Molnupiravir, Nirmatrelvir/Ritonavir, or Sotrovimab for High-Risk COVID-19 Patients Infected by the Omicron Variant: Hospitalization, Mortality, and Time until Negative Swab Test in Real Life
Abstract
:1. Background
2. Results
2.1. Hospitalization and Mortality Attributable to COVID-19
2.2. Time between COVID-19 Diagnosis and First Negative Swab Test
3. Discussion
3.1. Main Findings
3.2. Interpretation of Findings
3.2.1. Hospitalization and Mortality Attributable to COVID-19
3.2.2. Time between COVID-19 Diagnosis and First Negative Swab Test
3.3. Strengths and Weaknesses
4. Methods
4.1. Ethical Considerations
4.2. Study Design
- Compliance with oral therapy (Molnupiravir or Nirmatrelvir/Ritonavir) over i.v. therapy (Sotrovimab), in which case human monoclonal therapy was opted out;
- Glomerular filtration rate (GFR) < 30 mL/min, contraindicating both Nirmatrelvir/Ritonavir and Molnupiravir, in which case Sotrovimab was recommended;
- Existing therapeutic plans potentially conflicting with Nirmatrelvir/Ritonavir, in which case Molnupiravir or Sotrovimab was proposed for the patient;
- Patient reluctance to receive any of the above treatment options (Molnupiravir, Nirmatrelvir/Ritonavir or Sotrovimab), in which case the patient contributed to the control group (standard of care);
- Late (>5 or 7 days, respectively, for antivirals and monoclonal antibodies) referral to infectious disease outpatient unit following the onset of symptoms, in which case the patient contributed to the control group.
- -
- 116 patients treated with Molnupiravir;
- -
- 102 receiving Nirmatrelvir/Ritonavir;
- -
- 57 on Sotrovimab;
- -
- 111 receiving standard of care (controls).
- -
- Molnupiravir: 800 mg (4 oral tablets of 200 mg each) twice a day—12 h apart—for 5 days.
- -
- Nirmatrelvir/Ritonavir, comprising two oral principles, Nirmatrelvir (150 mg) and Ritonavir (100 mg). Regular dose: two tablets of Nirmatrelvir plus one tablet of Ritonavir to be taken twice a day (12 h apart) for 5 days, for a total daily dosage of 600 mg of Nirmatrelvir plus 200 mg of Ritonavir. Renal impairment dose: one tablet of Nirmatrelvir plus one tablet of Ritonavir to be taken twice a day (12 h apart) for 5 days, for a total daily dosage of 300 mg Nirmatrelvir plus 200 mg of Ritonavir.
- -
- Sotrovimab: single dose of 500 mg i.v., following dilution.
4.3. Confounding Factors
- Patients were considered inadequately vaccinated if they were
- -
- fully unvaccinated (0 doses); OR
- -
- immunized with just with one dose of COVID-19 vaccine; OR
- -
- immunized with 2+ vaccine doses, but last vaccine dose was received >180 days before COVID-19 diagnosis.
- Patients were considered adequately vaccinated if they were
- -
- immunized with 2+ vaccine doses; AND
- -
- last vaccine dose was received <181 days before SARS-CoV-2 infection.
4.4. Charlson Index
4.5. Statistical Analysis
- Hospitalizations attributable to COVID-19;
- Mortality attributable to COVID-19;
- Negativization rate, measured in days from COVID-19 diagnosis (first positive RT-PCR result) to first negative swab test (either RT-PCR or third-generation antigenic test) for SARS-CoV-2.
4.5.1. Hospitalization and Mortality Attributable to COVID-19
4.5.2. Time between COVID-19 Diagnosis and First Negative Swab Test
- Rate of events in the experimental arm (EER) = number of events/number of patients in the experimental arm (Nirmatrelvir/Ritonavir course);
- Rate of events in the control arm (CER) = number of events/number of patients in the control arm (standard of care).
- Absolute risk increase [(ARI) = (EER − CER)], expressing the absolute increase of risk of events in the treated compared to control group, accompanied by a 95% CI confidence interval (95% CI). The sign of ARI is positive when EER > CER and negative otherwise.
- Number needed to treat [(NNT) = (1/ARI)], expressing the expected number of patients required to obtain one beneficial outcome event, accompanied by 95% CI.
- Crude odds ratio (OR) with 95% CI, for the association between EER/CER and the treatment groups (Nirmatrelvir/Ritonavir vs controls), by time interval between COVID-19 diagnosis and negative swab test result (5–9 days; 10–14 days; 15+ days).
- Crude hazard ratio (HR) with 95% CI, for the negativization rate by treatment group (Nirmatrelvir/Ritonavir vs. controls) and time interval (5–9 vs. 10–14 vs. 15+ days) between COVID-19 diagnosis and negative swab test result.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, P.S.; Read, S.W.; Fauci, A.S. Therapy for Early COVID-19: A Critical Need. JAMA 2020, 324, 2149–2150. [Google Scholar] [CrossRef]
- Drożdżal, S.; Rosik, J.; Lechowicz, K.; Machaj, F.; Szostak, B.; Przybyciński, J.; Lorzadeh, S.; Kotfis, K.; Ghavami, S.; Łos, M.J. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist Update 2021, 59, 100794. [Google Scholar] [CrossRef]
- Parums, D.V. Editorial: Current status of oral antiviral drug treatments for SARS-CoV-2 infection in nonhospitalized patients. Med. Sci. Monit. 2022, 28, e935952. [Google Scholar] [CrossRef]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Musser, B.J.; Soo, Y.; Rofail, D.; Im, J.; et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with COVID-19. N. Engl. J. Med. 2021, 384, 238–251. [Google Scholar] [CrossRef]
- Murakami, N.; Hayden, R.; Hills, T.; Al-Samkari, H.; Casey, J.; Sorbo, L.; Lawler, P.R.; Sise, M.E.; Leaf, D.E. Therapeutic advances in COVID-19. Nat. Rev. Nephrol. 2023, 19, 38–52. [Google Scholar] [CrossRef]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Casal, M.C.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Effect of sotrovimab on hospitalization or death among high-risk patients with mild to moderate COVID-19. JAMA 2022, 327, 1236–1246. [Google Scholar] [CrossRef]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; MaryLynn, B.; Hendrick, V.M.; Damle, B.; Simón-Campos, A.; et al. Oral nirmatrelvir for high-risk, non-hospitalized adults with COVID-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef]
- Jayk Bernal, A.J.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Reyes, V.D.; Martin-Quiros, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for oral treatment of COVID-19 in non-hospitalized patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of COVID-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef]
- O’Brien, M.P.; Forleo-Neto, E.; Sarkar, N.; Isa, F.; Hou, P.; Chan, K.C. Effect of Subcutaneous Casirivimab and Imdevimab Antibody Combination vs Placebo on Development of Symptomatic COVID-19 in Early Asymptomatic SARS-CoV-2 Infection—A Randomized Controlled Trial. JAMA 2022, 327, 432–441. [Google Scholar] [CrossRef]
- Levin, M.J.; Ustianowski, A.; De Wit, S.; Launay, O.; Avila, M.; Templeton, A.; Yuan, Y.; Seegobin, S.; Ellery, A.; Levinson, D.J.; et al. Intramuscular AZD7442 (Tixagevimab–Cilgavimab) for Prevention of COVID-19. N. Engl. J. Med. 2022, 386, 2188–2200. [Google Scholar] [CrossRef]
- Butler, C.C.; Hobbs, F.D.R.; Gbinigie, O.A.; Rahman, N.M.; Hayward, G.; Richards, D.B.; Dorward, J.; Lowe, D.M.; Standing, J.F.; Breuer, J.; et al. Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): An open-label, platform-adaptive randomised controlled trial. Lancet 2022, 401, 281–293. [Google Scholar] [CrossRef]
- ACTIV-3–Therapeutics for Inpatients with COVID-19 (TICO) Study Group. Tixagevimab–cilgavimab for treatment of patients hospitalised with COVID-19: A randomised, double-blind, phase 3 trial. Lancet Respir. Med. 2022, 10, 972–984. [Google Scholar] [CrossRef]
- Najjar-Debbiny, R.; Gronich, N.; Weber, G.; Khoury, J.; Amar, M.; Stein, N.; Goldstein, L.H.; Saliba, W. Effectiveness of paxlovid in reducing severe COVID-19 and mortality in high risk patients. Clin. Infect. Dis. 2023, 76, e342–e349. [Google Scholar] [CrossRef]
- Konyak, B.M.; Sharma, M.; Kharia, S.; Pati Pandey, R.; Chang, C.M. A Systematic Review on the Emergence of Omicron Variant and Recent Advancement in Therapies. Vaccines 2022, 10, 1468. [Google Scholar] [CrossRef]
- Tsakok, M.T.; Watson, R.A.; Saujani, S.J.; Kong, M.; Xie, C.; Peschl, H.; Wing, L.; MacLeod, F.K.; Shine, B.; Talbot, N.P.; et al. Reduction in Chest CT Severity and Improved Hospital Outcomes in SARS-CoV-2 Omicron Compared with Delta Variant Infection. Radiology 2023, 306, 261–269. [Google Scholar] [CrossRef]
- Cegolon, L.; Negro, C.; Mastrangelo, G.; Filon, F.L. Primary SARS-CoV-2 Infections, Re-infections and Vaccine Effectiveness during theOmicron Transmission Period in Healthcare Workers of Trieste and Gorizia (Northeast Italy), 1 December 2021–31 May 2022. Viruses 2022, 14, 2688. [Google Scholar] [CrossRef]
- Cegolon, L.; Ronchese, F.; Ricci, F.; Negro, C.; Larese-Filon, F. SARS-CoV-2 Infection in Health Care Workers of Trieste (North-Eastern Italy), 1 October 2020-7 February 2022: Occupational Risk and the Impact of the Omicron Variant. Viruses 2022, 14, 1663. [Google Scholar] [CrossRef]
- Basso, P.; Negro, C.; Cegolon, L.; Larese Filon, F. Risk of Vaccine Breakthrough SARS-CoV-2 Infection and Associated Factors in Healthcare Workers of Trieste Teaching Hospitals (North-Eastern Italy). Viruses 2022, 14, 336. [Google Scholar] [CrossRef]
- Aggarwal, A.; Akerman, A.; Milogiannakis, V.; Ruiz Silva, M.; Walker, G.; Ospina Stella, A.; Kindinger, A.; Angelovich, T.; Waring, E.; Amatayakul-Chantler, S.; et al. SARS-CoV-2 Omicron BA.5: Evolving tropism and evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. EBioMedicine 2022, 84, 104270. [Google Scholar] [CrossRef]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Casal, M.C.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N. Engl. J. Med. 2021, 385, 1941–1950. [Google Scholar] [CrossRef] [PubMed]
- US National Institutes of Health. Therapeutic Management of Non-Hospitalized Adults with COVID-19. 8 April 2022. Available online: https://www.covid19treatmentguidelines.nih.gov/management/clinicalmanagement/nonhospitalized-adults--therapeutic-management/ (accessed on 8 August 2022).
- US Food and Drug Administration Statement Coronavirus (COVID-19) Update: FDA Limits Use of Certain Monoclonal Antibodies to Treat COVID-19 Due to the Omicron Variant. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-limits-use-certain-monoclonal-antibodies-treat-covid-19-due-omicron (accessed on 23 April 2023).
- Cameroni, E.; Bowen, J.E.; Rosen, L.E.; Saliba, C.; Zepeda, S.K.; Culap, K.; Pinto, D.; Van Blargan, L.A.; De Marco, A.; di Iulio, J.; et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 2022, 602, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Rockett, R.; Basile, K.; Maddocks, S.; Fong, W.; Agius, J.E.; Johnson-Mackinnon, J.; Arnott, A.; Chandra, S.; Gall, M.; Draper, J.; et al. Resistance mutations in SARS-CoV-2 delta variant after sotrovimab use. N. Engl. J. Med. 2022, 386, 1477–1479. [Google Scholar] [CrossRef] [PubMed]
- Aleem, A.; Kothadia, J.P. Remdesivir. In StatPearls; StatPearls Publicing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Martin-Blondel, G.; Marcelin, A.G.; Soulié, C.; Kaisaridi, S.; Lusivika-Nzinga, C.; Zafilaza, K.; Dorival, C.; Nailler, L.; Boston, A.; Ronchetti, A.M.; et al. Time to negative PCR conversion amongst high-risk patients with mild-to-moderate Omicron BA.1 and BA.2 COVID-19 treated with sotrovimab or nirmatrelvir. Clin. Microbiol. Infect. 2022, 29, e5–e543. [Google Scholar] [CrossRef] [PubMed]
- Gentile, I.; Scotto, R.; Schiano Moriello, N.; Pinchera, B.; Villari, R.; Trucillo, E.; Ametrano, L.; Fusco, L.; Castaldo, G.; Buonomo, A.R.; et al. Nirmatrelvir/Ritonavir and Molnupiravir in the Treatment of Mild/Moderate COVID-19: Results of a Real-Life Study. Vaccines 2022, 10, 1731. [Google Scholar] [CrossRef] [PubMed]
- Tiseo, G.; Barbieri, C.; Galfo, V.; Occhineri, S.; Matucci, T.; Almerigogna, F.; Kalo, J.; Sponga, P.; Cesaretti, M.; Marchetti, G.; et al. Efficacy and Safety of Nirmatrelvir/Ritonavir, Molnupiravir, and Remdesivir in a Real-World Cohort of Outpatients with COVID-19 at High Risk of Progression: The PISA Outpatient Clinic Experience. Infect. Dis. Ther. 2023, 12, 257–271. [Google Scholar] [CrossRef]
- Kamal, L.; Ramadan, A.; Farraj, S.; Bahig, L.; Ezzat, S. The pill of recovery; Molnupiravir for treatment of COVID-19 patients: A systematic review. Saudi Pharm. J. 2022, 30, 508–518. [Google Scholar] [CrossRef]
- Wong, C.K.H.; Au, I.C.H.; Lau, K.T.K.; Lau, E.H.Y.; Cowling, B.J.; Leung, G.M. Real-world effectiveness of molnupiravir and nirmatrelvir plus ritonavir against mortality, hospitalisation, and in-hospital outcomes among community-dwelling, ambulatory patients with confirmed SARS-CoV-2 infection during the omicron wave in Hong Kong: An observational study. Lancet 2022, 400, 1213–1222. [Google Scholar]
- Gao, Y.; Liu, M.; Li, Z.; Xu, J.; Zhang, J.; Tian, J. Molnupiravir for treatment of adults with mild or moderate COVID-19: A systematic review and meta-analysis of randomised controlled trials. Clin. Microbiol. Infect. 2023. [Google Scholar] [CrossRef]
- Italian Medicines Agency (AIFA). Sospensione di Utilizzo del Medicinale Lagevrio® (Molnupiravir). Available online: https://www.aifa.gov.it/-/sospensione_utilizzo_lagevrio_molnupiravir (accessed on 6 April 2023).
- Neumann, G.; Kawaoka, Y. The COVID-19 Pandemic-A Potential Role for Antivirals in Mitigating Pandemics. Viruses 2023, 15, 303. [Google Scholar] [CrossRef]
- Zheng, B.; Green, A.C.A.; Tazare, J.; Curtis, H.J.; Fisher, L.; Nab, L.; Schultze, A.; Mahalingasivam, V.; Parker, E.P.K.; Hulme, W.J.; et al. Comparative effectiveness of sotrovimab and molnupiravir for prevention of severe covid-19 outcomes in patients in the community: Observational cohort study with the OpenSAFELY platform. BMJ 2022, 379, e071932. [Google Scholar] [CrossRef]
- Sendi, P.; Razonable, R.R.; Nelson, S.B.; Soriano, A.; Gandhi, R.T. First generation oral antivirals against SARS-CoV-2. Clin. Microbiol. Infect. 2022, 28, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.M.; Reyes, C.; Satram, S.; Birch, H.; Gibbons, D.C.; Drysdale, M.; Bell, C.F.; Suyundikov, A.; Ding, X.; Maher, C.M.; et al. Real-World Effectiveness of Sotrovimab for the Early Treatment of COVID-19 During SARS-CoV-2 Delta and Omicron Waves in the USA. Infect. Dis. Ther. 2023, 12, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.; Qi, C.; Adebayo, J.O.; Underwood, J.; Coulson, J.; Bailey, R.; Lyons, R.; Edwards, A.; Cooper, A.; John, G.; et al. Real-world effectiveness of molnupiravir, nirmatrelvir-ritonavir, and sotrovimab on preventing hospital admission among higher-risk patients with COVID-19 in Wales: A retrospective cohort study. J. Infect. 2023, 86, 352–360. [Google Scholar] [CrossRef]
- Reuters 1. Drug Price Group Slashes Suggested Price of Pfizer COVID Treatment by 80%. Available online: https://www.reuters.com/business/healthcare-pharmaceuticals/drug-price-group-slashes-suggested-price-pfizer-covid-treatment-by-80-2022-12-20/ (accessed on 13 April 2023).
- Reuters 2. Moderna Expects to Price Its COVID Vaccine at about $130 in the US. Available online: https://www.reuters.com/business/healthcare-pharmaceuticals/moderna-expects-price-its-covid-vaccine-about-130-us-2023-03-20/ (accessed on 13 April 2023).
- WHO. Therapeutics and COVID-19: Living Guideline. 16 September 2022. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoVtherapeutics-2022.5 (accessed on 21 September 2022).
- Iketani, S.; Mohri, H.; Culbertson, B.; Hong, S.J.; Duan, Y.; Luck, M.I.; Annavajhala, M.K.; Guo, Y.; Sheng, Z.; Uhlemann, A.C. Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. Nature 2023, 613, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Lewandosky, E.; Tan, H.; Zhang, X.; Morgan, R.T.; Zhang, X.; Jacobs, L.M.C.; Butler, S.C.; Gongora, M.V.; Choy, J.; et al. Naturally occurring mutations of SARS-CoV-2 main protease confer drug resistance to nirmatrelvir. bioRxiv 2022. [Google Scholar] [CrossRef]
- Kozlov, M. Why scientists are racing to develop more COVID antivirals. Nature 2022, 601, 496. [Google Scholar] [CrossRef]
- Lan, S.; Neilsen, G.; Slack, R.L.; Cantara, W.A.; Castaner Emanuelli, A.; Lorson, Z.C.; Lulkin, N.; Zhang, H.; Lee, J.; Cilento, M.E.; et al. Nirmatrelvir Resistance in SARS-CoV-2 Omicron_BA.1 and WA1 Replicons and Escape Strategies. bioRxiv 2023. [Google Scholar] [CrossRef]
- Van Blargan, L.A.; Errico, J.M.; Halfmann, P.J.; Zost, A.J.; Crowe, J.E.; Purcell, L.A.; Kawaoka, Y.; Corti, D.; Fremont, D.H.; Diamond, M.S. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 2022, 28, 490–495. [Google Scholar] [CrossRef]
- Takashita, E.; Kinoshita, N.; Yamayoshi, S.; Sakai-Tagawa, Y.; Fujisaki, S.; Ito, M.; Iwatsuki-Horimoto, K.; Chiba, S.; Halfmann, P.; Nagaiet, H.; et al. Efficacy of antibodies and antiviral drugs against COVID-19 omicron variant. N. Engl. J. Med. 2022, 386, 995–998. [Google Scholar] [CrossRef]
- Iketani, S.; Liu, L.; Guo, Y.; Liu, L.; Chan, J.F.W.; Huang, Y.; Wang, M.; Luo, Y.; Yu, J.; Chu, H.; et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 2022, 604, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Focosi, D.; Quiroga, R.; McConnell, S.; Johnson, M.C.; Casadevall, A. Convergent Evolution in SARS-CoV-2 Spike Creates a Variant Soup from Which New COVID-19 Waves Emerge. Int. J. Mol. Sci. 2023, 24, 2264. [Google Scholar] [CrossRef] [PubMed]
- Cegolon, L.; Mastrangelo, G.; Emanuelli, E.; Camerotto, R.; Spinato, G.; Frezza, D. Early Negativization of SARS-CoV-2 Infection by Nasal Spray of Seawater plus Additives: The RENAISSANCE Open-Label Controlled Clinical Trial. Pharmaceutics 2022, 14, 2502. [Google Scholar] [CrossRef] [PubMed]
- Cegolon, L.; Javanbakht, M.; Mastrangelo, G. Nasal disinfection for the prevention and control of COVID-19: A scoping review on potential chemo-preventive agents. Int. J. Hyg. Environ. Health 2020, 230, 113605. [Google Scholar] [CrossRef]
- Cegolon, L.; Mastrangelo, G.; Bellizzi, S.; Filon, F.L.; Salata, C. Supporting the Aspecific Physiological Defenses of Upper Airways against Emerging SARS-CoV-2 Variants. Pathogens 2023, 12, 211. [Google Scholar] [CrossRef]
- Cegolon, L.; Mirandola, M.; Salaris, C.; Salvati, M.V.; Mastrangelo, G.; Salata, C. Hypothiocyanite and Hypothiocyanite/Lactoferrin Mixture Exhibit Virucidal Activity In Vitro against SARS-CoV-2. Pathogens 2021, 10, 233. [Google Scholar] [CrossRef]
- Cegolon, L.; Salata, C.; Piccoli, E.; Juarez, V.; Palu’, G.; Mastrangelo, G.; Calistri, A. In vitro antiviral activity of hypothiocyanite against A/H1N1/2009 pandemic influenza virus. Int. J. Hyg. Environ. Health 2014, 217, 17–22. [Google Scholar] [CrossRef]
- Cegolon, L. Investigating hypothiocyanite against SARS-CoV-2. Int. J. Hyg. Environ. Health 2020, 227, 113520. [Google Scholar] [CrossRef]
- Ramalingam, S.; Graham, C.; Dove, J.; Morrice, L.; Sheikh, A. Hypertonic saline nasal irrigation and gar-gling should be considered as a treatment option for COVID-19. J. Glob. Health 2020, 10, 010332. [Google Scholar] [CrossRef]
- Ramalingam, S.; Graham, C.; Dove, J.; Morrice, L.; Sheikh, A. A pilot, open labelled, randomized con-trolled trial of hypertonic saline nasal irrigation and gargling for the common cold. Sci. Rep. 2019, 9, 1015. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Agency (EPA). List N Advanced Search Page: Disinfectants for Coronavirus (COVID-19). Available online: https://www.epa.gov/coronavirus/list-n-advanced-search-page-disinfectants-coronavirus-covid-19 (accessed on 19 April 2023).
- Kim, L.; Garg, S.; O’Halloran, A.; Whitaker, M.; Pham, H.; Anderson, E.J.; Armistead, I.; Bennett, N.M.; Billing, L.; Como-Sabetti, K.; et al. Risk factors for intensive care unit admission and in-hospital mortality among hospitalized adults identified through the US Coronavirus Disease 2019 (COVID-19)–Associated Hospitalization Surveillance Network (COVID-NET). Clin. Infect. Dis. 2021, 72, e206–e214. [Google Scholar] [CrossRef] [PubMed]
- Italian Medicines Agency (AIFA). Molnupavir—Informations for Health Care Workers. Available online: https://www.aifa.gov.it/documents/20142/1616529/All_1_Det_AIFA_1644_Informazioni_operatori_sanitari.pdf (accessed on 5 April 2023).
- Italian Medicines Agency (AIFA). Nirmatrelvir—Informations for Health Care Workers. Available online: https://www.aifa.gov.it/documents/20142/1616529/NIRMATRELVIR_PT_18.05.2022.pdf (accessed on 5 April 2023).
- Italian Medicines Agency (AIFA). Sotrovimab—Information for Health Care Workers. Available online: https://www.aifa.gov.it/documents/20142/1307084/sotrovimab_Allegato1_Informativa_hcp.pdf (accessed on 5 April 2023).
- Charlson, M.; Szatrowski, T.P.; Peterson, J.; Gold, J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994, 47, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- UB Clinical Significance Calculator. Available online: https://www.elcomprimido.com/FARHSD/DOC_CD_Curso_Palma_2006/calculadoras/UBC%20Clinical%20Significance%20Calculator.htm (accessed on 11 April 2023).
Factors | Strata | Total N (%) | Standard of Care N (%) (N = 111) | Molnupiravir (N = 116) | Nirmatrelvir/Ritonavir (N = 102) | Sotrovimab (N = 57) | |||
---|---|---|---|---|---|---|---|---|---|
N (%) | p-Value | N (%) | p-Value | N (%) | p-Value | ||||
Sex | Female | 183 (47.4) | 55 (49.6) | 54 (46.6) | 0.651 | 53 (52.0) | 0.725 | 21 (36.8) | 0.117 |
Male | 203 (52.6) | 56 (50.4) | 62 (53.5) | 49 (48.0) | 36 (63.2) | ||||
Age (years) | Mean ± SD | 68.1 ± 16.2 | 70.9 ± 14.5 | 66.2 ± 18.0 | 0.032 | 66.2 ± 15.4 | 0.022 | 69.8 ± 16.3 | 0.658 |
Median (IQR) | 72 (57; 80) | 74 (60; 82) | 68.5 (54; 81) | 0.085 | 68 (57; 78) | 0.018 | 75 (61; 81) | 0.913 | |
21–57 | 97 (25.1) | 22 (19.8) | 35 (30.2) | 0.087 | 28 (27.5) | 0.052 | 12 (21.1) | 0.888 | |
58–71 | 110 (28.5) | 28 (25.2) | 33 (28.5) | 37 (36.3) | 12 (21.1) | ||||
73–79 | 80 (20.7) | 28 (25.2) | 16 (13.8) | 19 (18.6) | 17 (29.8) | ||||
80+ | 99 (25.7) | 33 (29.7) | 32 (27.6) | 18 (17.7) | 16 (28.1) | ||||
COVID-19 vaccine doses (Number) | 0 | 70 (18.1) | 26 (23.4) | 21 (18.1) | 0.380 | 16 (15.7) | 0.673 | 7 (12.3) | 0.281 |
1 | 17 (4.4) | 4 (3.6) | 7 (6.0) | 4 (3.9) | 2 (3.5) | ||||
2 | 49 (12.7) | 11 (9.9) | 17 (14.7) | 13 (12.8) | 8 (14.0) | ||||
3 | 236 (61.1) | 67 (60.4) | 64 (55.2) | 65 (63.7) | 40 (70.2) | ||||
4 | 14 (3.6) | 3 (2.7) | 7 (6.0) | 4 (3.9) | 0 | ||||
Adequate COVID-19 Vaccination status (M: 78) | No | 60 (35.8) | 18 (21.7) | 19 (20.9) | 0.897 | 17 (20.2) | 0.818 | 6 (12.0) | 0.159 |
Yes | 248 (64.2) | 65 (78.3) | 72 (79.1) | 67 (79.8) | 44 (88.0) | ||||
Immune depression | No | 295 (76.4) | 94 (84.7) | 84 (72.4) | 0.025 | 78 (76.5) | 0.129 | 39 (68.4) | 0.014 |
Yes | 91 (23.6) | 17 (15.3) | 32 (27.6) | 24 (23.5) | 18 (31.6) | ||||
Charlson index | <3 | 73 (18.9) | 24 (21.6) | 23 (19.8) | 0.203 | 19 (18.6) | 0.853 | 7 (12.3) | 0.008 |
3–4 | 137 (35.5) | 45 (40.5) | 36 (31.0) | 42 (41.2) | 14 (24.6) | ||||
5+ | 176 (45.6) | 42 (37.8) | 57 (49.1) | 41 (40.2) | 36 (63.2) | ||||
Positive swabs before first negative test (number) | M ± SD | 2.9 ± 1.3 | 2.9 ± 1.4 | 2.8 ± 1.2 | 0.597 | 2.6 ± 0.9 | 0.030 | 3.4 ± 1.8 | 0.045 |
Median (IQR) | 2 (2; 3) | 2 (2; 3) | 2 (2; 3) | 0.983 | 2 (2; 3) | 0.123 | 2 (3; 4) | 0.060 | |
1 | 200 (51.8) | 59 (53.2) | 59 (50.9) | 0.467 | 59 (57.8) | 0.004 | 23 (40.4) | 0.223 | |
2 | 114 (29.5) | 27 (24.3) | 36 (31.0) | 36 (35.3) | 15 (26.3) | ||||
3+ | 72 (18.7) | 25 (22.5) | 21 (18.1) | 7 (6.9) | 19 (33.3) | ||||
Days between COVID-19 diagnosis and treatment start | M ± SD | 1.5 ± 1.3 | 1.4 ± 1.5 | 1.4 ± 0.9 | 0.921 | 1.2 ± 0.9 | 0.224 | 2.5 ± 1.8 | <0.001 |
Median (IQR) | 1 (1; 2) | 1 (0; 2) | 1 (1; 2) | 0.175 | 1 (1; 2) | 0.977 | 2 (2; 3) | <0.001 | |
0 | 36 (13.1) | 37 (33.3) | 16 (13.8) | 0.001 | 18 (17.7) | <0.001 | 2 (3.5) | <0.001 | |
1 | 115 (41.8) | 30 (27.0) | 51 (44.0) | 54 (52.9) | 10 (17.5) | ||||
2 | 81 (29.5) | 24 (21.6) | 35 (30.2) | 23 (22.6) | 23 (40.4) | ||||
3+ | 43 (15.6) | 20 (18.0) | 14 (12.1) | 7 (6.9) | 22 (38.6) |
Factors | Strata | Tot N (%) | Positivity Window (Days)—Missing: 10 | Hospital Admission (at 30 Days) | Mortality (at 30 Days) | |||||
M ± SD | M (IQR) | Yes N (%) | No N (%) | p-Value | Yes N (%) | No N (%) | p-Value | |||
Total | Range (5; 67) | 12.4±7.1 | 11 (8; 14) | 13 (3.4) | 373 (96.6) | 5 (1.3) | 381 (98.7) | |||
Treatment | Standard of care (controls) | 111 (28.8) | 13.0 ± 7.7 | 11 (8; 15) | 8 (7.2) | 103 (92.8) | 0.028 | 4 (3.6) | 107 (96.4) | 0.073 |
Molnupiravir | 116 (30.1) | 11.7 ± 5.2 | 11 (8; 14) | 0 | 116 (100) | 0 | 116 (100) | |||
Nirmatrelvir/Ritonavir | 102 (16.4) | 10.2 ± 4.4 | 9 (7; 12) | 3 (2.9) | 99 (97.1) | 1 (1.0) | 101 (99.0) | |||
Sotrovimab | 57 (14.8) | 16.5 ± 10.5 | 14 (10; 19) | 2 (3.5) | 55 (96.5) | 0 | 57 (100) | |||
Sex | Female | 183 (47.4) | 12.1 ± 5.8 | 8 (11; 14) | 8 (4.4) | 175 (95.6) | 0.299 | 5 (2.7) | 178 (97.3) | 0.018 |
Male | 203 (52.6) | 12.6 ± 8.1 | 8 (10; 14) | 5 (2.5) | 198 (97.5) | 0 | 203 (100) | |||
Age (years) | 21–57 | 97 (25.1) | 10.9 ± 5.3 | 10 (7; 13) | 4 (4.1) | 93 (95.9) | 0.697 | 0 | 97 (100) | 0.292 |
58–72 | 110 (28.5) | 11.7 ± 6.4 | 10 (8; 14) | 4 (3.6) | 106 (96.4) | 1 (0.9) | 109 (99.1) | |||
73–79 | 80 (20.7) | 13.9 ± 9.9 | 12 (8; 16) | 1 (1.3) | 79 (98.8) | 1 (1.3) | 79 (98.8) | |||
80+ | 99 (25.7) | 13.4 ± 6.4 | 12 (9.5; 16) | 4 (4.0) | 95 (96.0) | 3 (3.0) | 96 (97.0) | |||
COVID-19 vaccine doses (Number) | 0 | 70 (18.1) | 12.6 ± 4.4 | 12 (10; 14) | 4 (5.7) | 66 (94.3) | 0.665 | 3 (4.3) | 67 (95.7) | 0.177 |
1 | 17 (4.4) | 13.7 ± 12.5 | 10 (6; 14) | 1 (5.9) | 16 (94.1) | 0 | 17 (100) | |||
2 | 49 (12.7) | 11.8 ± 5.6 | 10 (7; 14) | 1 (2.0) | 48 (98.0) | 0 | 49 (100) | |||
3 | 236 (61.1) | 12.4 ± 7.6 | 10 (8; 14) | 7 (3.0) | 229 (97.0) | 2 (0.9) | 234 (99.1) | |||
4 | 14 (3.6) | 11.2 ± 4.7 | 12 (6.8, 14.3) | 0 | 14 (100) | 0 | 14 (100) | |||
Immune depression | No | 295 (76.4) | 11.7 ± 5.8 | 10 (8; 14) | 11 (3.7) | 284 (96.3) | 0.479 | 4 (1.4) | 291 (98.6) | 0.850 |
Yes | 91 (23.6) | 14.5 ± 10.1 | 12 (9; 16) | 2 (2.2) | 89 (97.8) | 1 (1.1) | 90 (98.9) | |||
Charlson index | Mild (1–2) | 73 (18.9) | 10.0 ± 4.0 | 9 (7; 11.5) | 2 (2.7) | 71 (97.3) | 0.829 | 0 | 73 (100) | 0.049 |
Moderate (3–4) | 137 (35.5) | 11.8 ± 5.4 | 11 (8; 14) | 4 (2.9) | 133 (97.1) | 0 | 137 (100) | |||
Severe (5+) | 176 (45.6) | 13.8 ± 8.8 | 12 (9; 16) | 7 (4.0) | 169 (96.0) | 5 (2.8) | 171 (97.2) | |||
Positive swabs before first negative test (number) | 1 | 200 (51.8) | 8.8 ± 2.6 | 8 (7; 10) | 5 (2.5) | 195 (97.5) | 0.033 | 2 (1.00) | 198 (99.0) | 0.043 |
2 | 114 (29.5) | 12.9 ± 3.7 | 12 (11; 14) | 2 (1.8) | 112 (98.3) | 0 | 114 (100) | |||
3+ | 72 (18.7) | 21.3 ± 10.8 | 15 (19; 22) | 6 (8.3) | 66 (91.7) | 3 (4.2) | 69 (95.8) |
Sex | Age (yrs) | COVID-19 Pneumonia | Chest Radiological Pattern | Treatment Arm | Dose of COVID-19 Vaccines | Respiratory Support | NIH Class | Admission Parameters | Admission Indication | Vital Status at 30 Days | Death Cause | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CRP (mg/L) | WBC (103/uL) | D-Dimer (ng/mL FEU) | |||||||||||
M | 46 | Yes | CT: GGO, consolidation | Sotrovimab | 1 | HFNC | Severe | 134 | 7.82 | 573 | COVID-19 | Survival | - |
F | 96 | Yes | XR: spread GGO | Standard of care (controls) | 0 | HFNC | Critical | 11.9 | 7.69 | 632 | COVID-19 | Death | COVID-19 |
F | 78 | Yes | XR: GGO | Standard of care (controls) | 3 | Venturi mask | Severe | 105 | 6.96 | 633 | COVID-19 | Survival | - |
F | 72 | Yes | CT: GGO + consolidation | Standard of care (controls) | 3 | HFNC/NIV | Critical | 17.7 | 89.43 | 632 | COVID-19 | Death | COVID-19 |
F | 94 | Yes | XR: consolidation (left middle lobe) | Standard of care (controls) | 0 | Venturi mask | Severe | 157 | 10.36 | 1016 | COVID-19 | Death | Other |
M | 48 | Yes | CT: GGO (ilum) | Nirmatrelvir/Ritonavir | 3 | Venturi mask | Severe | 251 | 15.78 | 1130 | COVID-19 | Survival | - |
F | 92 | Yes | CT: consolidation | Nirmatrelvir/Ritonavir | 0 | Venturi mask | Severe | 16.2 | 8.20 | COVID-19 | Death | Other | |
M | 81 | Yes | XR: spread GGO | Standard of care (controls) | 3 | Venturi mask | Severe | 7.4 | 29.17 | 12.42 | COVID-19 | Survival | - |
F | 57 | No | NA | Standard of care (controls) | 3 | Venturi mask | NA | 7.6 | 8.06 | - | Other | Survival | - |
F | 52 | No | NA | Nirmatrelvir/Ritonavir | 3 | Venturi mask | NA | 4 | 4.49 | - | Other | Survival | - |
M | 72 | Yes | XR: GGO | Standard of care (controls) | 0 | Venturi mask | Severe | 123 | 10.29 | 4164 | COVID-19 | Survival | - |
M | 67 | Yes | XR: consolidations | Standard of care (controls) | 2 | Venturi mask | Severe | 72.6 | 7.05 | 233 | COVID-19 | Survival | - |
F | 70 | Yes | CT: consolidations, lung embolism | Standard of care (controls) | 3 | Venturi mask | Severe | 67.4 | 9.65 | 3859 | COVID-19 | Survival | - |
Non-hospitalized COVID-19 patients deceased | |||||||||||||
F | 79 | No | Standard of care (controls) | 3 | Mild/moderate | Death | Other |
Term | Strata | Hospitalization Due to COVID-19 (Missing Values: 2) | Multiple Logistic Regression | ||
---|---|---|---|---|---|
No (N = 373) | Yes (N = 11) | Chi-Square p-Value | aOR (95% CI) (261 Obs.) | ||
Treatment group | Standard of care (controls) | 103 (92.8) | 8 (7.2) | 0.009 | Reference |
Molnupiravir | 116 (100) | 0 | Omitted | ||
Nirmatrelvir/Ritonavir | 99 (98.0) | 2 (2.0) | 0.16 (0.03; 0.89) | ||
Sotrovimab | 55 (98.2) | 1 (1.8) | 0.22 (0.02; 2.20) | ||
Sex | Female | 175 (96.7) | 6 (3.3) | 0.617 | Reference |
Male | 198 (97.5) | 5 (2.5) | 0.92 (0.24; 3.43) | ||
Age (years) | 21–57 | 93 (97.9) | 2 (2.1) | 0.643 | Reference |
58–72 | 106 (96.4) | 4 (3.6) | 1.62 (0.19; 13.80) | ||
73–79 | 79 (98.8) | 1 (1.3) | 0.21 (0.01; 4.77) | ||
80+ | 95 (96.0) | 4 (4.0) | 1.05 (0.07; 15.50) | ||
COVID-19 Vaccine doses (number) | 0 | 66 (94.3) | 4 (5.7) | 0.466 | Reference |
1 | 16 (94.1) | 1 (5.9) | 1.58 (0.12; 21.69) | ||
2 | 48 (98.0) | 1 (2.0) | 0.54 (0.05; 5.71) | ||
3 | 229 (97.9) | 5 (2.1) | 0.34 (0.07; 1.66) | ||
4 | 14 (100) | 0 | Omitted | ||
Immune depression | No | 284 (96.6) | 10 (3.4) | 0.254 | Reference |
Yes | 89 (98.9) | 1 (1.1) | 0.53 (0.06; 5.02) | ||
Charlson index | 1–2 | 71 (97.3) | 2 (2.7) | 0.812 | Reference |
3–4 | 133 (97.8) | 3 (2.2) | 0.69 (0.08; 6.17) | ||
5+ | 169 (96.6) | 6 (3.4) | 2.94 (0.22; 40.01) | ||
Days between COVID-19 diagnosis and treatment start | 0 | 71 (97.2) | 2 (2.7) | 0.904 | Reference |
1 | 139 (96.5) | 5 (3.5) | 2.70 (0.43; 16.86) | ||
2 | 101 (97.1) | 3 (2.9) | 1.30 (0.17; 9.68) | ||
3+ | 62 (98.4) | 1 (1.6) | 0.68 (0.05; 9.13) |
Day | Nirmatrelvir/ Ritonavir (M: 2) | Standard of Care (Controls) (M: 4) | EER | CER | ARI | NNT (95% CI) | Crude OR (95% CI) | Crude HR (95% CI) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Daily | Pooled | Daily | Pooled | Daily | Pooled (95% CI) | ||||||
5 | 1 | 1 | 1.0 | 55.0 | 0.9 | 29.9 | 0.1 | 25.0% (12.0; 38.0%) | 4 (3; 8) | 2.85 (1.61; 5.06) | 1.01 (0.65; 1.57) |
6 | 14 | 5 | 14.0 | 4.7 | 9.3 | ||||||
7 | 21 | 10 | 21.0 | 9.3 | 11.7 | ||||||
8 | 5 | 11 | 5.0 | 10.3 | −5.3 | ||||||
9 | 14 | 5 | 14.0 | 4.7 | 9.3 | ||||||
10 | 9 | 20 | 9.0 | 32.0 | 18.7 | 44.9 | −9.7 | −13.0% (−0.26; 0.02) | NA | 0.57 (0.33; 1.01) | 0.99 (0.63; 1.55) |
11 | 9 | 6 | 9.0 | 5.6 | 3.4 | ||||||
12 | 4 | 9 | 4.0 | 8.4 | −4.4 | ||||||
13 | 6 | 5 | 6.0 | 4.7 | 1.3 | ||||||
14 | 4 | 8 | 4.0 | 7.5 | −3.5 | ||||||
15 | 2 | 4 | 2.0 | 13.0 | 3.7 | 24.3 | −1.7 | −11.0 (−21.5; −0.48) | NA | 0.47 (0.23; 0.98) | 1.43 (0.72; 2.87) |
16 | 2 | 6 | 2.0 | 5.6 | −3.6 | ||||||
17 | 1 | 2 | 1.0 | 1.9 | −0.9 | ||||||
18 | 3 | 2 | 3.0 | 1.9 | 1.1 | ||||||
19 | 3 | 4 | 3.0 | 3.7 | −0.7 | ||||||
20 | 1 | 0 | 1.0 | 0 | 1.0 | ||||||
21+ | 1 | 9 | 1.0 | 8.4 | −7.4 | ||||||
Total | 100 | 107 |
Factors | Strata | Multinomial Regression * aRRR (95% CI) (Base Category: 5–9 Days) (376 Obs.) | COX REGRESSION aHR (95% CI) * | ||||
Days after COVID-19 Diagnosis | Full Cohort (376 Obs.) | Days after COVID-19 Diagnosis | |||||
10–14 | 15+ | 5–9 (144 Obs.) | 10–14 (145 Obs.) | 15+ (87 Obs.) | |||
Treatment | Standard of care (controls) | Reference | Reference | Reference | Reference | Reference | Reference |
Molnupiravir | 0.47 (0.20; 1.10) | 0.31 (0.09; 1.04) | 1.45 (1.08; 1.94) | 1.03 (0.62; 1.69) | 0.91 (0.54; 1.52) | 1.96 (1.00; 3.85) | |
Nirmatrelvir/Ritonavir | 0.21 (0.09; 0.53) | 0.19 (0.05; 0.64) | 1.68 (1.25; 2.26) | 1.04 (0.64; 1.69) | 1.09 (0.62; 1.91) | 1.30 (0.58; 2.96) | |
Sotrovimab | 0.73 (0.24; 2.19) | 1.17 (0.29; 4.80) | 0.86 (0.61; 1.23) | 0.96 (0.45; 2.04) | 0.61 (0.34; 1.10) | 1.15 (0.56; 2.36) | |
Sex | Female | Reference | Reference | Reference | Reference | Reference | Reference |
Male | 0.69 (0.36; 1.30) | 0.70 (0.29; 1.65) | 1.15 (0.93; 1.42) | 1.07 (0.74; 1.56) | 1.19 (0.84; 1.69) | 0.82 (0.49; 1.39) | |
Age (years) | 21–57 | Reference | Reference | Reference | Reference | Reference | Reference |
58–72 | 0.89 (0.32; 2.49) | 0.44 (0.11; 1.83) | 1.04 (0.74; 1.47) | 0.62 (0.36; 1.08) | 0.84 (0.43; 1.61) | 0.76 (0.34; 1.70) | |
73–79 | 0.81 (0.24; 2.81) | 1.00 (0.20; 5.13) | 0.89 (0.60; 1.34) | 0.69 (0.37; 1.30) | 0.79 (0.38; 1.67) | 1.01 (0.41; 2.46) | |
80+ | 2.11 (0.60; 7.44) | 2.52 (0.49; 13.12) | 0.66 (0.43; 1.00) | 0.82 (0.40; 1.69) | 0.58 (0.28; 1.20) | 1.00 (0.40; 2.51) | |
COVID-19 Vaccine doses (Number) | 0 | Reference | Reference | Reference | Reference | Reference | Reference |
1 | 0.30 (0.07; 1.32) | 0.27 (0.03; 2.66) | 1.04 (0.59; 1.83) | 3.93 (1.55; 9.97) | 1.08 (0.39; 2.99) | 0.33 (0.09; 1.21) | |
2 | 0.33 (0.11; 1.02) | 0.36 (0.08; 1.60) | 1.37 (0.94; 2.01) | 2.88 (1.36; 6.12) | 1.36 (0.73; 2.52) | 1.23 (0.50; 3.05) | |
3 | 0.15 (0.06; 0.35) | 0.07 (0.02; 0.23) | 2.03 (1.51; 2.73) | 2.38 (1.32; 4.30) | 1.32 (0.84; 2.08) | 1.24 (0.56; 2.74) | |
4 | 0.15 (0.02; 1.00) | 0.03 (0.00; 0.45) | 2.48 (1.32; 4.68) | 5.31 (1.82; 15.51) | 0.97 (0.32; 2.96) | 3.61 (0.83; 15.66) | |
Immune depression | No | Reference | Reference | Reference | Reference | Reference | Reference |
Yes | 0.97 (0.42; 2.27) | 1.03 (0.34; 3.17) | 0.70 (0.52; 0.93) | 0.65 (0.41; 1.03) | 0.69 (0.42; 1.12) | 0.52 (0.27; 0.97) | |
Charlson index | 1–2 | Reference | Reference | Reference | Reference | Reference | Reference |
3–4 | 1.78 (0.60; 5.26) | 2.29 (0.49; 10.60) | 0.71 (0.49; 1.02) | 1.05 (0.60; 1.83) | 0.78 (0.39; 1.55) | 0.47 (0.17; 1.34) | |
5+ | 1.94 (0.58; 6.54) | 3.15 (0.57; 17.35) | 0.63 (0.41; 0.95) | 0.87 (0.48; 1.57) | 0.89 (0.40; 1.98) | 0.36 (0.11; 1.12) | |
Days between COVID-19 diagnosis and treatment start | 0 | Reference | Reference | Reference | Reference | Reference | Reference |
1 | 2.08 (0.82; 5.26) | 2.65 (0.72; 9.73) | 0.71 (0.52; 0.96) | 0.88 (0.55; 1.40) | 0.79 (0.42; 1.50) | 0.87 (0.42; 1.79) | |
2 | 2.02 (0.75; 5.43) | 2.21 (0.56; 8.72) | 0.71 (0.51; 0.99) | 0.72 (0.42; 1.25) | 0.83 (0.45; 1.55) | 0.64 (0.29; 1.42) | |
3+ | 4.86 (1.55; 15.23) | 8.23 (1.73; 39.09) | 0.56 (0.38; 0.82) | 0.61 (0.32; 1.15) | 0.84 (0.43; 1.64) | 1.10 (0.43; 2.77) |
Term | Strata | Cox Regression aHR (95% CI) | |
---|---|---|---|
Model 1 * (269 Obs.) | Model 2 * (112 Obs.) | ||
Treatment group | Sotrovimab (Controls) | Reference | Reference |
Molnupiravir | 1.74 (1.21; 2.50) | 1.07 (0.50; 2.28) | |
Nirmatrelvir/Ritonavir | 1.96 (1.32; 2.93) | 1.05 (0.49; 2.26) | |
Sex | Female | Reference | Reference |
Male | 1.27 (0.98; 1.64) | 1.15 (0.74; 1.78) | |
Age (years) | 21–57 | Reference | Reference |
58–72 | 1.00 (0.66; 1.49) | 0.53 (0.27; 1.03) | |
73–79 | 0.88 (0.55; 1.41) | 0.62 (0.29; 1.32) | |
80+ | 0.60 (0.37; 0.97) | 0.69 (0.31; 1.57) | |
COVID-19 Vaccine doses (number) | 0 | Reference | Reference |
1 | 0.98 (0.50; 1.93) | 3.36 (1.10; 10.24) | |
2 | 1.32 (0.83; 2.10) | 2.68 (1.06; 6.78) | |
3 | 1.91 (1.33; 2.74) | 2.06 (0.97; 4.39) | |
4 | 2.20 (1.06; 4.59) | 5.55 (1.58; 19.45) | |
Immune depression | No | Reference | Reference |
Yes | 0.68 (0.49; 0.95) | 0.64 (0.39; 1.06) | |
Charlson index | 1–2 | Reference | Reference |
3–4 | 0.77 (0.49; 1.21) | 1.47 (0.74; 2.92) | |
5+ | 0.81 (0.49; 1.34) | 1.03 (0.53; 1.98) | |
Days between COVID-19 diagnosis and treatment start | 0 | Reference | Reference |
1 | 0.72 (0.47; 1.09) | 0.88 (0.51; 1.51) | |
2 | 0.67 (0.42 1.06) | 0.67 (0.34; 1.31) | |
3+ | 0.54 (0.32; 0.92) | 0.67 (0.30; 1.51) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cegolon, L.; Pol, R.; Simonetti, O.; Larese Filon, F.; Luzzati, R. Molnupiravir, Nirmatrelvir/Ritonavir, or Sotrovimab for High-Risk COVID-19 Patients Infected by the Omicron Variant: Hospitalization, Mortality, and Time until Negative Swab Test in Real Life. Pharmaceuticals 2023, 16, 721. https://doi.org/10.3390/ph16050721
Cegolon L, Pol R, Simonetti O, Larese Filon F, Luzzati R. Molnupiravir, Nirmatrelvir/Ritonavir, or Sotrovimab for High-Risk COVID-19 Patients Infected by the Omicron Variant: Hospitalization, Mortality, and Time until Negative Swab Test in Real Life. Pharmaceuticals. 2023; 16(5):721. https://doi.org/10.3390/ph16050721
Chicago/Turabian StyleCegolon, Luca, Riccardo Pol, Omar Simonetti, Francesca Larese Filon, and Roberto Luzzati. 2023. "Molnupiravir, Nirmatrelvir/Ritonavir, or Sotrovimab for High-Risk COVID-19 Patients Infected by the Omicron Variant: Hospitalization, Mortality, and Time until Negative Swab Test in Real Life" Pharmaceuticals 16, no. 5: 721. https://doi.org/10.3390/ph16050721
APA StyleCegolon, L., Pol, R., Simonetti, O., Larese Filon, F., & Luzzati, R. (2023). Molnupiravir, Nirmatrelvir/Ritonavir, or Sotrovimab for High-Risk COVID-19 Patients Infected by the Omicron Variant: Hospitalization, Mortality, and Time until Negative Swab Test in Real Life. Pharmaceuticals, 16(5), 721. https://doi.org/10.3390/ph16050721