Dose Dexamethasone vs. Other Treatments for Newly Diagnosed Immune Thrombocytopenia: A Meta-Analysis. Front. Med. 2021, 8, 724. [Google Scholar] [CrossRef]
- Ishiyama, M.; Shiseki, M.; Yoshinaga, K.; Ryuzaki, M.; Izuka, Y.; Watanabe, A.; Tanaka, N.; Shinohara, A.; Hagiwara, S.; Tanaka, J. Very early increased platelet count within a week after initiation of high-dose dexamethasone treatment is associated with long-term response in newly diagnosed immune thrombocytopenia patients. Acta Haematol. 2022, 145, 193–200. [Google Scholar] [CrossRef]
- Wei, Y.; Ji, X.-B.; Wang, Y.-W.; Wang, J.-X.; Yang, E.-Q.; Wang, Z.-C.; Sang, Y.-Q.; Bi, Z.-M.; Ren, C.-A.; Zhou, F.; et al. High-dose dexamethasone vs prednisone for treatment of adult immune thrombocytopenia: A prospective multicenter randomized trial. Blood J. Am. Soc. Hematol. 2016, 127, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Ray, S.S.; Chakrabarti, P.; Sabui, T.; Sadhukhan, S.K.; Bhattacharyya, M. A study on high-dose dexamethasone versus prednisolone as frontline therapy in newly diagnosed immune thrombocytopenia in children. J. Hematol. Allied Sci. 2022, 1, 111–117. [Google Scholar] [CrossRef]
- Godeau, B.; Chevret, S.; Varet, B.; Lefrère, F.; Zini, J.-M.; Bassompierre, F.; Chèze, S.; Legouffe, E.; Hulin, C.; Grange, M.-J.; et al. Intravenous immunoglobulin or high-dose methylprednisolone, with or without oral prednisone, for adults with untreated severe autoimmune thrombocytopenic purpura: A randomised, multicentre trial. Lancet 2002, 359, 23–29. [Google Scholar] [CrossRef]
- Mithoowani, S.; Gregory-Miller, K.; Goy, J.; Miller, M.C.; Wang, G.; Noroozi, N.; Kelton, J.G.; Arnold, D.M. High-dose dexamethasone compared with prednisone for previously untreated primary immune thrombocytopenia: A systematic review and meta-analysis. Lancet Haematol. 2016, 3, e489–e496. [Google Scholar] [CrossRef]
- Bussel, J.B.; Lee, C.S.; Seery, C.; Imahiyerobo, A.A.; Thompson, M.V.; Catellier, D.; Turenne, I.G.; Patel, V.L.; Basciano, P.A.; Elstrom, R.L.; et al. Rituximab and three dexamethasone cycles provide responses similar to splenectomy in women and those with immune thrombocytopenia of less than two years duration. Haematologica 2014, 99, 1264. [Google Scholar] [CrossRef]
- Bennett, C.M.; Neunert, C.; Grace, R.F.; Buchanan, G.; Imbach, P.; Vesely, S.K.; Kuhne, T. Predictors of remission in children with newly diagnosed immune thrombocytopenia: Data from the Intercontinental Cooperative ITP Study Group Registry II participants. Pediatr. Blood Cancer 2018, 65, e26736. [Google Scholar] [CrossRef]
- Bennett, C.M.; Tarantino, M. Chronic immune thrombocytopenia in children: Epidemiology and clinical presentation. Hematol. Oncol. Clin. 2009, 23, 1223–1238. [Google Scholar] [CrossRef]
- Grimaldi-Bensouda, L.; Nordon, C.; Michel, M.; Viallard, J.F.; Adoue, D.; Magy-Bertrand, N.; Durand, J.M.; Quittet, P.; Fain, O.; Bonnotte, B.; et al. Immune thrombocytopenia in adults: A prospective cohort study of clinical features and predictors of outcome. Haematologica 2016, 101, 1039. [Google Scholar] [CrossRef] [Green Version]
- Ghanima, W.; Khelif, A.; Waage, A.; Michel, M.; Tjønnfjord, G.E.; Ben Romdhan, N.; Kahrs, J.; Darne, B.; Holme, P.A. Rituximab as second-line treatment for adult immune thrombocytopenia (the RITP trial): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2015, 385, 1653–1661. [Google Scholar] [CrossRef]
- Ayad, N.; Grace, R.F.; Al-Samkari, H. Thrombopoietin receptor agonists and rituximab for treatment of pediatric immune thrombocytopenia: A systematic review and meta-analysis of prospective clinical trials. Pediatr. Blood Cancer 2022, 69, e29447. [Google Scholar] [CrossRef]
- Blincoe, A.; Labrosse, R.; Abraham, R.S. Acquired B-cell deficiency secondary to B-cell-depleting therapies. J. Immunol. Methods 2022, 511, 113385. [Google Scholar] [CrossRef]
- Mahévas, M.; Azzaoui, I.; Crickx, E.; Canoui-Poitrine, F.; Gobert, D.; Languille, L.; Limal, N.; Guillaud, C.; Croisille, L.; Jeljeli, M.; et al. Efficacy, safety and immunological profile of combining rituximab with belimumab for adults with persistent or chronic immune thrombocytopenia: Results from a prospective phase IIb trial. Haematologica 2021, 106, 2449. [Google Scholar] [CrossRef]
- Gunes, H.; Kivrak, T.; Saha, A.; Roy, K. Eltrombopag induced thrombosis: A case with acute myocardial infarction. Curr. Drug Saf. 2016, 11, 174–176. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Saotome, M.; Suwa, K.; Ohtani, H.; Nagata, Y.; Ono, T.; Maekawa, Y. Recurrent coronary thrombus in a patient with chronic immune thrombocytopenia with treatment using eltrombopag. Case Rep. Cardiol. 2019, 2019, 2756319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alessandro, B.; Wilma, B.; Bruno, F. Pulmonary embolism in a patient with eltrombopag-treated aplastic anaemia and paroxysmal nocturnal haemoglobinuria clone during COVID-19 pneumonia. Thromb. J. 2022, 20, 46. [Google Scholar]
- Álvarez-Román, M.T.; Fernández-Bello, I.; Jiménez-Yuste, V.; Martín-Salces, M.; Arias-Salgado, E.G.; Rivas Pollmar, M.I.; Justo Sanz, R.; Butta, N.V. Procoagulant profile in patients with immune thrombocytopenia. Br. J. Haematol. 2016, 175, 925–934. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, X.-M.; Liu, X.-D. Eltrombopag-related renal vein thromboembolism in a patient with immune thrombocytopenia: A case report. World J. Clin. Cases 2021, 9, 2611. [Google Scholar] [CrossRef] [PubMed]
- Moulis, G.; Bagheri, H.; Sailler, L.; Jonville-Bera, A.-P.; Weber, E.; Guy, C.; Petitpain, N.; Laroche, M.-L.; Favrelière, S.; Béné, J.; et al. Are adverse drug reaction patterns different between romiplostim and eltrombopag? 2009–2013 French PharmacoVigilance assessment. Eur. J. Intern. Med. 2014, 25, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Cines, D.B.; Gernsheimer, T.; Wasser, J.; Godeau, B.; Provan, D.; Lyons, R.; Altomare, I.; Wang, X.; Lopez, A. Integrated analysis of long-term safety in patients with chronic immune thrombocytopaenia (ITP) treated with the thrombopoietin (TPO) receptor agonist romiplostim. Int. J. Hematol. 2015, 102, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, C.A.; Pell, J.; Hill, Q.; Bagot, C.; Cooper, N.; Ingram, J.; Breheny, K.; Kandiyali, R.; Rayment, R.; Evans, G.; et al. Mycophenolate mofetil for first-line treatment of immune thrombocytopenia. N. Engl. J. Med. 2021, 385, 885–895. [Google Scholar] [CrossRef]
- Jang, J.H.; Kim, J.Y.; Mun, Y.-C.; Bang, S.-M.; Lim, Y.J.; Shin, D.-Y.; Choi, Y.B.; Yhim, H.-Y.; Lee, J.W.; Kook, H.; et al. Management of immune thrombocytopenia: Korean experts recommendation in 2017. Blood Res. 2017, 52, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, S.; Kamezaki, K.; Ito, Y.; Horiuchi, T. Bisphosphonate Use for Glucocorticoid-Induced Osteoporosis in Elderly Patients with Immune Thrombocytopenia Receiving Prolonged Steroid Therapy: A Single Institute Retrospective Study. Hematol. Rep. 2022, 14, 276–285. [Google Scholar] [CrossRef]
- Lane, N.E. Glucocorticoid-Induced Osteoporosis: New Insights into the Pathophysiology and Treatments. Curr. Osteoporos. Rep. 2019, 17, 1–7. [Google Scholar] [CrossRef]
- Yamasaki, S. Bisphosphonate use for glucocorticoid-induced osteoporosis in older patients with immune thrombocytopenia: A clinical perspective. Ann. Hematol. 2023, 1–12. [Google Scholar] [CrossRef]
- Hill, Q.A.; Grainger, J.D.; Thachil, J.; Provan, D.; Evans, G.; Garg, M.; Bradbury, C.; Bagot, C.; Kanis, J.A.; Compston, J.E.; et al. The prevention of glucocorticoid-induced osteoporosis in patients with immune thrombocytopenia receiving steroids: A British Society for Haematology Good Practice Paper. Br. J. Haematol. 2019, 185, 410–417. [Google Scholar] [CrossRef] [Green Version]
- Hamed, E.M.; Meabed, M.H.; Aly, U.F.; Hussein, R.R. Recent Progress in Gene Therapy and Other Targeted Therapeutic Approaches for Beta Thalassemia. Curr. Drug Targets 2019, 20, 1603–1623. [Google Scholar] [CrossRef]
- Tabata, S.; Hosoi, H.; Murata, S.; Takeda, S.; Mushino, T.; Sonoki, T. Severe aplastic anemia after COVID-19 mRNA vaccination: Causality or coincidence? J. Autoimmun. 2022, 126, 102782. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Liu, Q.; Zhao, H.G.; Peng, J.; Ni, H.; Hou, M.; Jansen, A.G. Low platelet count as risk factor for infections in patients with primary immune thrombocytopenia: A retrospective evaluation. Ann. Hematol. 2018, 97, 1701–1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudbrandsdottir, S.; Birgens, H.S.; Frederiksen, H.; Jensen, B.A.; Jensen, M.K.; Kjeldsen, L.; Klausen, T.W.; Larsen, H.; Mourits-Andersen, H.T.; Nielsen, C.H.; et al. Rituximab and dexamethasone vs. dexamethasone monotherapy in newly diagnosed patients with primary immune thrombocytopenia. Blood J. Am. Soc. Hematol. 2013, 121, 1976–1981. [Google Scholar] [CrossRef] [Green Version]
- Pulanić, D.; Bátorová, A.; Bodó, I.; Červinek, L.; Ionita, I.; Lissitchkov, T.; Melikyan, A.; Podolak-Dawidziak, M. Use of thrombopoietin receptor agonists in adults with immune thrombocytopenia: A systematic review and Central European expert consensus. Ann. Hematol. 2023, 102, 715–727. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Du, X.; Cheng, Y.; Cheng, G. Safety and efficacy of eltrombopag plus pulsed dexamethasone as first-line therapy for immune thrombocytopenia. Br. J. Haematol. 2020, 189, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Almaguer, D.; Herrera-Rojas, M.A.; Jaime-Pérez, J.C.; León, A.G.-D.; Cantú-Rodríguez, O.G.; Gutierrez-Aguirre, C.H.; Tarín-Arzaga, L.; Hernández-Reyes, J.; Ruiz-Arguelles, G.J. Eltrombopag and high-dose dexamethasone as frontline treatment of newly diagnosed immune thrombocytopenia in adults. Blood J. Am. Soc. Hematol. 2014, 123, 3906–3908. [Google Scholar] [CrossRef] [Green Version]
- González-López, T.J.; Fernández-Fuertes, F.; Hernández-Rivas, J.A.; Sánchez-González, B.; Martínez-Robles, V.; Alvarez-Román, M.T.; Pérez-Rus, G.; Pascual, C.; Bernat, S.; Arrieta-Cerdán, E.; et al. Efficacy and safety of eltrombopag in persistent and newly diagnosed ITP in clinical practice. Int. J. Hematol. 2017, 106, 508–516. [Google Scholar] [CrossRef]
- Meyer, O.; Richter, H.; Lebioda, A.; Schill, M. Treatment patterns in adults with immune thrombocytopenia before, during and after use of thrombopoietin receptor agonists: A longitudinal prescription database study from Germany. Hematology 2021, 26, 697–708. [Google Scholar] [CrossRef]
- Tripathi, A.; Shukla, A.; Mishra, S.; Yadav, Y.S.; Yadav, D.K. Eltrombopag therapy in newly diagnosed steroid non-responsive ITP patients. Int. J. Hematol. 2014, 99, 413–417. [Google Scholar] [CrossRef]
- Puavilai, T.; Thadanipon, K.; Rattanasiri, S.; Ingsathit, A.; McEvoy, M.; Attia, J.; Thakkinstian, A. Treatment efficacy for adult persistent immune thrombocytopenia: A systematic review and network meta-analysis. Br. J. Haematol. 2020, 188, 450–459. [Google Scholar] [CrossRef]
- Tavakolpour, S.; Aryanian, Z.; Seirafianpour, F.; Dodangeh, M.; Etesami, I.; Daneshpazhooh, M.; Balighi, K.; Mahmoudi, H.; Goodarzi, A. A systematic review on efficacy, safety, and treatment-durability of low-dose rituximab for the treatment of Pemphigus: Special focus on COVID-19 pandemic concerns. Immunopharmacol. Immunotoxicol. 2021, 43, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Lambert, M.P.; Gernsheimer, T.B. Clinical updates in adult immune thrombocytopenia. Blood J. Am. Soc. Hematol. 2017, 129, 2829–2835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Xu, Y.; Gui, W.; Hui, F.; Liao, H. Retrospective analysis of different regimens for Chinese adults with severe newly diagnosed immune thrombocytopenia. Clin. Exp. Med. 2020, 20, 381–385. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Eltrombopag (n = 96) | Romiplostim (n = 92) | Prednisolone+ Azathioprine (n = 110) | High_Dose-Dexamethasone (n = 105) | Rituximab (n = 64) | p-Value |
---|---|---|---|---|---|---|
Age (years), Median (range) | 34.5 (18–62) | 32.5 (18–62) | 28 (18–65) | 29.5 (18–65) | 34.5 (18–58) | 0.095 |
Sex, n (%): Male Female | 18 (18.8%) 78 (81.3%) | 30 (32.6%) 62 (67.4%) | 18 (17.4%) 92 (83.6%) | 15 (14.3%) 90 (85.7%) | 15 (23.4%) 49 (76.5%) | 0.601 0.182 |
Initial Platelet count (×109/L), Mean ± SE | 18.2 ± 1.31 | 18.4 ± 1.61 | 19.7 ± 1.73 | 18.54 ± 1.49 | 21.85 ± 1.49 | 0.580 |
Creatinine (mg/dL), Mean ± SE | 0.95 ± 0.06 | 1.2 ± 0.01 | 1.1 ± 0.021 | 0.99 ± 0.05 | 1.12 ± 0.013 | 0.993 |
Serum ALT (IU/L), Mean ± SE | 28.01 ± 1.8 | 30.09 ± 2.3 | 28.9 ± 1.51 | 30.02 ± 1.76 | 32.07 ± 1.93 | 0.211 |
Serum AST (IU/L), Mean ± SE | 30.06 ± 2.1 | 29.5 ± 2.4 | 29.3 ± 1.1 | 29.01 ± 1.8 | 28.06 ± 2.5 | 0.455 |
Variable | Eltrombopag (n = 96) | Romiplostim (n = 92) | Prednisolone+ Azathioprine (n = 110) | High Dose-Dexamethasone (n = 105) | Rituximab (n = 64) | p-Value |
---|---|---|---|---|---|---|
Platelets_count (×109/L)_pre-therapy, Mean ± SE | 18.2 ± 1.31 | 18.4 ± 1.61 | 19.7 ± 1.73 | 18.54 ± 1.49 | 21.85 ± 1.49 | 0.580 |
Platelets_count Post-therapy (×109/L), Mean ± SE | 141.8 ± 10.8 b,c,d | 94.2 ± 6.9 a, e | 93.2 ± 7.2 a, e | 105.9 ± 6.6 a | 125.2 ± 13.2 b,c | <0.001 * |
Mean Difference in PLTs count, Mean ± SE | 123.5 ± 10.8 b,c,d | 75.8 ± 6.9 a, e | 73.5 ± 7 a, e | 87.3 ± 6.5 a | 103.3 ± 12.8 b,c | 0.024 * |
Overall Response, n (%) No of response, n (%) | 85/96 (88.5%) c,d,e 11/96 (11.5%) c,d,e | 75/92 (81.5%) c,e 17/92 (18.5%) c,e | 72/110 (65.5%) a,b 38/110 (34.5%) a,b | 79/105 (75.3%) a 26/105 (24.7%) a | 41/64 (64.1%) a,b 23/64 (35.9%) a,b | 0.001 * 0.001 * |
Complete response, n (%) Partial response, n (%) | 51/85 (60%) C 34/85 (40%) c | 34/75 (45.3%) 41/75 (54.7%) | 26/72 (36.1%) a,d 46/72 (63.9%) a,d | 41/79 (51.8%) C 38/79 (48.2%) C | 21/41 (51.2%) 20/41 (48.8%) | 0.047 * 0.047 * |
Sustained Response, n (%) Relapsed patients, n (%) | 47/85 (55.3%) c,d,e 38/85 (44.7%) c,d,e | 38/75 (50.7%) c,d,e 37/75 (49.3%) c,d,e | 13/72 (18%) a,b 59/72 (82%) a,b | 23/79 (29.1%) a,b 56/79 (70.9%) a,b | 12/41 (29.3%) a,b 29/41 (70.7%) a,b | 0.001* 0.001 * |
Need to Platelets Transfusion; n (%) | 4 (4.1%) | 9 (9.7%) | 67 (60.9%) | 49 (46.4%) | 8 (12.5%) | <0.01 * |
Need to Rescue Treatments; n (%) | 2 (2.08%) | 14 (15.2%) | 19 (17.2%) | 15 (14.2%) | 1 (1.5%) | <0.01 * |
Variable | Eltrombopag (n = 96) | Romiplostim (n = 92) | Prednisolone+ Azathioprine (n = 110) | High Dose-Dexamethasone (n = 105) | Rituximab (n = 64) | p-Value |
---|---|---|---|---|---|---|
Headache, n (%) | 48 (50%) | 78 (84%) | 34 (30%) | 41 (39%) | 20 (31.2%) | 0.001 |
Bleeding-related episodes, n (%) | 6 (6.2%) | 23 (25%) | 86 (78.1%) | 62 (59%) | 9 (14%) | 0.001 |
Epistaxis, n (%) | 3 (3.1%) | 9 (9.7%) | 69 (62.7%) | 49 (46.6%) | 6 (9.3%) | 0.001 |
Gum bleeding, n (%) | 5 (5.2%) | 7 (7.9%) | 61 (55.4%) | 53 (50.4%) | 14 (21.8) | 0.001 |
Ecchymosis, n (%) | 20 (20.8%) | 43 (46.7%) | 47 (42.7%) | 58 (55.2%) | 12 (18.75%) | 0.001 |
Osteoporosis_and Bone fracture, n (%) | 12 (12.6%) | 41 (44.5%) | 93 (84.5%) | 98 (93.3%) | 5 (7.6%) | 0.001 |
Elevated_blood pressure, n (%) | 7 (7.29%) | 3 (3.26%) | 65 (59.09%) | 49 (46.66%) | 2 (3.12%) | 0.001 |
Thrombosis, n (%) | 16 (16.6%) | 12 (13%) | 0 (0%) | 0 (0%) | 9 (14.06%) | 0.001 |
Liver cirrhosis, n (%) | 2 (2%) | 1 (1%) | 0 (0%) | 0 (0%) | 0 (0%) | 0.001 |
Elevated_liver enzymes, n (%) | 81 (84.3%) | 5 (5.4%) | 8 (7.2%) | 3 (2%) | 7 (10.9) | 0.001 |
Peptic ulcer, n (%) | 0 (0%) | 0 (0%) | 63 (57.2%) | 19 (18%) | 0 (0%) | 0.001 |
Infection, n (%) | 1 (1%) | 0 (0%) | 13 (11.8%) | 17 (16.1%) | 27 (42.1%) | 0.001 |
Pulmonary hypertension, n (%) | 6 (6.25%) | 2 (2.17%) | 23 (20.9%) | 13 (12.3%) | 2 (3.1%) | 0.001 |
Left_ventricle dysfunction, n (%) | 2 (2%) | 0 (0%) | 7 (6.3%) | 4 (3%) | 0 (0%) | 0.001 |
Hyperglycemia, n (%) | 2 (2%) | 1 (1%) | 46 (41.8%) | 19 (18%) | 1 (1%) | 0.001 |
Hair loss, n (%) | 73 (76%) | 42 (45%) | 59 (53.6%) | 48 (45.7%) | 26 (40.6%) | 0.001 |
Aplastic Anemia | 0 (0%) | 0 (0%) | 9 (8.1%) | 5 (4.7%) | 0 (0%) | <0.01 |
Plantar Fasciitis | 92 (95.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | <0.001 |
Numbness or Tingling, n (%) | 77 (80.2%) | 65 (70.6%) | 97 (88.1%) | 91 (86.8%) | 15 (23.4%) | 0.001 |
Chronic_Anemia, n (%) | 6 (6.2%) | 54 (87%) | 69 (62.7) | 76 (72.3%) | 11 (17.1%) | 0.105 |
Dizziness or Fatigue, n (%) | 6 (6.25%) | 56 (60.8) | 74 (67.2%) | 81 (77%) | 2 (3.1%) | 0.180 |
Acne, n (%) | 0 (0%) | 0 (0%) | 76 (69%) | 89 (84.7%) | 0 (0%) | 0.001 |
Weight gain, n (%) | 1 (1%) | 1 (1%) | 91 (82.7%) | 98 (93.3%) | 2 (3.1%) | 0.03 |
Depression, n (%) | 7 (7.2%) | 79 (85.8%) | 93 (84.5%) | 99 (94.2%) | 11 (17.1%) | 0.001 |
Anxiety or insomnia, n (%) | 17 (17.7%) | 87 (94.5%) | 86 (78.1%) | 94 (89.5%) | 5 (7.8%) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamed, E.M.; Ibrahim, A.R.N.; Meabed, M.H.; Khalaf, A.M.; El Demerdash, D.M.; Elgendy, M.O.; Saeed, H.; Salem, H.F.; Rabea, H. The Outcomes and Adverse Drug Patterns of Immunomodulators and Thrombopoietin Receptor Agonists in Primary Immune Thrombocytopenia Egyptian Patients with Hemorrhage Comorbidity. Pharmaceuticals 2023, 16, 868. https://doi.org/10.3390/ph16060868
Hamed EM, Ibrahim ARN, Meabed MH, Khalaf AM, El Demerdash DM, Elgendy MO, Saeed H, Salem HF, Rabea H. The Outcomes and Adverse Drug Patterns of Immunomodulators and Thrombopoietin Receptor Agonists in Primary Immune Thrombocytopenia Egyptian Patients with Hemorrhage Comorbidity. Pharmaceuticals. 2023; 16(6):868. https://doi.org/10.3390/ph16060868
Chicago/Turabian StyleHamed, Eman Mostafa, Ahmed R. N. Ibrahim, Mohamed Hussein Meabed, Ahmed M. Khalaf, Doaa Mohamed El Demerdash, Marwa O. Elgendy, Haitham Saeed, Heba F. Salem, and Hoda Rabea. 2023. "The Outcomes and Adverse Drug Patterns of Immunomodulators and Thrombopoietin Receptor Agonists in Primary Immune Thrombocytopenia Egyptian Patients with Hemorrhage Comorbidity" Pharmaceuticals 16, no. 6: 868. https://doi.org/10.3390/ph16060868
APA StyleHamed, E. M., Ibrahim, A. R. N., Meabed, M. H., Khalaf, A. M., El Demerdash, D. M., Elgendy, M. O., Saeed, H., Salem, H. F., & Rabea, H. (2023). The Outcomes and Adverse Drug Patterns of Immunomodulators and Thrombopoietin Receptor Agonists in Primary Immune Thrombocytopenia Egyptian Patients with Hemorrhage Comorbidity. Pharmaceuticals, 16(6), 868. https://doi.org/10.3390/ph16060868